2013届高中数学总复习阶段性测试题11 统计与概率 理 新人教A版必修1
2013高考数学一轮复习精讲精练 第11章 统计与概率学案 新人教A版

2013高中数学精讲精练第十一章统计与概率【方法点拨】1、准确理解公式和区分各种不同的概念正确使用概率的加法公式与乘法公式、随机变量的数学期望与方差的计算公式.注意事件的独立性与互斥性是两个不同的概念,古典概型与几何概型都是等可能事件,对立事件一定是互斥事件,反之却未必成立.2、掌握抽象的方法抽象分为简单的随机抽样、系统抽样、分层抽样.系统抽样适用于总体较多情况,分层抽样适用于总体由几个差异明显的部分组成的情况.3、学会利用样本和样本的特征数去估计总体会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,并体会它们各自特点,特别注意频率分布直方图的纵坐标为频率/组距;会计算样本数据平均数、方差(标准差),利用样本的平均数可以估计总体的平均数,利用样本的方差估计总体的稳定程度.4、关于线性回归方程的学习在线性相关程度进行校验的基础上,建立线性回归分析的基本算法步骤.学会利用线性回归的方法和最小二乘法研究回归现象,得到的线性回归方程(不要求记忆系数公式)可用于预测和估计,为决策提供依据.第1课抽样方法【考点导读】1. 抽样方法分为简单随机抽样、系统抽样、分层抽样.2 .系统抽样适用于总体个数较多情况,分层抽样适用于总体由几个差异明显的部分组成的情况.【基础练习】1.为了了解全校900名高一学生的身高情况,从中抽取90名学生进行测量,下列说法正确的是④ .①总体是900 ②个体是每个学生③样本是90名学生④样本容量是902.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽到的概率为0.25,则N的值为 120 .3.高三年级有12个班,每班50人按1—50排学号,为了交流学习经验,要求每班学号为18的同学留下进行交流,这里运用的是系统抽样法.4.某校有学生2000人,其中高三学生500人.为了解学生身体情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为 505.将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第40个号码为 0795 .【范例解析】例1:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析简单随机抽样一般采用两种方法:抽签法和随机数表法.解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径.解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.点评从以上两种方法可以看出,当总体个数较少时用两种方法都可以,当样本总数较多时,方法2优于方法1.例2、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.分析按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号. 解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,59组是编号为291~295的5名学生.采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k≤5),那么抽取的学生编号为k+5L(L=0,1,2,……,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,……,288,293.点评系统抽样可按事先规定的规则抽取样本. 本题采用的规则是第一组随机抽取的学生编号为k,那么第m组抽取的学生编号为k+5(m-1).例3:一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.分析采用分层抽样的方法.解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例随机抽取各乡镇应抽取的样本.300×3/15=60(人),300×2/15=40(人),300×5/15=100(人),300×2/15=40(人),300×3/15=60(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60 人.(3)将300人组到一起,即得到一个样本.点评分层抽样在日常生活中应用广泛,其抽取样本的步骤尤为重要,应牢记按照相应的比例去抽取.【反馈演练】1. 一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是 0.1 .2.为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有 2 个.①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等.3.对于简单随机抽样,下列说法中正确的命题为①②③④ .①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.4.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是分层抽样法,简单随机抽样法 .5.下列抽样中不是系统抽样的是③ .①.从标有1~15号的15个球中,任选三个作样本,按从小号到大号排序,随机选起点i,以后05i+,010i+(超过15则从1再数起)号入样;②.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验;③.搞某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的人数为止;④.电影院调查观众的某一指标,通知每排(每排人数相同)座位号为14的观众留下座谈.6.为了解初一学生的身体发育情况,打算在初一年级10个班的某两个班按男女生比例抽取样本,正确的抽样方法是③ .①随机抽样②分层抽样③先用抽签法,再用分层抽样④先用分层抽样,再用随机数表法7.写出下列各题的抽样过程(1)请从拥有500个分数的总体中用简单随机抽样方法抽取一个容量为30的样本.(2)某车间有189名职工,现在要按1:21的比例选派质量检查员,采用系统抽样的方式进行.(3)一个电视台在因特网上就观众对某一节目喜爱的程度进行调查,参加调查的总人数为打算从中抽取60人进行详细调查,如何抽取?解:(1)①将总体的500个分数从001开始编号,一直到500号;②从随机数表第1页第0行第2至第4列的758号开始使用该表;③抄录入样号码如下:335、044、386、446、027、420、045、094、382、5215、342、148、407、349、322、027、002、323、141、052、177、001、456、491、261、036、240、115、143、402④按以上编号从总体至将相应的分数提取出来组成样本,抽样完毕(2)采取系统抽样189÷21=9,所以将189人分成9组,每组21人,在每一组中随机抽取1人,这9人组成样本(3)采取分层抽样 总人数为12000人,12000÷60=200,人余=,余=人,=人,7252001072126192003926167222004567145112002345 所以从很喜爱的人中剔除145人,再抽取11人;从喜爱的人中剔除167人,再抽取22人;从一般喜爱的人中剔除126人,再抽取19人;从不喜爱的人中剔除72人,再抽取5人第2课 总体分布的估计【考点导读】1.掌握频率分布直方图、折线图表与茎叶图的做法,体会它们各自的特点. 2.会用频率分布直方图、折线图表与茎叶图对总体分布规律进行估计. 【基础练习】1.一个容量为n 的样本,分成若干组,已知某组的频数和频率分别为60,0.25,则n 的值是 2402.用样本频率分布估计总体频率分布的过程中,下列说法正确的是 ③①总体容量越大,估计越精确 ②总体容量越小,估计越精确 ③样本容量越大,估计越精确 ④样本容量越小,估计越精确 3. 已知某工厂工人加工的零件个数的茎叶图如右图所示 (以零件个数的前两位为茎,后一位为叶),那么工人生产 零件的平均个数及生产的零件个数超过130的比例分别是 120.5与10% .410 11 12 13 78022******** 00122344667880234第三组的频数和频率分别是 14和0.14 .5. 200辆汽车通过某一段公路时的时速频率 分布直方图如图所示,则时速在[)50,60的汽 车大约有 60 辆.【范例解析】例1.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)5.89~5.79这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格). 解:(1)频率为:0.025100.25⨯=,频数:600.2515⨯= (2)0.015100.025100.03100.005100.75⨯+⨯+⨯+⨯=.例2.在参加世界杯足球赛的32支球队中,随机抽取20名队员,调查其年龄为25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28.填写下面的频率分布表,据此估计全体队员在哪个年龄段的人数最多?占总数的百分之几?并画出频率分布直方图.解: (1)分组频数频率频率0.4 0.2 0.140 50 60 70 80 时速年龄20.5 22.5 24.5 26.5 28.5 30.5 (2)(3)估计全体队员在24.5~26.5处人数最多,占总数的百分之四十. 【反馈演练】1.对于样本频率直方图与总体密度曲线的关系,下列说法正确的是 ④①频率分布直方图与总体密度曲线无关 ②频率分布直方图就是总体密度曲线③样本容量很大的频率分布直方图就是总体密度曲线④如果样本容量无限增大,分组的组距无限的减小,那么频率分布直方图就会无限接近于总体密度曲线2.在某餐厅内抽取100人,其中有30人在15岁以下,35人在16至25岁,25人在26至45岁,10人在46岁以上,则数 0.35 是16到25岁人员占总体分布的 ②① 概率 ②频率 ③ 累计频率 ④ 频数(第8题)0.5 时间(小时)1.0 1.52.0(第9题)3.10名工人某天生产同一零件,生产的件数是 15 ,17 , 14 , 10 , 15 , 17 ,17 , 16, 14 , 12.设其平均数为a,中位数为b,众数为c ,则a, b, c 的大小关系为 a b c >>4.已知样本:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,12则频率为0.3的范围是 ( 2 )()[)1 5.5,7.5 ()[)27.5,9.5 ()[)39.5,11.5 ()[]411.5,13.55.已知10个数据如下:63,65,67,69,66,64,66, 64, 65,68.根据这些数据制作频率直方图,其中[64.5, 66.5)这组所对应矩形的高为 0.2 6.某中学高一年级有400人,高二年级有320人,高三有280人,以每人被抽取的频率为0.2,向该中学抽取一个样本容量为n 的样本,则n = 2007. 一个容量为20的样本数据,分组后,组距与频数如下: [)10,20,2; [)20,30, 3 ;[)30,40, 4 ; [)40,50, 5 ; [)50,60, 4 ; []60,70, 2 .则样本在区间 (),50-∞上的频率为__ 0.7 ___8.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000]的频率为 0.39.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右上面的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 0.9小时10.从甲、乙两台机器生产的零件中随机抽取15个进行检验,相关指标的检验结果为:甲:534,517,528,522,513,516,527,526,520,508,533,524,518,522,512; 乙:512,520,523,516,530,510,518,521,528,532,507,516,524,526,514. (1).画出上述数据茎叶图;(2).试比较分析甲、乙两台机器生产零件的情况. 解(1)用指标的两位数作茎,然后作茎叶图: (2)从图中可以看出,甲机器生产零件的指标 分布大致对称,指标平均在520左右,中位数 和众数均为522;乙机器生产零件的指标分布为 大致对称,指标平均在520左右,中位数和众数 分别为520和516,总的来看,甲机器生产的零 件的指标略大些..点评 注意作茎叶图时,茎可以放两位数.第3课 总体特征数的估计【考点导读】理解样本数据的方差、标准差的意义并且会计算数据的方差、标准差,使学生掌握通过合理抽样对总体稳定性作出科学的估计的思想. 【基础练习】1.已知数据12n x x x ,,,的平均数为5x =,则数据137x +,237x +,…,37n x +的平均数为 22 .2.若M 个数的平均数是X, N 个数的平均数是Y,则这M+N 个数的平均数是MX NY M N++3.数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为 4σ2.4,则下列说法正确的是 ④ .①甲的样本容量小 ②乙的样本容量小 ③甲的波动较小 ④乙的波动较小8 87632 876422043 50 51 52 53 7024668 01346802【范例解析】例1.下面是一个班在一次测验时的成绩,分别计算男生和女生的成绩平均值、中位数以及众数.试分析一下该班级学习情况.男生:55,55,61,65,68,68,71,72,73,74,75,78,80,81,82,87,94; 女生:53,66,70,71,73,73,75,80,80,82,82,83,84,85,87,88,90,93,94,97.解:17名男生成绩的平均值是72.9分,中位数是73分,众数为55和68.20名女生成绩的平均值是80.3分,中位数是82分,众数为73,80和82. 从上述情况来看,这个班女生成绩明显好于男生成绩.例2.为了比较甲,乙两位射击运动员的成绩,在相同的条件下对他们进行了10次测验,测得他们的环数如下:试根据以上数据,判断他们谁更优秀.解:甲x =8,乙x =8, 2甲S =3.4,2乙S =2, 所以乙更优秀例3.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品, 称其重量,分别记录抽查数据如下: 甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)计算甲、乙两个车间产品的平均数与方差,并说明哪个车间产品较稳定? 解:(1)采用的方法是:系统抽样; (2)1102101999810398991007x =++++++=甲();11101159085751151101007x =++++++=乙();214114941 3.428577S =++++++=甲();21100225100225625225100228.577S =++++++=乙()∴ 22S S <乙甲 故甲车间产品比较稳定.点评 以样本估计总体,在生产生活经常用到,发现问题,解决问题,从而更好地指导实践. 【反馈演练】1. 下列说法中,正确的是 ④ .① 频率分布直方图中各小长方形的面积不等于相应各组的频率 ②一组数据的标准差是这组数据的方差的平方③数据2,3,4,5的方差是数据4,6,8,10的方差的一半 ④一组数据的方差越大,说明这组数据的波动越大2.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S 12= 13.2,S 22=26.26,则 ① .①甲班10名学生的成绩比乙班10名学生的成绩整齐 ②乙班10名学生的成绩比甲班10名学生的成绩整齐 ③甲、乙两班10名学生的成绩一样整齐 ④不能比较甲、乙两班10名学生成绩的整齐程度3 .已知样本为101 ,98, 102, 100, 99,则样本标准差为4 .某班45人,一次数学考试,班级均分72分.已知不及格人数为5人,他们的平均成绩是52分,则及格学生的平均分为 74 .5分 .5.高三年级1000名学生进行数学其中测试.高三年级组随机调阅了100名学生的试卷(满求样本平均数和样本方差. 解:638410515615735889310100x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==6.77222221[6(3)8(4)10(5)15(6)60s x x x x =⨯-+⨯-+⨯-+⨯- 222215(7)35(8)8(9)3(10)]x x x x +⨯-+⨯-+⨯-+⨯-=3.11716.两台机床同时生产直径为10的零件,为了检验产品质量,质量质检员从两台机床的产品中各抽取4件进行测量,结果如下:如果你是质量检测员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求.解:先考虑各自的平均数:设机床甲的平均数、方差分别为211x s 、;机床乙的平均数、方差分别为222x s 、. 1109.81010.2104x +++==,210.1109.910104x +++==∴两者平均数相同,再考虑各自的方差:2222211[(1010)(9.810)(1010)(10.210)]0.024s =-+-+-+-=2222221[(1010)(10.110)(1010)(9.910)]0.0054s =-+-+-+-=∵2212s s >,∴机床乙的零件质量更符合要求.第4课 案例分析【考点导读】1.会作两个有关联变量数据的散点图,并利用散点图直观认识变量间的相关关系.2.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.3.了解独立性检验的基本思想、方法及其初步应用,了解回归与分析的基本思想、方法及其初步应用.【基础练习】1.根据下表中的数据:可求出与的线性回归方程是 ˆ0.70.1yx =-2.线性回归方程ˆybx a =+表示的直线必经过的一个定点是 (,y)x 3.设有一个直线回归方程为 2 1.5y x =- ,则变量x 增加一个单位时 ③ . ① y 平均增加 1.5 个单位 ② y 平均增加 2 个单位 ③ y 平均减少 1.5 个单位 ④ y 平均减少 2个单位4.对于给定的两个变量的统计数据,下列说法正确的是③ .①都可以分析出两个变量的关系②都可以用一条直线近似地表示两者的关系③都可以作出散点图④都可以用确定的表达式表示两者的关系5.对于两个变量之间的相关系数,下列说法中正确的是③ .①|r|越大,相关程度越大②|r|()0,∈+∞,|r|越大,相关程度越小,|r|越小,相关程度越大③|r|≤1且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小【范例解析】例1.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表;(2)判断性别与休闲方式是否有关系.解:(1)2×2的列联表计算22124(43332721)6.20170546460χ⨯⨯-⨯=≈⨯⨯⨯因为2 5.024γ≥,所以有理由认为假设“休闲方式与性别无关”是不合理的,即有97.5%的把握认为“休闲方式与性别有关”.点评对两个变量相关性的研究,可先计算2χ的值,并根据临界表进行估计与判断.例 3. 一个车间为了为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次实验,测得如下数据:(1)y与x是否具有线性相关关系?(2)如果y与x具有线性相关关系,求回归直线方程;(3) 据此估计加工200个零件所用时间为多少?解:(1)0.998.r ≈查表可得0.05和n-2相关系数临界0.050.632r =, 由0.05r r >知y 与x 具有线性相关关系. (2)回归直线方程为 0.66854.96y x =+ (3)估计加工200个零件所用时间189分. 【反馈演练】1.下列两个变量之间的关系不是函数关系的是 ④ . ①角度与它的余弦值 ②正方形的边长与面积 ③正n 边形的边数和顶点角度之和 ④人的年龄与身高2.为了考察两个变量x 和y 之间的线性相关性,甲、乙两个同学各自独立的做10次和15次试验,并且利用线性回归方法,求得回归直线分布为1l 和2l ,已知在两人的试验中发现对变量x 的观察数据的平均值恰好相等都为s ,对变量y 的观察数据的平均值恰好相等都为t,那么下列说法正确的是 ① .①直线1l 和2l 有交点(s,t ) ②直线1l 和2l 相交,但是交点未必是(s,t ) ③ 直线1l 和2l 平行 ④ 直线1l 和2l 必定重合 3.下列两个变量之间的关系是相关关系的是 ④ .①正方体的棱长和体积 ②单位圆中角的度数和所对弧长 ③单产为常数时,土地面积和总产量 ④日照时间与水稻的亩产量 4.对于回归方程y=4.75x+257,当x=28时,y 的估计值为 390 .5.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:表中的数据,得到2250(1320107) 4.84423272030χ⨯⨯-⨯=≈⨯⨯⨯,因为2 3.841χ≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 5% .6.为了研究失重情况下男女飞行员晕飞船的情况,抽取了89名被试者,他们的晕船情况汇总如下表,根据独立性假设检验的方法, 不能 认为在失重情况下男性比女性更容易晕船(填能或不能)7.打鼾不仅影响别人休息,而且可能与患某种疾病有关,下表是一次调查所得的数据,试问:每一晚都打鼾与患心脏病有关吗?解:提出假设H 0:打鼾与患心脏病无关,根据数据得221633(30135524224)68.03.5415792541379χ⨯⨯-⨯=≈⨯⨯⨯ 当H 0成立时,2 6.635χ≥的概率为1%,而这时268.03 6.635,χ=>所以我们有99%的把握认为打鼾与患心脏病有关.第5课 古典概型【考点导读】1.在具体情境中,了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等. 【基础练习】1. 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?分析:事件A出现的频数n A与试验次数n的比值即为事件A的频率,当事件A发生的频率f n(A)稳定在某个常数上时,这个常数即为事件A的概率.解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89.点评概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之. 2.将一枚硬币向上抛掷10次,其中正面向上恰有5次是随机事件(必然、随机、不可能)3.下列说法正确的是③ .①任一事件的概率总在(0.1)内②不可能事件的概率不一定为0③必然事件的概率一定为1 ④以上均不对34.一枚硬币连掷3次,只有一次出现正面的概率是85. 从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张卡片上的字母恰好是按字2母顺序相邻的概率为5【范例解析】例1. 连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.(1)写出这个试验的基本事件;(2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?解:(1)这个试验的基本事件Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};(2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).点评 一次试验中所有可能的结果都是随机事件,这类随机事件称为基本事件.例2. 抛掷两颗骰子,求: (1)点数之和出现7点的概率;(2)出现两个4点的概率.解:作图,从下图中容易看出基本事件空间与点集S={(x ,y )|x ∈N ,y ∈N ,1≤x ≤6,1≤y ≤6}中的元素一一对应.因为S 中点的总数是6×6=36(个),所以基本事件总数n=36.Ox654321(1)记“点数之和出现7点”的事件为A 6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P (A )=61366=. (2)记“出现两个4点”的事件为B ,则从图中可看到事件B 包含的基本事件数只有1个:(4,4).所以P (B )=361. 点评 在古典概型下求P (A ),关键要找出A 所包含的基本事件个数然后套用公式()A mP A n=事件包含基本事件的个数基本事件的总数变题 .在一次口试中,考生要从5道题中随机抽取3道进行回答,答对其中2道题为优秀,答对其中1道题为及格,某考生能答对5道题中的2道题,试求: (1)他获得优秀的概率为多少;(2)他获得及格及及格以上的概率为多少;点拨:这是一道古典概率问题,须用枚举法列出基本事件数.解:设这5道题的题号分别为1,2,3,4,5,则从这5道题中任取3道回答,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5), (2,4,5),(3,4,5)共10个基本事件.(1)记“获得优秀”为事件A ,则随机事件A 中包含的基本事件个数为3,故3()10P A =. (2)记“获得及格及及格以上”为事件B ,则随机事件B 中包含的基本事件个数为9,故9()10P B. 点评:使用枚举法要注意排列的方法,做到不漏不重.例3. 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b 2),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 2,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A 表示“取出的两种中,恰好有一件次品”这一事件,则 A=[(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)] 事件A 由4个基本事件组成,因而,P (A )=64=32【反馈演练】1.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为 0.9 中10环的概率约为 0.2 .分析:中靶的频数为9,试验次数为10,所以中靶的频率为109=0.9,所以中靶的概率约为0.9.解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2. 2.一栋楼房有4个单元,甲乙两人被分配住进该楼,则他们同住一单元的概率是 0.25 . 3. 在第1,3,6,8,16路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第6路或第16路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的 概率等于52。
高一期末复习 统计与概率(有答案)

0.00080.00040.00030.000119题图高一期末复习统计与概率例1:右图是某市有关部门根据对某地干部的月 收入情况调查后画出的样本频率分布直方图, 已知图中第一组的频数为4000.请根据该图提 供的信息解答下列问题:(图中每组包括左端点,不包括右端点,如第一组表示收入在 )1500,1000[)(1)求样本中月收入在[2500,3500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本的各组中按月收入再用分层抽样方法抽出100人作进一步分析,则月收入在[1500,2000)的这段应抽多少人? (3)试估计样本数据的中位数.例2:某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果如下分成五组:第一组[13,14);第二组[14,15),…,第五组[]17,18.下图是按上述分组方法得到的频率分布直方图. (1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中 成绩良好的人数;(2)设m 、n 表示该班某两位同学的百米测试成绩,且已知[],13,14)17,18m n ⎡∈⋃⎣. 求事件“1m n ->”的概率.例3:已知实数{},2,1,1,2a b ∈--(1)求直线y ax b =+不经过第四象限的概率;(2)求直线y ax b =+与圆221x y +=有公共点的概率。
例4:先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.(1)求点),(y x P 在直线1-=x y 上的概率; (2)求点),(y x P 满足x y 42<的概率.例5:(1)在区间]4,0[上随机取出两个整数n m ,,求关于x 的一元二次方程02=+-m x n x 有实数根的概率; (2)在区间]4,0[上随机取两个数n m ,,求关于x 的一元二次方程02=+-m x n x 的实数根的概率.频率练习:1、在一次歌手大奖赛上,七位评委为歌手打出的分数如下: 9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A .9.4, 0.484 B .9.4, 0.016 C .9.5, 0.04 D .9.5, 0.016 2、学校为了调查学生在课外读物方面的支出情况,抽出 了一个容量为n 的样本,其频率分布直方图如图所示,其中 支出在[50,60)元的同学有30人,则n 的值为( ).A 100 .B 1000 .C 90 .D 9003、已知某回归方程为:ˆˆ23yx =-,则当解释变量增加1个单位时,预报变量平均:( ) A 、增加3个单位 B 、增加13个单位 C 、减少3个单位 D 、减少13个单位 4、已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:(2)12(2)4f f ≤⎧⎨-≤⎩为事件为A ,则事件A 发生的概率为( )A .14 B . 58 C . 12 D . 385、某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是 人.6、统计某校1000名学生的数学会考成绩,得到样本频率分布直方图如右图示,规定不低于60分为及格,不低于80分为优秀,则及格人数是 ;优秀率为 。
高中数学必修一概率与统计概念知识点总结及练习题

高中数学必修一概率与统计概念知识点总结及练习题概率的基本概念- 事件:指某个特定的结果或情况。
- 样本空间:所有可能结果的集合。
- 随机试验:具有确定结果但无法预知的试验。
- 事件发生的概率:一个事件发生的可能性大小。
概率的计算方法频率定义法- 通过大量重复试验来估计某个事件发生的概率。
古典定义法- 对于具有确定结果的试验,通过分析样本空间和事件的个数来计算概率。
几何定义法- 通过几何形状的面积或长度来计算概率。
组合计数法- 通过组合的方法计算某个事件发生的概率。
概率的性质- 概率的取值范围:[0,1]- 必然事件的概率:1- 不可能事件的概率:0- 互斥事件的概率:两个事件不可能同时发生,概率为两个事件概率之和。
统计的基本概念- 总体:研究对象的全体。
- 样本:从总体中选取的一部分。
- 参数:总体的某个数值特征。
- 统计量:样本的某个数值特征。
抽样方法- 随机抽样:每个样本都有相同的机会被选中。
- 系统抽样:按照一定的规则抽取样本。
- 分层抽样:将总体划分成几个层次,然后从每个层次中随机抽取样本。
- 整群抽样:将总体划分成若干个互相独立的群组,然后随机选择某些群组作为样本。
统计的应用- 描述统计:通过图表和指标等方式描述数据特征。
- 推断统计:通过样本的统计量推断总体参数。
练题1. 一个骰子掷一次,计算以下事件的概率:- 出现奇数的概率- 出现大于4的概率2. 甲、乙、丙三个班级参加校运动会,根据每个班级报名人数的统计数据,计算以下事件的概率:- 一个学生随机选中是甲班的概率- 一个学生随机选中是丙班的概率3. 一名学生参加数学竞赛,根据往年的统计数据,该学生获奖的概率为0.4。
如果该学生连续参加了5次数学竞赛,计算以下事件的概率:- 至少获奖一次的概率- 恰好获奖3次的概率4. 某商品以正态分布的价格出售,平均价格为100元,标准差为10元。
计算以下事件的概率:- 价格大于90元的概率- 价格在90元到110元之间的概率5. 一组学生的考试成绩服从正态分布,平均分为80分,标准差为5分。
人教版高中数学概率与统计专项练习题(含答案)

人教版高中数学概率与统计专项练习题(含答案)考试范围:xxx ;考试时间:100分钟;命题人:xxx学校注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(共8题,每题5分,共40分)1.已知直线x +y +k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ |≥√33|AB ⃗⃗⃗⃗⃗ |,则k 的取值范围是 A.(√3,+∞)B.[√2,+∞)C.[√2,2√2)D.[√3,2√2)2.已知函数f (x )=(2a -1)x -12cos 2x -a (sin x +cos x )在[0,π2]上单调递增,则实数a 的取值范围为A.(-∞,13] B.[13,1] C.[0,+∞) D.[1,+∞)3.已知{a n }是等比数列,数列{b n }满足b n =log 2a n ,n ∈N *,且b 2+b 4=4,则a 3的值为A.1B.2C.4D.164.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F ,虚轴的上端点为B ,点P ,Q 在双曲线上,且点M (-2,1)为线段PQ 的中点,PQ ∥BF ,双曲线的离心率为e ,则e 2=A.√2+12B.√3+12C.√2+22D.√5+125.双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的渐近线与圆x 2+y 2-2x +15=0相切,则双曲线C 的离心率为A.√52B.√2C.√5D.√1726.已知函数f (x )=-x 2+a2,g (x )=x 2e x -a 2,若对任意的x 1∈[-12,1],存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),则实数a 的取值范围是A.[14,e] B.(1+1e ,e]C.(14+1e ,e] D.[1,e]7.已知函数f (x )=(x 2-2x )sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =A.4B.2C.1D.08.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.8第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(共6题,每题5分,共30分)9.(2x +x-1)5的展开式中常数项是 .10.已知函数f (x )=3sin(x -π3),若f (x 1)-f (x 2)=6,则f (x 1-x 2)的值为 .11.已知不等式ax 2+bx +c ≥0(a ≠0,a <b )对一切实数x 恒成立,当实数a ,b ,c 变化时,a+b+c b-a的最小值为 .12.已知数列{a n }的首项a 1=1,当n ≥2时,满足a n =a 1+12a 2+13a 3+…+1n-1a n-1,则通项a n = .13.已知等差数列{a n }的前n 项和为S n ,满足S 7=S 11,且a 1>0,则S n 最大时n 的值是 .14.(x 2+3x +2)5的展开式中含x 项的系数是 .三、解答题(共6题,共80分)15.设椭圆C :a 2+b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆的上顶点为点B ,点A 为椭圆C 上一点,且3F 1⃗⃗⃗ +F 1⃗⃗⃗ =0.(1)求椭圆C 的离心率;(2)若b =1,过点F 2的直线交椭圆C 于M ,N 两点,求线段MN 的中点P 的轨迹方程.16.设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (i)求数列{a 2n (c 2n -1)}的通项公式; (ii)求∑i=12na i c i (n ∈N *).17.已知椭圆C :x 2a2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=4√3,A (√3,-√132)是椭圆上一点.(1)求椭圆C 的标准方程和离心率e 的值;(2)若T 为椭圆C 上异于顶点的任一点,M ,N 分别为椭圆的右顶点和上顶点,直线TM 与y 轴交于点P ,直线TN 与x 轴交于点Q ,求证:|PN |·|QM |为定值.18.11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.19.在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2=1(a >1)的左、右焦点分别为F 1,F 2,P 是C上异于长轴端点的动点,∠F 1PF 2的角平分线交x 轴于点M .当P 在x 轴上的射影为F 2时,M 恰为OF 2的中点.(1)求C 的方程;(2)过点F2引PF2的垂线交直线l:x=2于点Q,试判断除点P外,直线PQ与C是否有其他公共点?说明理由.20.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD.(1)证明: BC⊥PB;(2)若PA⊥PD,PB=AB,求二面角A-PB-C的余弦值.参考答案1.C【解析】设AB 的中点为D ,则OD ⊥AB ,因为|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |≥√33|AB ⃗⃗⃗⃗⃗ |,所以|2OD ⃗⃗⃗⃗⃗⃗ |≥√33|AB ⃗⃗⃗⃗⃗ |,所以|AB ⃗⃗⃗⃗⃗ |≤2√3|OD ⃗⃗⃗⃗⃗⃗ |,所以|AB ⃗⃗⃗⃗⃗ |2≤12|OD ⃗⃗⃗⃗⃗⃗ |2.因为|OD ⃗⃗⃗⃗⃗⃗ |2+14|AB ⃗⃗⃗⃗⃗ |2=4,所以|OD ⃗⃗⃗⃗⃗⃗ |2≥1,因为直线x +y +k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,所以|OD⃗⃗⃗⃗⃗⃗ |2<4,所以1≤|OD ⃗⃗⃗⃗⃗⃗ |2<4,所以1≤(√2)2<4,因为k >0,所以√2≤k <2√2,所以k 的取值范围是[√2,2√2).【备注】无2.D【解析】本题主要考查函数的单调性与导数、不等式恒成立问题、三角函数的值域,以函数的单调性为载体,借助导数及三角函数,考查化归与转化能力、运算求解能力.因为函数f (x )在[0,π2]上单调递增,所以f '(x )=2a -1+sin 2x -a cos x +a sin x ≥0在[0,π2]上恒成立,即a ≥1-sin2x 2+sinx-cosx在[0,π2]上恒成立.设g (x )=1-sin2x2+sinx-cosx,x ∈[0,π2],则g (x )=(sinx-cosx)22+sinx-cosx ,设sin x -cos x =t ,则y =t 22+t =(t+2)2-4(t+2)+4t+2=t +2+4t+2-4,因为t =√2sin(x -π4),x ∈[0,π2],所以-1≤t ≤1,1≤t +2≤3,所以0≤y ≤1,所以a ≥1,故选D.【备注】【画龙点睛】分离参数是避免分类讨论的主要方法,换元法是化繁为简的主要方法. 3.C【解析】∵{a n }为等比数列,∴{b n }为等差数列,∴b 3=2,log 2a 3=2,∴a 3=4.故选C. 【备注】无 4.A【解析】解法一 由题意知F (c ,0),B (0,b ),则k PQ =k BF =-bc .设P (x 1,y 1),Q (x 2,y 2),则{x 12a 2-y 12b 2=1,x 22a 2-y 22b 2=1,两式相减,得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2).因为线段PQ 的中点为M (-2,1),所以x 1+x 2=-4,y 1+y 2=2,又k PQ =y 1-y 2x 1-x 2=-b c ,所以-bc =-4b 22a 2,整理得a 2=2bc ,所以a 4=4b 2c 2=4c 2(c 2-a 2) ,即4e 4-4e 2-1=0,得e 2=√2+12,故选A.解法二 由题意知F (c ,0),B (0,b ),则k BF =-bc .设直线PQ 的方程为y -1=k (x +2),即y =kx +2k +1,代入双曲线方程,得(b 2-a 2k 2)x 2-2a 2k (2k +1)x -a 2(2k +1)2-a 2b 2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4,所以2a 2k(2k+1)b 2-a 2k 2=-4.又k =k BF =-b c,所以2a 2·(-b c)[2·(-b c)+1]=-4b 2+4a 2(-b c )2,整理得a 2=2bc ,所以c 2-b 2-2bc =0,即(c b )2-2cb -1=0,得cb=√2+1,则e 2=c 2a 2=c 2c 2-b 2=(c b )2(cb)2-1=√2+1)2(√2+1)2-1=√2+12,故选A.【备注】无 5.C【解析】本题主要考查双曲线的几何性质、直线与圆的位置关系,考查的学科素养是理性思维,数学探索.不妨取双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线方程为y =ba x ,即bx -ay =0,化圆x 2+y 2-2x +15=0的方程为标准方程,得(x -1)2+y 2=45,则圆心坐标为(1,0),半径为2√55.由题意可得√a 2+b2=2√55,(直线与圆相切,则圆心到直线的距离等于圆的半径)即b 2a 2+b2=45,即c 2-a 2c 2=45,所以c 2=5a 2,(关键点拨:求双曲线的离心率的关键是求出关于a ,c 的关系式)所以双曲线C 的离心率e =ca =√5,故选C.【备注】无 6.B【解析】本题考查函数的值域、单调性和图象等,考查数形结合思想、化归与转化思想,考查考生的运算求解能力以及分析问题、解决问题的能力.由对任意的x 1∈[-12,1],存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),可得函数f (x )在[-12,1]上的值域是g (x )在[-1,1]上的值域的某个子集的子集,g (x )值域的这个子集应具备这样的条件,即集合内的任何一个函数值,都对应函数g (x )在[-1,1]上唯一一个自变量的值,再数形结合,即可求解.当x ∈[-12,1]时,f (x )=-x 2+a2的值域是[a 2-1,a2],g'(x )=2x e x +x 2e x =x (x +2)e x ,则g (x )在(-1,0)上是减函数,在(0,1)上是增函数,g (-1)=1e −a2,g (0)=-a 2,g (1)=e-a 2,若对任意的x 1∈[-12,1],存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),则{a 2-1>1e -a2,a 2≤e −a 2,所以1+1e <a ≤e,故选B.【备注】【解题关键】由对任意的x 1∈[-12,1],存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2)成立,正确得到函数f (x )和g (x )值域之间的关系是解决本题的关键. 【易错警示】理解存在唯一的x 2∈[-1,1]和存在x 2∈[-1,1]的不同. 7.A【解析】本题主要考查函数的性质.注意到f (x )=[(x -1)2-1]sin(x -1)+x +1,可令t =x -1,g (t )=(t 2-1)sin t +t ,则y =f (x )=g (t )+2,t ∈[-2,2].显然M =g (t )max +2,m =g (t )min +2.又g (t )为奇函数,则g (t )max +g (t )min =0,所以M +m =4,故选A.【备注】无 8.C【解析】本题主要考查韦恩图的应用与概率问题,考查考生的阅读理解能力,考查的核心素养是数学抽象、逻辑推理、数据分析.根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.【备注】无 9.-161【解析】(2x +1x -1)5表示五个(2x +1x -1)相乘,则展开式中的常数项由三种情况产生,第一种是从五个(2x +1x -1)中分别抽取2x ,2x ,1x ,1x ,-1,则此时的常数项为C 52·C 32·22·(-1)=-120;第二种情况是从五个(2x +1x-1)中都抽取-1,则此时的常数项为(-1)5=-1;第三种情况是从五个(2x +1x -1)中分别抽取2x ,1x ,-1,-1,-1,则此时的常数项为C 51·C 41·21·(-1)3=-40,故展开式的常数项为-120-1-40=-161. 【备注】无 10.3√32【解析】本题主要考查诱导公式、三角函数的性质,考查考生的运算求解能力与分析问题、解决问题的能力.利用已知得到f (x 1)=3,f (x 2)=−3,然后解得x 1,x 2,最后利用诱导公式即可求得f (x 1-x 2)的值.由f (x 1)-f (x 2)=6并结合f (x )的解析式得f (x 1)=3,f (x 2)=-3,所以sin(x 1-π3)=1,sin(x 2-π3)=−1,则x 1-π3=2k 1π+π2,k 1∈Z ,x 2-π3=2k 2π-π2,k 2∈Z ,所以x 1-x 2=2(k 1-k 2)π+π,k 1,k 2∈Z .所以f (x 1-x 2)=3sin[2(k 1-k 2)π+π-π3]=3sin π3=3√32.【备注】【素养落地】求解时需将函数的解析式和f (x 1)-f (x 2)=6联系起来,利用三角函数的图象和性质找到解题的突破口,体现逻辑推理、数学运算等核心素养.【解后反思】解决本题的关键是根据f (x 1)-f (x 2)=6并结合三角函数的解析式及图象和性质得到f (x 1)=3,f (x 2)=−3,然后利用诱导公式进行化简求解即可. 11.3【解析】因为不等式ax 2+bx +c ≥0(a ≠0,a <b )对一切实数x 恒成立,所以0<a <b ,对于方程ax 2+bx +c =0,Δ=b 2-4ac ≤0,所以c ≥b 24a ,所以a+b+c b-a≥a+b+b 24ab-a=1+b a +14×(b a )2b a-1.令y =1+b a +14×(b a )2b a-1,t =ba ,则有14×t 2+(1-y )×t +1+y =0 ①,关于t 的方程①的判别式Δ'=(1-y )2-(1+y )≥0,解得y ≥3或y ≤0,由0<a <b ,可得ba >1,所以y >0,所以y ≥3,所以a+b+c b-a的最小值为3.【备注】无12.a n ={1(n =1),n 2(n ≥2).【解析】由题设a n =a 1+12a 2+13a 3+…+1n-1a n-1 (n ≥2),① 可得a n+1=a 1+12a 2+13a 3+…+1n-1a n-1+1n a n ,② 且a 2=a 1=1.②-①得a n+1-a n =1n a n (n ≥2),即a n+1=n+1na n (n ≥2),即a n+1a n=n+1n(n ≥2),所以当n ≥3时,a n =a 1×a2a 1×a3a 2×…×an a n-1=1×11×32×43×…×nn-1=n2,当n =2时,a 2=1=22,满足上式,当n =1时,a 1=1≠12,不满足上式,故所求a n ={1(n =1),n 2(n ≥2).【备注】上述解析中当n ≥3时,等式a n a n-1=nn-1才成立,使用累乘法求得数列通项公式a n 后,不仅需要检验a 1是否满足通项公式,还得检验a 2是否满足通项公式,这一点极易出错.本题也可利用构造法转化为等差数列求通项,把a n+1=n+1na n (n ≥2)化为a n+1n+1-ann =0(n ≥2),得到数列{a nn }是从第2项起公差为0的等差数列,注意首项不满足.13.9【解析】本题主要考查等差数列的前n 项和公式、性质.通解是根据S 7=S 11得7a 1+7×62d =11a 1+11×102d ,即2a 1+17d =0,再结合二次函数的知识判断出前9项和最大;优解是根据S 7=S 11得a 8+a 9+a 10+a 11=0,即可知前9项和最大. 通解 设等差数列{a n }的公差为d ,由S 7=S 11可得7a 1+7×62d =11a 1+11×102d ,即2a 1+17d =0,得到d =-217a 1,所以S n =na 1+n(n-1)2d =na 1+n(n-1)2×(-217a 1)=-a117(n-9)2+8117a 1,由a 1>0可知-a117<0.故当n =9时,S n 最大.优解 根据S 7=S 11可得a 8+a 9+a 10+a 11=0.由等差数列的性质可得a 9+a 10=0,由a 1>0可知a 9>0,a 10<0.当所有正数项相加时,S n 取得最大值,所以前9项和S 9最大.【备注】无14.240【解析】∵(x 2+3x +2)5=(x +1)5(x +2)5,∴展开式中含x 的项是C 54xC 5525+C 55C 54x 24=240x ,∴展开式中含x 项的系数是240. 【备注】无15.解:(1)设A (x 0,y 0),由题意知B (0,b ),F 1(-c ,0),由3F 1⃗⃗⃗ +F 1⃗⃗⃗ =0得{3x 0+4c =03y 0+b =0⇒{x 0=-4c3y 0=-b 3,即A (-43c ,-b3), 又A (x 0,y 0)在椭圆C :x 2a 2+y 2b 2=1上, ∴(-43c)2a 2+(-13b)2b 2=1,得ca =√22,即椭圆C 的离心率为e =√22.(2)由(1)知,e =√22.又b =1,a 2=b 2+c 2,∴a 2=2, ∴椭圆C 的方程为x 22+y 2=1.当线段MN 在x 轴上时,MN 的中点为坐标原点(0,0).当线段MN 不在x 轴上时,设直线MN 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2), 将直线MN 的方程代入椭圆方程x 22+y 2=1中,得(m 2+2)y 2+2my -1=0. ∵点F 2在椭圆内部,∴Δ>0,y 1+y 2=-2mm 2+2,则x 1+x 2=m (y 1+y 2)+2=4m 2+2,∴点P 的坐标(x ,y )满足x =2m 2+2,y =-mm 2+2, 消去m 得,x 2+2y 2-x =0(x ≠0).综上所述,点P 的轨迹方程为x 2+2y 2-x =0.【解析】本题主要考查椭圆的几何性质及直线与椭圆的位置关系,考查考生的逻辑推理能力、运算求解能力,以及数形结合思想,考查的核心素养是逻辑推理、直观想象、数学运算.(1)设A (x 0,y 0),由3F 1⃗⃗⃗ +F 1⃗⃗⃗ =0得A (-43c ,-b3),代入椭圆方程,即可得出结果;(2)由题设及(1)得出椭圆方程为x 22+y 2=1,分别讨论线段MN 在x 轴上,线段MN 不在x 轴上的情况,计算即可得出结果.【备注】【方法归纳】 求椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率的方法:(1)直接求出a ,c ,求解e ,已知标准方程或a ,c 易求时,可利用离心率公式e =ca 求解;(2)变用公式,整体求e ,如利用e =√c 2a2=√a 2-b 2a 2=√1-b 2a2求解;(3)利用公式的变形e =c a=2c 2a=|F 1F 2||MF 1|+|MF 2|(点M 在椭圆上,F 1,F 2为两焦点)求解;(4)建立a ,b ,c 的齐次关系式,将b 用a ,c 表示,两边同除以a 或a 2化为e 的关系式,进而求解.16.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2,故a n =4+(n-1)×3=3n+1,b n =6×2n-1=3×2n . 所以,{a n }的通项公式为a n =3n+1,{b n }的通项公式为b n =3×2n . (2)(i)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ii)∑i=12na i c i =∑i=12n[a i +a i (c i -1)] =∑i=12na i +∑i=1n a 2i (c 2i -1)=[2n×4+2n (2n -1)2×3]+∑i=1n(9×4i -1)=(3×22n-1+5×2n-1)+9×4(1-4n )1-4-n=27×22n-1+5×2n-1-n-12(n ∈N *).【解析】本题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.【解题思路】(1)先分别设出数列{a n }的公差与数列{b n }的公比,然后利用已知条件建立方程组,求出公差与公比,最后利用公式求解即可.(2)(i)将(1)中所求结论代入,即可求出相应的通项公式;(ii)分组求和,即可得出结果.【备注】【命题分析】数列在高考命题中较为灵活,可以以较为基础的形式呈现,也可以融入较多的创新问题,但最终都离不开数列通项公式的求解、数列的求和等.从最近几年的高考来看,数列问题最终通常可以转化为我们熟悉的等差数列或等比数列问题进行求解.17.(1)解法一 ∵|F 1F 2|=4√3,∴c =2√3,F 1(-2√3,0),F 2(2√3,0). 由椭圆的定义可得2a =√3√3)√132+√3-2√3)√132=√1214+√254=112+52=8,解得a =4,∴e =2√34=√32,b 2=16-12=4, ∴椭圆C 的标准方程为x 216+y 24=1.解法二 ∵|F 1F 2|=4√3,∴c =2√3,椭圆C 的左焦点为F 1(-2√3,0),故a 2-b 2=12, 又点 A (√3,-√132)在椭圆x 2a 2+y 2b 2=1上,则3b 2+12+134b 2=1,化简得4b 4+23b 2-156=0,得b 2=4,故a 2=16,∴e =2√34=√32,椭圆C 的标准方程为x 216+y 24=1.(2)由(1)知M (4,0),N (0,2),设椭圆上任一点T (x 0,y 0)(x 0≠±4且x 0≠0),则x 0216+y 024=1.直线TM :y =y 0x-4(x -4),令x =0,得y P =-4y 0x0-4,∴|PN |=|2+4y 0x0-4|.直线TN :y =y 0-2x 0x +2,令y =0,得x Q =-2xy 0-2,∴|QM |=|4+2x 0y 0-2|.|PN |·|QM |=|2+4y 0x 0-4|·|4+2x 0y 0-2|=|2x 0+4y 0-8x 0-4|·|2x 0+4y 0-8y 0-2|=4|x 02+4y 02+4x 0y 0-8x 0-16y 0+16x 0y 0-2x 0-4y 0+8|,由x 0216+y 024=1可得x 02+4y 02=16,代入上式得|PN |·|QM |=16, 故|PN |·|QM |为定值.【解析】本题考查椭圆的标准方程与几何性质、直线方程等基础知识,考查定值问题,考查推理论证能力、运算求解能力.(1)考虑两种方法解决;(2)分别先得到|PN |与|QM |的表达式,再结合条件证明即可【备注】【规律总结】在直线与椭圆相交背景下求面积的最值,定值、定点问题是高考的热点问题,将直线方程与椭圆方程联立后利用根与系数的关系以及点到直线的距离公式建立目标函数,将面积问题转化为求函数的最值问题是常规解法,应当熟练掌握,同时,需提高整体代换的意识,通过换元等方法优化和提高运算的能力18.(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.【解析】本题主要考查互斥事件的概率、相互独立事件的概率,意在考查考生的逻辑思维能力、数据获取与处理能力、运算求解能力,考查的核心素养是逻辑推理、数学建模、数学运算.(1)由题意知P (X =2)包括甲获胜的概率与乙获胜的概率,则利用互斥事件的概率公式求解即可;(2)利用相互独立事件与互斥事件的概率公式计算即可.【备注】【方法技巧】求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时先将所求事件转化成互斥事件的和,或者求其对立事件的概率,再用互斥事件的概率加法公式或对立事件的概率公式求解.19.(1)解法一 设|F 1F 2|=2c ,则c 2=a 2-1,不妨设P 在x 轴上方(如图).当P 在x 轴上的射影为F 2时,P (c ,1a),F 1(-c ,0),F 2(c ,0),所以直线PF 1的方程为x -2acy +c =0.因为|OF 2|=2|OM |,所以|OM |=|MF 2|=c2,所以点M 的坐标为(c2,0). 则点M 到直线PF 1的距离为d =|c 2+c|√1+4a 2c 2=2√1+4a 2c 2.因为PM 平分∠F 1PF 2,PF 2⊥F 1F 2,所以d =|MF 2|,即2√1+4a 2c2=c2,化简得a 2c 2=2,所以a 2(a 2-1)=2,解得a 2=2.所以C 的方程为x 22+y 2=1. 解法二 设|F 1F 2|=2c ,则c 2=a 2-1.当P 在x 轴上的射影为F 2时,因为|OF 2|=2|OM |,所以|OM |=c 2,所以|MF 1|=32c ,|MF 2|=12c . 在△PMF 1中,|MF 1|sin∠MPF 1=|PF 1|sin∠PMF 1,在△PMF 2中,|MF 2|sin∠MPF 2=|PF 2|sin∠PMF 2,因为∠PMF 1=180°-∠PMF 2,所以sin∠PMF 1=sin∠PMF 2,又∠MPF 1=∠MPF 2,所以|MF 1||MF 2|=|PF 1||PF 2|,故|PF 1|=3|PF 2|. 因为|PF 1|+|PF 2|=2a , 所以|PF 1|=32a ,|PF 2|=12a .由|PF 1|2=|PF 2|2+|F 1F 2|2,得(32a )2=(12a )2+(2c )2,化简得2c 2=a 2,所以2(a 2-1)=a 2,解得a 2=2, 所以C 的方程为x 22+y 2=1.解法三 设|F 1F 2|=2c ,则c 2=a 2-1.当点P 在x 轴上的射影为F 2时,如图,P (c ,±1a ).所以|PF 2|=1a.因为PF 2⊥F 1F 2,所以tan∠F 1PF 2=|F 1F 2||PF 2|=2ac .因为|OF 2|=2|OM |,所以|MF 2|=c 2,tan∠MPF 2=|MF 2||PF 2|=ac 2. 因为PM 平分∠F 1PF 2,所以tan∠F 1PF 2=2tan∠MPF 21-tan 2∠MPF 2,即2ac =2×ac 21-(ac 2)2,化简得a 2c 2=2,所以a 2(a 2-1)=2,解得a 2=2. 所以C 的方程为x 22+y 2=1.解法四 设|F 1F 2|=2c ,则c 2=a 2-1.当P 在x 轴上的射影为F 2时,P (c ,±1a),所以|PF 2|=1a.因为|OF 2|=2|OM |,所以|F 1M |=3|MF 2|,所以S △PF 1M =3S △PMF 2, 即12|PF 1|·|PM |sin∠F 1PM =32|PF 2|·|PM |sin∠F 2PM ,因为∠F 1PM =∠F 2PM ,所以|PF 1|=3|PF 2|. 又因为|PF 1|+|PF 2|=2a ,所以|PF 2|=a2, 所以a 2=1a ,解得a 2=2. 所以C 的方程为x 22+y 2=1.(2)除点P 外,直线PQ 与C 无其他公共点. 理由如下:如图,设P (x 0,y 0)(y 0≠0),则x 022+y 02=1,即y 02=1-x 022.设Q (2,y Q ),则Q ⃗ =(-1,-y Q ),P ⃗ =(1-x 0,-y 0),由QF 2⊥PF 2,得Q ⃗ ·P ⃗ =0, 所以x 0-1+y 0y Q =0,即y Q =1-x 0y 0.所以k PQ =1-x 0y 0-y 02-x 0=y 02+x 0-1(x0-2)y 0=(1-x 022)+(x 0-1)(x 0-2)y 0=-x02y 0,所以直线PQ 的方程为y -y 0=-x 02y 0(x -x 0),即2y 0y -2y 02=-x 0x +x 02,即x 0x +2y 0y -2=0. 由{x 0x +2y 0y-2=0x 2+2y 2=2,得(x 02+2y 02)y 2-4y 0y +(2-x 02)=0, 即y 2-2y 0y +y 02=0.因为Δ=(2y 0)2-4y 02=0,所以除点P 外,直线PQ 与C 无其他公共点.【解析】本题主要考查椭圆的标准方程、直线与圆锥曲线的位置关系等知识,考查运算求解能力、逻辑推理能力,考查数形结合思想、化归与转化思想等. 【备注】无20.(1)如图,取AD 的中点E ,连接PE ,BE ,BD ,∵PA =PD , ∴PE ⊥AD.∵底面ABCD 为菱形,且∠BAD =60°, ∴△ABD 为等边三角形, ∴BE ⊥AD.∵PE ∩BE =E , PE ,BE ⊂平面PBE , ∴AD ⊥平面PEB ,∴AD ⊥PB. ∵AD ∥BC ,∴BC ⊥PB. (2)设AB =2,则AB =PB =AD =2,BE =√3, ∵PA ⊥PD ,E 为AD 的中点, ∴PA =√2,PE =1,∴PE 2+BE 2=PB 2,∴PE ⊥BE.以E 为坐标原点,分别以EA ,EB ,EP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (1,0,0),B (0,√3,0) ,P (0,0,1),C (-2,√3,0),∴AB⃗⃗⃗⃗⃗ =(-1,√3,0),AP ⃗⃗⃗⃗⃗ =(-1,0,1),BP ⃗⃗⃗⃗⃗ =(0,-√3,1),BC ⃗⃗⃗⃗⃗ =(-2,0,0). 设平面PAB 的法向量为n 1=(x 1,y 1,z 1),∵{n 1·AB⃗⃗⃗⃗⃗ =0,n 1·AP⃗⃗⃗⃗⃗ =0,∴{-x 1+√3y 1=0,-x 1+z 1=0,令x 1=1得z 1=1,y 1=√33,∴n 1=(1,√33,1).设平面BPC 的法向量为n 2=(x 2,y 2,z 2),则{n 2·BP ⃗⃗⃗⃗⃗ =0,n 2·BC ⃗⃗⃗⃗⃗ =0,∴{-√3y 2+z 2=0,-2x 2=0, 令y 2=-1,得x 2=0,z 2=-√3,即n 2=(0,-1,-√3).∴n 1·n2|n 1|·|n 2|=-2√77. 设二面角A -PB -C 的平面角为θ,由图可知,θ为钝角, 则cos θ=-2√77.【解析】无【备注】【易错警示】 求二面角的值的易错点是:(1)求平面的法向量出错;(2)公式用错,把线面角的向量公式与二面角的向量公式搞混,导致结果出错.注意,二面角的取值范围为[0,π].。
高中数学新人教A版:概率单元测试卷(含答案)

概率单元测试卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签.A .0B .1C .2D .3解析:①在明年运动会上,可能获冠军,也可能不获冠军;②李凯不一定被抽到;③任取一张不一定为1号签;故①②③均是随机事件.答案:D2.下列说法中正确的是( )A .若事件A 与事件B 是互斥事件,则P (A )+P (B )=1B .若事件A 与事件B 满足条件:P (A )+P (B )=1,则事件A 与事件B 是对立事件C .一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件D .把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁4人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件答案:D3.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( )A.16B.13C.12D.23解析:给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P =26=13. 答案:B4.在区间[-2,1]上随机取一个数x ,则x ∈[0,1]的概率为( )A.13B.14C.12D.23解析:由几何概型的概率计算公式可知x ∈[0,1]的概率P =1-01-(-2)=13. 答案:A5.如下四个游戏盘,现在投镖,投中阴影部分概率最大的是( )答案:A6.一个球形容器的半径为3 cm ,里面装满纯净水,因不小心混入了1个感冒病毒,从中任取1 mL 水含有感冒病毒的概率为( )A.13B.13πC.136πD.49π解析:纯净水的体积为43π×33=36π(cm 3)=36π(mL), 任取1 mL 水含有感冒病毒的概率P =136π. 答案:C7.将区间[0,1]内的均匀随机数x 1转化为区间[-2,2]内的均匀随机数x ,需要实施的变换为( )A .x =x 1*2B .x =x 1*4C .x =x 1*2-2D .x =x 1*4-2 解析:由题意可知x =x 1*(2+2)-2=x 1*4-2.答案:D8.手表实际上是个转盘,一天24小时,分针指到哪个数字的概率最大( )A .12B .6C .1D .12个数字概率相等解析:手表设计的转盘是等分的,即分针指到1,2,3,…,12中每个数字的机会都一样.答案:D9.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19B.29C.718D.49解析:任意找两人玩这个游戏,其有6×6=36种猜数字结果,其中满足|a -b |≤1的有如下情形:①若a =1,则b =1,2;②若a =2,则b =1,2,3;③若a =3,则b =2,3,4;④若a =4,则b =3,4,5;⑤若a =5,则b =4,5,6;⑥若a =6,则b =5,6,总共16种,故他们“心有灵犀”的概率为P =1636=49. 答案:D10.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56答案:C11.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p 1,点数之和大于5的概率记为p 2,点数之和为偶数的概率记为p 3,则( )A .p 1<p 2<p 3B .p 2<p 1<p 3C .p 1<p 3<p 2D .p 3<p 1<p 2解析:随机掷两枚质地均匀的骰子,所有可能的结果共有36种.事件“向上的点数之和不超过5”包含的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)共10种,其概率p 1=1036=518.事件“向上的点数之和大于5”与“向上的点数之和不超过5”是对立事件,所以“向上的点数之和大于5”的概率p 2=1318.因为朝上的点数之和不是奇数就是偶数,所以“点数之和为偶数”的概率p 3=12.故p 1<p 3<p 2. 答案:C12.国庆节前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.78答案:C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13.如图所示的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________m 2.解析:由题意得:138300=S 阴5×2,S 阴=235. 答案:23514.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.答案:5615.甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是______.解析:由题意可知从甲、乙两组中各随机选取一名同学,共有9种选法,其中这两名同学的成绩相同的选法只有1种,故所求概率P =19. 答案:1916.如图所示,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是________.解析:设OA =OB =2R ,连接AB ,设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,连接CD ,OC .如图所示,由对称性可得,阴影的面积等于直角扇形的拱形面积,S 阴影=14π(2R )2-12×(2R )2=(π-2)R 2,S扇=πR 2,故所求的概率是(π-2)R 2πR 2=1-2π. 答案:1-2π三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)对某班一次测验成绩进行统计,如下表所示:分数段[40,50) [50,60) [60,70) [70,80) [80,90) [90,100] 概率 0.02 0.04 0.17 0.36 0.25 0.15 (2)求该班成绩在[60,100]内的概率.解:记该班的测试成绩在[60,70),[70,80),[80,90),[90,100]内依次为事件A ,B ,C ,D ,由题意知事件A ,B ,C ,D 是彼此互斥的.(1)该班成绩在[80,100]内的概率是P (C ∪D )=P (C )+P (D )=0.25+0.15=0.4.(2)该班成绩在[60,100]内的概率是P (A ∪B ∪C ∪D )=P (A )+P (B )+P (C )+P (D )=0.17+0.36+0.25+0.15=0.93.18.(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A 1 ,A 2和1个白球B 的甲箱与装有2个红球a 1 ,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.解:(1)所有可能的摸出结果是:{A 1,a 1},{A 1,a 2},{A 1,b 1},{A 1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B ,a 1},{B ,a 2},{B ,b 1},{B ,b 2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确. 19.(本小题满分12分)2016年全国政协会议期间,某报刊媒体要选择两名记者去进行专题采访,现有记者编号分别为1,2,3,4,5的五名男记者和编号分别为6,7,8,9的四名女记者.要从这九名记者中一次随机选出两名,每名记者被选到的概率是相等的,用符号(x ,y )表示事件“抽到的两名记者的编号分别为x ,y ,且x <y ”.(1)共有多少个基本事件?并列举出来.(2)求所抽取的两名记者的编号之和小于17但不小于11或都是男记者的概率.解:(1)共有36个基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9),共36个.(2)记事件“所抽取的两名记者的编号之和小于17但不小于11”为事件A ,即事件A 为“x ,y ∈{1,2,3,4,5,6,7,8,9},且11≤x +y <17,其中x <y ”,由(1)可知事件A 共含有15个基本事件,列举如下:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),共15个.“都是男记者”记作事件B ,则事件B 为“x <y ≤5”,包含:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.故P (A )+P (B )=1536+1036=2536. 故所求概率为2536. 20.(本小题满分12分)(2015·安徽卷)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.解:(1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110. 21.(本小题满分12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘;(2)约定最多等一班车.解:设甲、乙到站的时间分别是x ,y ,则1≤x ≤2,1≤y ≤2.试验区域D 为点(x ,y )所形成的正方形,以16个小方格表示,示意图如图(a)所示.(1)如图(b)所示,约定见车就乘的事件所表示的区域如图(b)中4个加阴影的小方格所示,于是所求的概率为416=14. (2)如图(c)所示,约定最多等一班车的事件所示的区域如图(c)中的10个加阴影的小方格所示,于是所求的概率为1016=58. 22.(本小题满分12分)(2015·陕西卷)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下; 赔付金额/元0 1 000 2 000 3 000 4 000 车辆数/辆 500 130 100 150 120(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解:(1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12. 由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为:P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.。
高中数学总复习 11、概率与统计检测题[晏]
![高中数学总复习 11、概率与统计检测题[晏]](https://img.taocdn.com/s3/m/1ac04c7a27284b73f24250f5.png)
概率与统计综合训练一、选择题:1、设随机变量ξ的分布列为P (ξ=i )=a (31)i ,i=1,2,3,则 a=( ) A 、1 B 、139 C 、1311 D 、1327解析:P (ξ=1)=a ×31,P (ξ=2)=a 231⎪⎭⎫⎝⎛,P (ξ=3)=a.331⎪⎭⎫⎝⎛由P (ξ=1)+P (ξ=2)+P (ξ=3)=1++⇒a a 9131327127191=⇒=+a a a 选D2、在一个盒子里,有均匀的红球32个,白球4个,从中任取两个,其中的白球4个,从中任取两个,其中的白球的个数记为ξ,下式中等于23624141322..C C C C 的是( )A 、P (0<ξ≤2=,B 、P (1<ξ≤2=C 、D ξ D 、E ξ 答案:D3、设导弹发射的事故率为0.01,若发射导弹10次其中的事故次数为ξ,则( )A 、E ξ=0.1,B 、P (ξ=k )=0.01k ·0.9910-kC 、P (ξ=k )=kk k C -101001.0.99.0. D 、D ξ=0.1 答案:A4、已知某随机变量ξ的概率分布表且E ξ=1.5,则a,b 的值为( ) A 、a=1,b=0.1, B 、a=0.6,b=0.3 C 、a=b=0.4, D 、a 、v 的值不能确定5、随机变量ξ~N (2,21),η=25.3-ξ则η的方差为( )A 、81 B 、41 C 、42 D 、82答案:B6、对总数为N 的一批零件抽取一个容量为30的样本,若每个零件审美观点抽取的概率为0.25,则N=( ) A 、150 B 、200 C 、120 D 、100答案:C 解析:∵P==N 300.25,∴N=120,选C7、一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70],2,则样本在(-∞,50)上的频率为( ) A 、201 B 、41 C 、201 D 、107解析:∵出现的在(-∞,50)之间的数有14个,其余6个落在(50,70)这间。
【全程复习方略】(广西专用)2013版高中数学 11.1随机事件的概率配套课件 理 新人教A版

【解题指南】判断一个事件是必然事件、不可能事件、随机事 件,主要是依据在一定条件下,所要求的结果是否一定出现、 不可能出现或可能出现也可能不出现.
【即时应用】 (1)思考:事件的频率与概率一样吗? 提示:事件的频率与概率有本质上的区别,不可混为一谈.频率 是随着试验次数的改变而改变的,概率却是一个常数,它是频 率的科学抽象,不是频率的极限,只是在大量重复试验中事件 出现频率的稳定值.
(2)甲、乙两人下棋,甲获胜的概率为0.3,两人下成和棋的概 率为0.5,那么甲不输的概率是______. 【解析】P=0.3+0.5=0.8. 答案:0.8
【即时应用】
(1)判断下列试验是否构成事件.(请在括号中填写“是”或
“否”)
①掷一次硬币
()
②标准大气压下,水烧至100℃
()
③买彩票中头奖
()
(2)判断下列事件是否是随机事件.(请在括号中填写“是”或
“否”)
①当x是实数时,x-|x|=2;
()
②某班一次数学测试,及格率低于75%;
()
③从分别标有0,1,2,3,…,9这十个数字的纸团中任取一个,
mn
概率P(A)=__n_.
【即时应用】 (1)思考:随机事件确定为等可能性事件,应具备的特点是什 么? 提示:①有限性,②等可能性.
(2)在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.
今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰
为7的概率为_______.
【解析】P= 4
人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)

高一数学必修第二册全册复习测试题卷11(共22题)一、选择题(共10题)1. △ABC 中,若 a =1,c =2,B =60∘,则 △ABC 的面积为 ( ) A . 12B . 1C .√32D . √32. 若书架中放有中文书 5 本,英文书 3 本,日文书 2 本,则抽出一本书为外文书的概率为 ( ) A . 15B . 310C . 25D . 123. 若 θ 为两个非零向量的夹角,则 θ 的取值范围为 ( ) A .(0,π) B .(0,π] C .[0,π) D .[0,π]4. 从一箱产品中随机地抽取一件,设事件 A = { 抽到一等品 },事件 B = { 抽到二等品 },事件 C = { 抽到三等品 } ,且已知 P (A )=0.65,P (B )=0.2,P (C )=0.1.则事件“抽到的是二等品或三等品”的概率为 ( ) A .0.7 B .0.65 C .0.35 D .0.35. 下列关于古典概型的说法中正确的是 ( ) ①试验中所有可能出现的样本点只有有限个; ②每个事件出现的可能性相等; ③每个样本点出现的可能性相等;④若样本点总数为 n ,随机事件 A 包含其中的 k 个样本点,则 P (A )=kn . A .②④ B .③④ C .①④ D .①③④6. 给定一组数据:102,100,103,104,101,这组数据的第 60 百分位数是 ( ) A . 102 B . 102.5 C . 103 D . 103.57. 为比较甲、乙两地某月 14 时的气温情况,随机选取该月中的 5 天,这 5 天中 14 时的气温数据(单位:∘C )如下:甲:2628293131乙:2829303132以下结论:①甲地该月 14 时的平均气温低于乙地该月 14 时的平均气温; ②甲地该月 14 时的平均气温高于乙地该月 14 时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据数据能得到的统计结论的编号为( )A.①③B.①④C.②③D.②④8.下列说法正确的是( )A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定9.用符号表示“点A在直线l上,l在平面α内”,正确的是( )A.A∈l,l∉αB.A⊂l,l⊄αC.A⊂l,l∈αD.A∈l,l⊂α10.半径为2的球的表面积为( )A.4πB.8πC.12πD.16π二、填空题(共6题)11.一家保险公司想了解汽车的挡风玻璃在一年时间里破碎的概率,公司收集了20000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率约为.12.思考辨析 判断正误.( )做100次拋硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是5110013.若空间两个角的两条边分别平行,则这两个角的大小关系是.14.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A,B对应的复数分别是z1,=.z2,则z2z115.平均数:如果n个数x1,x2,⋯,x n,那么x=叫做这n个数的平均数.16.思考辨析判断正误为了更清楚地反映学生在这学期多次考试中数学成绩情况,可以选用折线统计图.( )三、解答题(共6题)17.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.18.小明是班里的优秀学生,他的历次数学成绩是96,98,95,93,45分,最近一次考试成绩只有45分的原因是他带病参加了考试.期末评价时,怎样给小明评价(90分及90分以上为优秀,75∼90分为良好)?19.类比绝对值∣x−x0∣的几何意义,∣z−z0∣(z,z0∈C)的几何意义是什么?20.如图,在三棱锥P−ABC中,平面PAC⊥平面ABC,∠ACB=90∘,PA=AC=2BC.(1) 若PA⊥PB,求证:平面PAB⊥平面PBC;(2) 若PA与平面ABC所成角的大小为60∘,求二面角C−PB−A的余弦值.21.应用面面平行判断定理应具备哪些条件?22.如图,在四棱锥P−ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,PD=9,E为PA的中点.(1) 求证:DE∥平面BPC.(2) 在线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B−PCF的体积;若不存在,请说明理由.答案一、选择题(共10题) 1. 【答案】C【解析】由题得 △ABC 的面积 S =12AB ⋅BC ⋅sin60∘=12×2×1×√32=√32. 【知识点】三角形的面积公式2. 【答案】D【解析】在 10 本书中,中文书 5 本,外文书为 3+2=5 本,由古典概型,在其中抽出一本书为外文书的概率为 510,即 12. 【知识点】古典概型3. 【答案】D【知识点】平面向量的数量积与垂直4. 【答案】D【解析】由题意知事件 A 、 B 、 C 互为互斥事件,记事件 D =“抽到的是二等品或三等品”,则 P (D )=P (B ∪C )=P (B )+P (C )=0.2+0.1=0.3. 【知识点】事件的关系与运算5. 【答案】D【解析】②中所说的事件不一定是样本点,所以②不正确;根据古典概型的特征及计算公式可知①③④正确. 【知识点】古典概型6. 【答案】D【解析】 5×0.6=3,第 60 百分位数是第三与第四个数的平均数, 即103+1042=103.5.【知识点】样本数据的数字特征7. 【答案】B【解析】因为 x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,所以 x 甲<x 乙.又 s 甲2=9+1+0+4+45=185,s 乙2=4+1+0+1+45=2,所以 s 甲>s 乙,故由样本估计总体可知结论①④正确. 【知识点】样本数据的数字特征8. 【答案】C【解析】不可能事件的概率为 0,必然事件的概率为 1,故A 错误;频率是由试验的次数决定的,故B 错误;概率是频率的稳定值,故C 正确,D 错误. 【知识点】频率与概率9. 【答案】D【解析】点 A 在直线 l 上,表示为 A ∈l ,l 在平面 α 内,表示为 l ⊂α. 【知识点】平面的概念与基本性质10. 【答案】D【解析】因为球的半径为 r =2, 所以该球的表面积为 S =4πr 2=16π. 【知识点】球的表面积与体积二、填空题(共6题) 11. 【答案】 0.03【解析】 P =60020000=0.03.【知识点】频率与概率12. 【答案】 ×【知识点】频率与概率13. 【答案】相等或互补【知识点】直线与直线的位置关系14. 【答案】 −1−2i【解析】由题意,根据复数的表示可知z1=i,z2=2−i,所以z2z1=2−ii=(2−i)⋅(−i)i⋅(−i)=−1−2i.【知识点】复数的乘除运算、复数的几何意义15. 【答案】1n(x1+x2+⋯+x n)【知识点】样本数据的数字特征16. 【答案】√【知识点】频率分布直方图三、解答题(共6题)17. 【答案】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.【知识点】组合体18. 【答案】小明5次考试成绩从小到大排列为45,93,95,96,98,中位数是95,应评定为“优秀”.【知识点】样本数据的数字特征19. 【答案】∣z−z0∣(z,z0∈C)的几何意义是复平面内点Z到点Z0的距离.【知识点】复数的加减运算20. 【答案】(1) 因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BC⊂平面ABC,BC⊥AC,所以BC⊥平面PAC,因为PA⊂平面PAC,所以PA⊥BC.又PA⊥PB,PB∩BC=B,所以PA⊥平面PBC,因为PA⊂平面PAB,所以平面PAB⊥平面PBC.(2) 如图,过P作PH⊥AC于点H,因为平面PAC⊥平面ABC,所以PH⊥平面ABC,所以∠PAH=60∘,不妨设PA=2,所以PH=√3,以 C 为原点,分别以 CA ,CB 所在直线为 x 轴,y 轴,以过 C 点且平行于 PH 的直线为 z 轴,建立如图所示的空间直角坐标系,则 C (0,0,0),A (2,0,0),B (0,1,0),P(1,0,√3),因此 AB⃗⃗⃗⃗⃗ =(−2,1,0),AP ⃗⃗⃗⃗⃗ =(−1,0,√3),CB ⃗⃗⃗⃗⃗ =(0,1,0),CP ⃗⃗⃗⃗⃗ =(1,0,√3). 设 n ⃗ =(x 1,y 1,z 1) 为平面 PAB 的一个法向量, 则 {n ⃗ ⋅AB⃗⃗⃗⃗⃗ =0,n ⃗ ⋅AP⃗⃗⃗⃗⃗ =0, 即 {−2x 1+y 1=0,−x 1+√3z 1=0,令 z 1=√3,可得 n ⃗ =(3,6,√3), 设 m ⃗⃗ =(x 2,y 2,z 2) 为平面 PBC 的一个法向量, 则 {m ⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =0,m ⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ =0, 即 {y 2=0,x 2+√3z 2=0,令 z 2=√3,可得 m ⃗⃗ =(−3,0,√3), 所以 cos⟨m ⃗⃗ ,n ⃗ ⟩=4√3×2√3=−14, 易知二面角 C −PB −A 为锐角, 所以二面角 C −PB −A 的余弦值为 14.【知识点】平面与平面垂直关系的判定、利用向量的坐标运算解决立体几何问题、二面角21. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定22. 【答案】(1) 取 PB 的中点 M ,连接 EM ,CM ,过点 C 作 CN ⊥AB ,垂足为 N ,如图所示. 因为 CN ⊥AB ,DA ⊥AB , 所以 CN ∥DA , 又 AB ∥CD ,所以四边形 CDAN 为矩形, 所以 CN =AD =8,DC =AN =6.在 Rt △BNC 中,BN =√BC 2−CN 2=√102−82=6, 所以 AB =12.因为 E ,M 分别为 PA ,PB 的中点, 所以 EM ∥AB 且 EM =6, 又 DC ∥AB ,且 CD =6, 所以 EM ∥CD 且 EM =CD , 则四边形 CDEM 为平行四边形, 所以 DE ∥CM .因为 CM ⊂平面BPC ,DE ⊄平面BPC ,所以 DE ∥平面BPC .(2) 存在.理由如下:由题意可得 DA ,DC ,DP 两两互相垂直,故以 D 为原点,DA ,DC ,DP所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Dxyz . 则 D (0,0,0),B (8,12,0),C (0,6,0),所以 DB⃗⃗⃗⃗⃗⃗ =(8,12,0). 假设 AB 上存在一点 F 使 CF ⊥BD ,设点 F 坐标为 (8,t,0)(0≤t ≤12), 则 CF⃗⃗⃗⃗⃗ =(8,t −6,0), 由 CF ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得 64+12(t −6)=12t −8=0, 所以 t =23,即 AF =23,故 BF =12−23=343.又 PD =9,所以 V 三棱锥B−PCF =V 三棱锥P−BCF =13×12×343×8×9=136.【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段性测试题十一(统计与概率(理))本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设ξ~N(0,1),且P(ξ<1.623)=p ,那么P(-1.623≤ξ≤0)的值是( ) A .p B .-p C .p -0.5 D .0.5-p [答案] C[解析] ∵P(ξ≥1.623)=1-p ,∴P(-1.623≤ξ≤0)=12[1-2P(ξ≥1.623)]=12[1-2(1-p)]=p -0.5.2.(2010·北京文,3)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( ) A.45 B.35 C.25 D.15 [答案] D[解析] 该试验所有基本事件(a ,b)可在平面直角坐标系中表示出来如下图. 易知所有基本事件有5×3=15个,记“b>a”为事件A ,则事件A 所含基本事件有3个. ∴P(A)=315=15D.3.(2011·咸阳模拟)样本容量为100的频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在[2,10)内的频率为a ,则a 的值为( )A .0.1B .0.2C .0.3D .0.4 [答案] D[解析] 样本数据落在[2,10)内的频率为a =(0.02+0.08)×4=0.4.4.已知函数f(x)=sin aπ3x ,a 等于抛掷一颗骰子得到的点数,则y =f(x)在[0,4]上至少有5个零点的概率是( ) A.13 B.12 C.23D.56[答案] C[解析] 抛掷一颗骰子共有6种情况.当a =1,2时,y =f(x)在[0,4]上的零点少于5个;当a =3,4,5,6时,y =f(x)在[0,4]上的零点至少有5个,故P =46=23,选C.5.(2010·湖南考试院)设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于34的概率为( ) A.9π64 B.964 C.9π16 D.916[答案] A[解析] 设两直角边长分别为a 、b ,则0<a<1,0<b<1,由条件a2+b2<916,如图可知,所求概率P =14π×⎝⎛⎭⎫3421×1=9π64.6.(2011·温州八校期末)已知α,β,γ是不重合平面,a ,b 是不重合的直线,下列说法正确的是( )A .“若a ∥b ,a ⊥α,则b ⊥α”是随机事件B .“若a ∥b ,a ⊂α,则b ∥α”是必然事件C .“若α⊥γ,β⊥γ,则α⊥β”是必然事件D .“若a ⊥α,a∩b =P ,则b ⊥α”是不可能事件 [答案] D [解析]⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α,故A 错;⎭⎪⎬⎪⎫a ∥b a ⊂α⇒b ∥α或b ⊂α,故B 错;当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故C 错;如果两条直线垂直于同一个平面,则此二直线必平行,故D 为真命题.7.将1,2,3,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( ) A.156 B.1280 C.556 D.1420[答案] A[解析] 基本事件总数C39·C36·C33A33=280.每组三个数都成等差数列的有 (1)(1,2,3),(4,5,6),(7,8,9) (2)(1,2,3,),(4,6,8),(5,7,9) (3)(1,3,5),(2,4,6),(7,8,9) (4)(1,4,7),(2,5,8),(3,6,9)(5)(1,5,9),(2,3,4),(6,7,8)1为第一组首项时,只有公差1,2,3,4,四种情形, ∴所求概率P =5280=156.8.(2011·阜阳一中月考)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图如图,为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样的方法抽出200人作进一步调查,其中低于1500元的称为低收入者,高于3000元的称为高收入者,则应在低收入者和高收入者中分别抽取的人数是( )A .1000,2000B .40,80C .20,40D .10,20 [答案] C[解析] 由图可知,低收入者的频率是0.0002×500=0.1,故应在低收入者中抽取200×0.1=20人;高收入者的频率是(0.0003+0.0001)×500=0.2,故应在高收入者中抽取200×0.2=40人.9.下表提供了某厂节能降耗技术改造后,在生产A 产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据根据上表提供的数据,求出y 关于x 的线性回归方程为y ^=0.7x +0.35,那么表中t 的值为( )A .3B .3.15C .3.5D .4.5[答案] A[解析] 因为a ^=y --b ^x -,由回归方程知0.35=y --0.7x -=2.5+t +4+4.54-0.7×3+4+5+64,解得t =3,故选A.10.(2010·全国Ⅰ理)(1+2x)3(1-3x)5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 [答案] C[解析] (1+2x)3(1-3x)5=(1+6x +12x +8x x)(1-3x)5,故(1+2x)3(1-3x)5的展开式中含x 的项为1×C35(-3x)3+12xC05=-10x +12x =2x ,所以x 的系数为2.11.在一次科技知识竞赛中,两组学生成绩统计如下表:A.x -甲=x -乙,且甲组比乙组成绩稳定 B.x -甲>x -乙,且乙组比甲组成绩稳定 C.x -甲=x -乙,且乙组比甲组成绩稳定 D.x -甲<x -乙,且甲组比乙组成绩稳定 [答案] A[解析] 通过计算可知x -甲=x -乙,s2甲=172,s2乙=256,s2甲<s2乙,所以甲组成绩比乙组成绩稳定.12.(2010·广西柳州市模拟)将甲乙两人在内的7名医生分成三个医疗小组,一组3人,另两组每组各2人,则甲乙不分在同一组的分法有( ) A .80种 B .90种 C .25种 D .120种 [答案] A[解析] 解法一:当两人都在3人组内时,有12C15·C24种,当两人都在某个两人组内时,有C35种,∴共有12C37C24-C35-12C15C24=80种.解法二:直接法.当甲、乙在两人小组一组一个时,有12C35C12A22种,当甲、乙一个在三人1 2C35C12A22+C25C23A22=80种.组中,另一个在两人组中时,有C25·C23·A22种,∴共有第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.)13.如图是一个正方体纸盒的展开图,若把1,2,3,4,5,6分别填入小正方形后,按虚线折成正方体,则所得到的正方体相对面上的两个数的和都相等的概率是________. [答案]115[解析] 6个数任意填入6个小正方形中有6!=720种方法;将6个数分三组(1,6),(2,5),(3,4),每组中的两个数填入一对面中,共有不同填法6×2×2×2=48种,故所求概率P =48720=115. 14.设集合A ={x|x2-3x -10<0,x ∈Z},从集合A 中任取两个元素a ,b 且a·b≠0,则方程x2a +y2b =1表示焦点在x 轴上的椭圆的概率为________. [答案]310[解析] A ={x|-2<x<5,x ∈Z}={-1,0,1,2,3,4},由条件知,(a ,b)的所有可能取法有:(-1,1),(-1,2),(-1,3),(-1,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(1,-1),(2,-1),(3,-1),(4,-1),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3),共20种,方程x2a +y2b =1表示焦点在x 轴上的椭圆,应有a>b>0,∴有(2,1,),(3,1),(4,1),(3,2),(4,2),(4,3)共6种, ∴所求概率P =620=31015.(2010·南京调研)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512.现甲、乙两人从袋中轮流取球,甲先取,乙后取,然后甲再取…,每次取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数. (1)袋中原有白球的个数为________.(2)随机变量X 的数学期望E(X)=________. [答案] (1)6 (2)107[解析] (1)设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为C2n C29=512,即n n -129×82=512,化简得n2-n -30=0.解得n =6或n =-5(舍去). 故袋中原有白球的个数为6.(2)由题意,X 的可能取值为1,2,3,4. P(X =1)=69=23P(X =2)=3×69×8=14;P(X =3)=3×2×69×8×7=114;P(X =4)=3×2×1×69×8×7×6=184.所以X 的概率分布列为:所求数学期望E(X)=1×23+2×14+3×114+4×184=107.16.在一次选拔赛中,共设置了五道试题,其中两道文科题,三道理科题,参赛者可以从中不放回的依次抽取两道题作答,则某选手在第一次抽到理科题的条件下,第二次又抽到理科题的概率为________. [答案] 12[解析] 解法1:在第一次抽到理科题的条件下,还剩两道理科题和两道文科题,故第二次抽到理科题的概率为12.解法2:第一次抽到理科题为事件A ,第二次抽到理科题为事件B ,则P(A)=35,P(A∩B)=C23C25=310, ∴P(B|A)=P A ∩B P A =12. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2011·山西太原调研)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下: 甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据,并写出乙组数据的中位数;(2)经过计算知甲、乙两人预赛的平均成绩分别为x -甲=85,x -乙=85,甲的方差为S2甲=35.3,S2乙=41.现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由.(3)若将预赛成绩中的频率视为概率,记“甲在考试中的成绩不低于80分”为事件A ,其概率为P(A);记“乙在考试中的成绩不低于80分”为事件B ,其概率为P(B).则P(A)+P(B)=P(A +B)成立吗?请说明理由.[解析] (1)作出如图所示茎叶图,易得乙组数据的中位数为84.(2)派甲参赛比较合适,理由如下:∵x -甲=85,x -乙=85,S2甲=35.5,S2乙=41, ∴x -甲=x -乙,S2甲<S2乙,∴甲的成绩较稳定,派甲参赛比较合适. (3)不成立.由已知可得P(A)=68,P(B)=78,P(A)+P(B)=138.而0<P(A +B)<1.所以P(A)+P(B)=P(A +B)不成立.[点评] P(A +B)=P(A)+P(B)成立的条件是A 和B 互斥,而此问题中的A 和B 是不互斥的,故P(A)+P(B)=P(A +B)不成立. 18.(本小题满分12分)(2010·全国Ⅰ理)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(1)求投到该杂志的1篇稿件被录用的概率;(2)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望.[分析] (1)“稿件被录用”这一事件转化为事件“稿件能通过两位初审专家的评审”和事件“稿件能通过复审专家的评审”的和事件,利用加法公式求解.(2)X 服从二项分布,结合公式求解即可.[解析] (1)记A 表示事件:稿件能通过两位初审专家的评审; B 表示事件:稿件恰能通过一位初审专家的评审; C 表示事件:稿件能通过复审专家的评审; D 表示事件:稿件被录用. 则D =A +B·C ,而P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3 故P(D)=P(A +B·C)=P(A)+P(B)·P(C)=0.25+0.5×0.3=0.4.(2)随机变量X 服从二项分布,即X ~B(4,0.4),∵P(X =0)=(1-0.4)4=0.1296,P(X =1)=C14×0.4×(1-0.4)3=0.3456,P(X =2)=C24×0.42×(1-0.4)2=0.3456,P(X =3)=C34×0.43×(1-0.4)=0.1536,P(X =4)=0.44=0.0256. ∴其分布列为期望E(X)=4×19.(本小题满分12分)(2011·江西分宜中学、玉山一中、临川一中、南城一中、南康一中、彭泽一中、泰和中学、樟树中学、高安中学九校联考)随机抽取100名学生,测得他们的身高(单位:cm),按照区间[160,165),[165,170),[170,175),[175,180),[180,185)分组,得到样本身高的频率分布直方图如图.(1)求频率分布直方图中x的值及身高不低于170cm的学生人数;(2)将身高在[170,175),[175,180),[180,185)区间的学生依次记为A、B、C三个组,用分层抽样的方法从这三个组中抽取6个,求从这三组分别抽取的学生人数.(3)在(2)的条件下,要从6名学生中抽取2人,用列举法计算B组中至少有1人被抽中的概率.[解析](1)由频率分布直方图知5×(0.01+0.02+0.04+x+0.07)=1,∴x=0.06.∴身高不低于170cm的学生人数为100×(0.06+0.04+0.02)×5=60人.(2)A、B、C三组的人数分别为100×0.06×5=30人,100×0.04×5=20人,100×0.02×5=10人,因此A、B、C三组应各抽取30×660=3人,20×660=2人,10×660=1人.(3)在(2)的条件下,设A组抽取的3位同学为A1,A2,A3,B组抽取的两位同学为B1,B2,C组抽取的一位同学为C1,从这6名同学中抽取2人有15种可能:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),其中B组中至少有一人被抽中的情况有9种(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),(B1,C1),(B2,C2),故所求概率为P=915=35.20.(本小题满分12分)甲、乙两箱都装有某种产品,甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.[解析](1)从甲箱中任取2个产品的事件数为C28=8×72=28,这2个产品都是次品的事件数为C23=3.∴这2个产品都是次品的概率为328.(2)设事件A为“从乙箱中取出的一个产品是正品”,事件B1为“从甲箱中取出2个产品都是正品”,事件B2为“从甲箱中取出1个正品1个次品”,事件B3为“从甲箱中取出2个产品都是次品”,则事件B1、事件B2、事件B3彼此互斥.P(B1)=C25C28=514,P(B2)=C15C13C28=1528,P(B3)=C23C28=3 28,P(A|B1)=23,P(A|B2)=59,P(A|B3)=49,∴P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=514×23+1528×59+328×49=712. 21.(本小题满分12分)(2011·黄冈市期末)为预防“甲型H1N1流感”的扩散,某两个大国的研究所A 、B 均对其进行了研究.若独立地研究“甲型H1N1流感”疫苗,研究成功的概率分别为13和14;若资源共享,则提高了效率,即他们合作研究成功的概率比独立研究时至少有一个研制成功的概率提高了50%.又疫苗研制成功获得经济效益a 万元,而资源共享时所得的经济效益只能两个研究所平均分配.请你给A 研究所参谋:是否应该采取与B 研究所合作的方式来研制疫苗,并说明理由.[解析] 若A 研究所独立地研究“甲型H1N1流感”疫苗,则其经济效益的期望为 0×23+a×13=a3万元. 而两个研究所独立地研究时至少有一个研制成功的概率为 1-⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=12所以两个研究所合作研究成功的概率为 12×(1+50%)=34于是A 研究所采用与B 研究所合作的方式来研制疫苗,所获得的经济效益的期望为0×14+12a×34=38a 万元,而38a>13a ,故应该建议A 研究所采用与B 研究所合作的方式来研制疫苗. 22.(本小题满分12分)(2011·巢湖市质检)《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚. 据《法制晚报》报道,2010年8月1日至8月28日,某市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,下图是对这80人血液中酒精含量进行检查所得结果的频率分布直方图.(2)根据上述数据,求此次抽查的1000人中属于醉酒驾车的概率;(3)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.(2)P=(8+4)÷1000=0.012.(3)因为血液酒精浓度在[70,80)范围内有12人,[80,90)范围内有8人,要抽取一个容量为5的样本,[70,80)内范围内应抽3人,记为a,b,c,[80,90)范围内应抽2人,记为d,e,则从总体中任取2人的所有情况为(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),恰有一人的血液酒精浓度在[80,90)范围内的情况有(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),共6种,设“恰有1人属于醉酒驾车”为事件A,则P(A)=6 10=35.11。