新版沪教版六年级下册数学第五章有理数教案及练习1(2020新教材)

合集下载

沪教版六年级第五章有理数全章教案及习题

沪教版六年级第五章有理数全章教案及习题

沪教版六年级第五章有理数全章教案及习题案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

沪教版(五四制)六年级下册第五章:有理数的乘方及混合运算学案

沪教版(五四制)六年级下册第五章:有理数的乘方及混合运算学案

有理数的乘方及混合运算【知识要点】1.概念:一般地,我们将n个相同因数a相乘,记作n a中,即⏟a×a×a×⋯×a=a nn个a含义:n a中,a为底数,n为指数,即表示a的个数,n a表示有n个a连续相乘,叫做乘方。

乘方的结果叫做幂。

n a读作a的n次方。

n a看作是a的n次方的结果时,读作a的n次幂。

特别地,1n=1,0n=0(n为正整数)例如:53表示3×3×3×3×3,(-3)5表示(-3)×(-3)×(-3)×(-3)×(-3),特别注意负数及分数的乘方,应把底数加上括号.(-2)7表示7个-2相乘,而-27则表示7个2相乘积的相反数.当n为奇数时,(-a)n=-a n;而当n为偶数时,(-a)n= n a.注意:负数的奇次幂是负数,负数的偶次幂是正数正数的任何次幂都是正数,0的任何次幂都是0,任何不为0的数的0次幂都是“1”.“奇负偶正”口诀的应用口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如:(-3)2=9,(-3)3=-27.2.有理数混合运算的运算顺序(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减法为一级运算,乘除法为二级运算,乘方及开方(以后学)称为三级运算.同级运算,按从左到右的顺序进行;不同级运算,应先算三级运算,然后二级,最后一级;如果有括号,先算括号里的,有多重括号时,应先算小括号里的,再算中括号里的,最后算大括号里的.以上运算顺序可以简记为:“从左到右,从高(级)到低(级),从小(括号)到大(括号)”.3.科学记数法:把一个大于10的数表示成10na (其中1≤|a|<10,n是正整数),这种形式的记数方法叫做科学记数法例1 计算下列各题:(1) ()43- ; (2)43-; (3)332⎛⎫- ⎪⎝⎭ ; (4)332- (5)(−12)5 (6)(−23)4(7)(−1.5)3 (8)(−1)2004例2 把下列各式写成乘方运算的形式:(1)111111444444⨯⨯⨯⨯⨯ (2)()()()()()1333335⨯-⨯-⨯-⨯-⨯- (3)()()()()n a b a b a b a b ++++L L 1444442444443个a+b(4)()()66666-⨯⨯-⨯⨯- (5) 111111222222⨯⨯⨯⨯⨯ 例3 计算:(1)()()()410110742211---+--- (2)()()32315322154⎛⎫⎛⎫-⨯--÷-⨯- ⎪ ⎪⎝⎭⎝⎭(3) () (4)(5)221( 4.5)(0.25) 3.50.252--÷--÷- 例4(1)已知:a 、b 、c 是有理数,满足15510a b c -+++-=,求()()1271132a b c a b c ⨯⨯÷⨯⨯ 的值.(2)已知互为相反数,互为倒数,的绝对值等于2,21293()12323÷+-⨯+()()()42423237⎡⎤⎡⎤--⨯-÷-+-⎣⎦⎣⎦,a b ,c d x试求:的值.例5 用科学计数法表示下列各数(1)261500 (2)-10201900(3)5107000(4)3600 (5)-2300000(6)-5635000例6 (1)今年秋季,广西有一百三十余万名义务教育阶段的贫困学生享受到国家免费教科书政策,预计免费教科书发放总量为1500万册,发放总量用科学记数法记为_____ _ 万册(2)按照广西高速公路网的规划,该地区高速公路于2030年全部建成,建设 里程为5353公理,总投资1542.7亿元.用科学记数法表示总投资为______ __亿元(3)三峡工程全部竣工后,其年发电量将达到847亿千瓦,则此年发电量(单位:千瓦时)用科学记数法可表示为________ __.【小试锋芒】【大显身手】其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

六年级下册数学教案-第五章《有理数》复习课|沪教版

六年级下册数学教案-第五章《有理数》复习课|沪教版

6(下)数学第五章有理数复习课教案授课时间课题有理数教学目标及重难点教学目标:能够运用有理数的运算法则正确进行运算,并且能够掌握好有理数的运算顺序及符号的确定。

教学重点:有理数的意义及运算。

教学难点:负数概念的建立以及对有理数运算法则的理解。

课前检查作业完成情况: 优□良□中□差□建议:教学步骤一.知识梳理1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

在数轴上表示的两个数,右边的数总比左边的数大。

2、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

3、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

4、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

5、科学记数法把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。

二.知识网络结构图三.重点题型总结及应用题型一绝对值理解绝对值的意义及性质是难点,由于|a|表示的是表示数a的点到原点的距离,因此|a |≥0.可运用|a|的非负性进行求解或判断某些字母的取值.例1 如果a与3互为相反数,那么|a +2|等于( )A.5 B.1 C.-1 D.-5解析:a与3互为相反数,则a=-3,所以|a+2|=|-3+2|=|-1|=1.答案:B例2 若(a-1)2+|b+2|=0,则a+b=.解析:由于(a-1)2≥0,|b+2|≥0,又(a-1)2与|b+2|互为相反数,因此(a-1)2=0且|b+2|=0,则a=1,b=-2,所以a +b=-1.答案:-1规律若几个非负数的和为0,则这几个数分别为0.题型二有理数的运算有理数的运算包括加减法、乘除法及乘方,是初中数学运算的基础.要熟记法则,灵活运算,进行混合运算时,还要注意运算顺序及运算律的应用.例3 (-1)2 011的相反数是( )A.1 B.-1 C.2 011 D.-2 011解析:由于指数2 011为奇数,所以(-1)2 011=-1,其相反数为1.答案:A例4 计算:(1);(2).解:(1)=4-9×=4-4=0.(2)===题型三运用运算律简化运算过程运用加法的交换律、结合律,把某些具有相同属性的数(如正数、负数、分数中的分母具有倍数关系、相反数等)分别结合在一起相加,可以简化运算过程.例5 计算下列各题.(1)21-49.5+10.2-2-3.5+19;(2);(3);(4).分析:混合运算,应按法则进行,同时注意灵活运用运算律,简化运算过程.解:(1)原式=[(21+19)+10.2]+[(-49.5-3.5)-2]=50.2-55=-4.8;(2)原式;;(3)原式;(4)原式==点拨(1)正、负数分别结合相加;(2)分数中,同分母或分母有倍数关系的分数结合相加;(3)除法转化为乘法,正向应用乘法分配律;(4)逆向应用分配律a(b+c)=ab+ac,即ab+ac=a(b+c).题型四利用特殊规律解有关分数的计算题根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.例6 计算下列各题.(1);(2);(3)(4).分析:(1)带分数相加,可将带分数中整数部分与分数部分拆开分别相加.(2)本题若按常规计算方法比较麻烦,但若用运算律可简化运算.(3)由于,,,,,,所以将原算式变形裂项后,再进行计算.(4)算式中,后一个分数的分母是前一个分数分母的2倍,可在算式中加上最后一个分数,再减去,加上的与前一个分数运算,所得的和再与前一个分数运算,依次向前进行,最终求得运算结果.解:(1)原式=-5-;(2).(3)原式(4)原式=…点拨利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.题型五有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.例7有8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,-0.8,2.3,1.7,-1.5,-2.7,2,-0.2,则这8箱橘子的总重量是多少?分析:本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.解析:1.2+(-0.8)+2.3+1.7+(-1.5)+(-2.7)+2+(-0.2)=1.2-0.8+2.3+1.7-1.5-2.7+2-0.2=(2.3+1.7+2)+(-0.8-2.7-1.5)+(1.2-0.2)=6-5+1=2.则15×8+2=122(千克).答案:这8箱橘子的总重量是122千克.例8一货车为一家摩托车配件批发部送货,先向南走了8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?解:(1)能.如图1-6-1所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5-(-3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|-3.5|+|-7.5|+|3|=8+3.5+7.5+3=22(千米).题型六探索数字规律找数字规律的题目成为近几年中考的热点问题,这类题目灵活多变.解题时要认真观察、分析思考,找出规律,并运用规律解决问题.例9某种细菌在繁殖过程中,每半小时分裂一次,由一个分裂成两个,2.5小时后,这种细菌可分裂为( )A.8个 B.16个 C.32个 D. 64个解析:本题数字的规律是1→2→4→8…,每半小时细菌个数变为原来的2倍,所以经过2.5小时,细菌个数应变为原来的25倍,即32个.答案:C三.思想方法归纳本章中所体现的数学思想方法主要有:1.数形结合思想:在本章中,自始至终利用数轴来定义或描述有理数的概念和运算,数轴成为理解有理数及其运算的重要工具.这种把数与形(图形或数轴)结合起来进行研究的思想方法,是学习数学的重要思想方法.2.分类讨论思想:a与-a哪个大呢?a的绝对值等于什么?在本章中,我们都是通过分类讨论解决问题,分类讨论可以把一个复杂的问题分成若干个较简单的问题来处理,这是数学中处理问题的一种重要思想方法.不重复、不遗漏是对分类讨论提出的基本要求.例如,我们常把有理数分成正有理数、负有理数和零三类,如果遗漏了零,只考虑正有理数和负有理数两种情况,就会犯错误.3.转化思想:有理数的加法是通过符号法则转化为绝对值(小学所学的数)的加减法进行的;有理数的减法是通过转化为加法进行的;有理数的除法是通过转化为乘法,或者说有理数的乘除法是通过符号法则转化为绝对值的乘除法进行的.1.数形结合思想数轴是数形结合的重要工具,涉及含字母或绝对值符号的问题,借助数轴往往有利于问题的迅速解决.例1 |a|>|b|,a>0,b<O,把a、b、-a、-b按由小到大的顺序排列.分析:将a、b、-a、-b在数轴上对应点的位置找出来,就可以比较大小了.解:由a>0,b<0可知,a为正数,b为负数,a、b所对应的点分别在数轴上原点的右边和左边.由于|a|>|b|,从绝对值的几何意义可知,表示数a的点离原点的距离比表示数b的点离原点的距离远,而互为相反数的两个数绝对值相等,即|a|=|-a|,|b|=|-b|,于是a、b、-a、-b在数轴上的位置。

六年级下册数学素材资料 第五章有理数教案及练习1 沪教版

六年级下册数学素材资料    第五章有理数教案及练习1       沪教版

有理数考点1、正数和负数 正数:大于零的数负数:小于零的数(在正数前面加上负号“—”的数) 注意:①0既不是正数也不是负数,它是正负数的分界点②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数例1、 向北走2000米与向南走1000米,若规定向北走为正,则向北走2000米可记作 ,向南走1000米,原地不动课记作例2、 七年级一班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准,超过平均分记正,将五名同学的成绩分别记作—15分,—4分,0分,4分,15分。

这五名同学的实际成绩分别是多少分?例3、 观察下面依次排列的一列数,请接着写出后面的数,你能说出第15个、第101个、第2010个的数是什么?1)、—1、—2、+3、—4、—5、+6、—7、—8、 、 、 …… 2)、—1、21、—3、41、—5、21、—7、81、 、 、 ……易错点:1、 误认为凡带正号的数就是正数,误认为凡带负号的数就是负数 例:a 一定是正数吗?2、 对于“0”的含义理解不准确 例:下列说法错误的是( )A 、0是自然数B 、0是整数C 、0是偶数D 、海拔0米表示没有海拔 考点2、有理数 1、有理数的分类按定义分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 按性质符号分:有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数0 注意:1、有理数只包括正数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。

2、0是整数不是分数例1、把下列各数填在相应的集合内: π,41-错误!未找到引用源。

,-3,2,-1,-0.58,0,-3.14,错误!未找到引用源。

,0.618,10 整数集合:{ …} 分数集合:{ …} 非负数集合:{ …} 例2、下列说法正确的是( )A 有理数分为正数和负数B 有理数-a 一定表示负数C 正整数、正分数、负整数、负分数统称为有理数D 有理数包括整数和分数2、数轴(重点)定义:规定了原点、正方向、单位长度的直线 数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。

沪教版数学六年级下册第五章《有理数》教学设计

沪教版数学六年级下册第五章《有理数》教学设计

沪教版数学六年级下册第五章《有理数》教学设计一. 教材分析沪教版数学六年级下册第五章《有理数》是学生在掌握了正负数、分数、小数等基础知识后的进一步学习。

本章内容主要包括有理数的定义、分类、运算及应用。

通过本章的学习,学生能更好地理解数学概念,提高解决问题的能力。

教材内容安排合理,由浅入深,循序渐进,适合学生的认知发展。

二. 学情分析sixth-grade students have already learned basic arithmetic operations, fractions, and decimals. They have a certn understanding of positive and negative numbersand can perform basic operations with them. However, they may still have difficulty understanding the abstract concept of rational numbers and applying them in real-life situations. Therefore, in this chapter, teachers should focus on helping students understand the concept of rational numbers and improving their ability to apply them in problem-solving.三. 教学目标1.知识与技能:理解有理数的定义、分类及运算方法,能够运用有理数解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。

沪教版数学六年级下册第五章《有理数》复习课教学设计

沪教版数学六年级下册第五章《有理数》复习课教学设计

沪教版数学六年级下册第五章《有理数》复习课教学设计一. 教材分析沪教版数学六年级下册第五章《有理数》复习课教材,主要包含了有理数的加减乘除、有理数的乘方、以及有理数的混合运算等知识点。

这部分内容是有理数学习的重要部分,也是学生进一步学习实数的基础。

通过本章的学习,学生应掌握有理数的运算规律,理解有理数在数学中的地位和作用。

二. 学情分析六年级的学生已经掌握了有理数的基本概念和运算方法,但部分学生在面对复杂的混合运算时,可能会出现运算规则混淆、运算顺序错误等问题。

此外,学生对于有理数在实际生活中的应用还不够清晰,需要在教学中加强实例分析,让学生更好地理解有理数的实际意义。

三. 说教学目标1.知识与技能目标:通过复习,使学生掌握有理数的加减乘除、乘方和混合运算规则,提高运算速度和准确率。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习有理数的兴趣,培养学生的逻辑思维能力。

四. 说教学重难点1.教学重点:有理数的加减乘除、乘方和混合运算规则。

2.教学难点:有理数混合运算的顺序和技巧,以及有理数在实际生活中的应用。

五. 说教学方法与手段1.采用自主学习、合作交流的教学方法,让学生在探究中复习有理数知识,提高学生的学习能力。

2.利用多媒体教学手段,展示有理数运算的动态过程,帮助学生更好地理解运算规律。

3.通过实例分析,让学生了解有理数在实际生活中的应用,提高学生的应用能力。

六. 说教学过程1.导入:回顾有理数的基本概念,引导学生进入复习状态。

2.自主学习:让学生自主复习有理数的加减乘除、乘方和混合运算规则,总结运算规律。

3.合作交流:学生分组讨论,分享复习心得,互相解答疑难问题。

4.实例分析:教师出示实际问题,引导学生运用有理数知识解决问题,巩固所学内容。

5.练习巩固:布置适量练习题,让学生独立完成,检验复习效果。

6.总结提升:教师引导学生总结本节课的收获,强化知识点。

沪教版数学六年级下册第五章《有理数》教学设计

沪教版数学六年级下册第五章《有理数》教学设计

沪教版数学六年级下册第五章《有理数》教学设计一. 教材分析《有理数》是沪教版数学六年级下册第五章的内容,主要包括有理数的定义、分类、运算和应用。

本章内容是学生数学学习的重要基础,也是初中数学学习的前置知识。

有理数的概念和运算在实际生活中有广泛的应用,对于培养学生的逻辑思维和抽象思维能力具有重要意义。

二. 学情分析六年级的学生已经掌握了整数和分数的基本知识,对于运算也有了一定的理解。

但是,对于有理数的定义和分类,以及有理数的混合运算,学生可能存在理解上的困难。

因此,在教学过程中,需要结合学生的实际情况,用生活实例和生动的语言帮助学生理解和掌握有理数的概念和运算。

三. 教学目标1.理解有理数的定义,掌握有理数的分类。

2.掌握有理数的加减乘除运算规则。

3.能够运用有理数解决实际问题。

四. 教学重难点1.有理数的定义和分类。

2.有理数的混合运算。

五. 教学方法1.情境教学法:通过生活实例,让学生感受有理数的存在和应用。

2.游戏教学法:通过数学游戏,让学生在游戏中理解和掌握有理数的运算。

3.讨论教学法:分组讨论,让学生在讨论中加深对有理数概念的理解。

六. 教学准备1.PPT课件:制作有关有理数的定义、分类、运算的PPT课件。

2.教学素材:准备一些有关有理数的实际问题,用于课堂练习和巩固。

3.教学工具:准备黑板、粉笔、投影仪等教学工具。

七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用数学中的有理数来表示。

进而引出本节课的主题《有理数》。

2.呈现(10分钟)通过PPT课件,呈现有理数的定义、分类,以及有理数的运算规则。

让学生初步感知有理数的概念和运算。

3.操练(10分钟)让学生进行有理数的加减乘除运算练习,教师巡回指导,及时纠正学生的错误。

4.巩固(10分钟)通过PPT课件,展示一些有关有理数的实际问题,让学生运用所学的有理数知识解决问题。

5.拓展(5分钟)让学生思考:有理数可以表示生活中的哪些现象?引导学生运用所学知识,联系生活实际。

沪教版数学六年级下册第五章《有理数》全章教学设计及习题

沪教版数学六年级下册第五章《有理数》全章教学设计及习题

沪教版数学六年级下册第五章《有理数》全章教学设计及习题一. 教材分析沪教版数学六年级下册第五章《有理数》是学生学习数学的重要内容,本章主要介绍了有理数的定义、性质、运算及其应用。

教材通过丰富的实例和生动的语言,引导学生认识和理解有理数,掌握有理数的加、减、乘、除运算,并能运用有理数解决实际问题。

本章内容在数学体系中占据重要地位,为学生进一步学习代数、几何等数学分支奠定了基础。

二. 学情分析六年级的学生已经具备了一定的数学基础,对实数有一定的认识。

但在学习有理数时,仍存在以下问题:1. 对有理数的定义和性质理解不深刻;2. 有理数的运算规则掌握不熟练;3. 运用有理数解决实际问题的能力较弱。

因此,在教学过程中,要注重引导学生深入理解有理数的概念,熟练掌握有理数的运算方法,提高运用有理数解决实际问题的能力。

三. 教学目标1.理解有理数的定义,掌握有理数的性质;2. 熟练掌握有理数的加、减、乘、除运算方法;3. 能够运用有理数解决实际问题;4. 培养学生的逻辑思维能力和创新能力。

四. 教学重难点1.有理数的定义和性质;2. 有理数的运算方法;3. 运用有理数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,使学生能够直观地理解有理数;2. 讲授法:讲解有理数的定义、性质和运算方法,引导学生深入理解有理数;3. 练习法:布置适量的习题,让学生巩固所学知识;4. 小组讨论法:分组讨论,培养学生的合作意识和解决问题的能力。

六. 教学准备1.准备相关的教学PPT和教学素材;2. 准备习题和实际问题;3. 准备黑板和粉笔。

七. 教学过程1.导入(5分钟)利用生活实例,如温度、海拔等,引导学生认识有理数,激发学生的学习兴趣。

2.呈现(10分钟)讲解有理数的定义、性质和运算方法,让学生初步了解有理数的基本概念和运算规则。

3.操练(10分钟)布置适量的习题,让学生独立完成,检验对有理数的理解和运算方法的掌握程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数考点1、正数和负数 正数:大于零的数负数:小于零的数(在正数前面加上负号“—”的数) 注意:①0既不是正数也不是负数,它是正负数的分界点②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数 例1、 向北走2000米与向南走1000米,若规定向北走为正,则向北走2000米可记作 ,向南走1000米,原地不动课记作例2、 七年级一班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准,超过平均分记正,将五名同学的成绩分别记作—15分,—4分,0分,4分,15分。

这五名同学的实际成绩分别是多少分?例3、 观察下面依次排列的一列数,请接着写出后面的数,你能说出第15个、第101个、第2010个的数是什么?1)、—1、—2、+3、—4、—5、+6、—7、—8、 、 、 …… 2)、—1、21、—3、41、—5、21、—7、81、 、 、 ……易错点:1、 误认为凡带正号的数就是正数,误认为凡带负号的数就是负数 例:a 一定是正数吗?2、 对于“0”的含义理解不准确 例:下列说法错误的是( )A 、0是自然数B 、0是整数C 、0是偶数D 、海拔0米表示没有海拔 考点2、有理数1、有理数的分类 按定义分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 按性质符号分:有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数0 注意:1、有理数只包括正数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。

2、0是整数不是分数 例1、把下列各数填在相应的集合内: π,41-错误!未找到引用源。

,-3,2,-1,-0.58,0,-3.14,错误!未找到引用源。

,0.618,10 整数集合:{ …} 分数集合:{ …}非负数集合:{ …} 例2、下列说法正确的是( )A 有理数分为正数和负数B 有理数-a 一定表示负数C 正整数、正分数、负整数、负分数统称为有理数D 有理数包括整数和分数2、数轴(重点)定义:规定了原点、正方向、单位长度的直线 数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。

(4)同一数轴的单位长度必须一致 例1、图中哪 一个表示数轴?并说出理由。

例2、请画出一条数轴,在并且在数轴上标出下面的有理数:3,-2,-3.5,23,0,+2,,0.5.例4、A,B,C,D依次表示1.5,-2,2,-2.5。

说出个点与原点的位置关系以及与原点的距离是多少个单位长度?1.5A -2.5D -3-1310例5、如图,数轴上所标出的点中,相邻两点间的距离相等,则点A 表示的数为( )A 、30B 、50C 、60D 、80例6、如图,数轴的一部分被墨水污染,被污染的部分内含有的整数为___________例7、文具店、书店和玩具店一次坐落在一条笔直的东西走向的大街上,文具店位于书店西边20m 处,玩具店位于书店东边100m 处。

小明从书店沿街向东走了40m ,接着又向东走了60m ,你知道此时小明的位置在哪吗?例8、有理数a,b,c 在数轴上的位置如图所示,求ccb b a ++a 的值ab0c3、 相反数(重点)定义:只有符号不同....的两个数叫做相反数...。

(在数轴上分别位置原点的两侧,到原点的距离相等的两个点所表示的数叫做互为相反数。

) 相反数的表示方法及多重符号的化简: (1)⎪⎩⎪⎨⎧=-=>-<>>0a ,00a ,00,0则当则当则-当a a a a例1、有理数31的相反数是() (A )31 (B )31- (C )3 (D ) –3 例2、a 的相反数是 , -a 的相反数是 , 0的相反数是 例3、、若a 和b 互为相反数,则a+b=例4、如果0=+b a ,那么a ,b 两个实数一定是 ( )A.都等于0B.一正一负C.互为相反数D.互为倒数 例5、如果a 与1互为相反数,则|2|a +等于( ) A .2B .2-C .1D .1-4、绝对值(难点)绝对值的定义:数轴上表示a 的点与原点的距离叫做a 的绝对值,记为 ∣a ∣,读作:a 的绝对值 因为数的绝对值是表示两点之间的距离,所以一个数的绝对值不可能是负数。

即:任何数的绝对值都是正数(0的绝对值是0)绝对值的代数定义:1)一个正数的绝对值是它本身 2)一个负数的绝对值是它的相反数 3)0的绝对值是0 绝对值的计算规律:(1) 互为相反数的两个数的绝对值相等 (2) 若b a =,则a=b 或a=-b ; (3) 若0,0,0===+b a b a 则 例1、如果| -a | = -a ,下列成立的是( ) A .a<0 B.a ≦0 C.a>0 D.a ≧0 例2、 的绝对值是8。

例3、若11=-b ,则b= ,若==+a a 则,06 ,若a a -=,则a 0 例4、若5,3==b a ,则b a +等于( )A 、2B 、8C 、2或8D 、81--或 例5、已知()0122=++-b ab(1) 求a,b 的值 (2) 求200820082⎪⎭⎫ ⎝⎛-a b的值求()()()()()()2008200812211111--+⋯⋯+--+--+b a b a b a ab 例6、计算:=-+⋯⋯+-+-+-991100131412131121例7、272135-+++- (2)21354543-++- 例8、根据0≥a ,解答下列问题(1)当x 为何值时, 2-x 有最小值?最小值是多少? (2)当x 为何值时, 43--x 有最大值?最大值是多少?例9、已知某零件的标准直径是10mm ,超过规定直径长度的数量(单位:mm )记作正数,不足规定直径长度的数量(单位:mm )记作负数,检验员某次抽查了5件样品,检查的结果如下表:(1) 试指出哪件样品的大小最符合要求;(2) 如果规定偏差的绝对值在0.18mm 之内是正品,偏差的绝对值在0,18mm —0.22mm 之间是次品,偏差绝对值查过0.22mm 是废品,那么上述5件样品中,哪些是正品,哪些是次品,哪些是废品?易错点:1、画数轴时,缺少要素2、误认为a a =,则a>0;若a a -=,则a<0例:已知a a -=,则a 的值是( )A 、正数B 、负数C 、非正数D 、非负数 3、相反数和倒数的定义相混淆5、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数 (2)两个负数,绝对值大的反而小 例1、比较下列有理数的大小-(-5)和-5- -(+3)与0 4354---与 14.3---与π 例2、若m>0,n<0,且|m|>|n|,用“>”把m 、m -、n n -连接起来。

考点3、有理数的加减(重难点) 1、有理数加法(1)同号两数相加,取相同的符号,并把其绝对值相加;(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)互为相反数的两个数相加得零; (4)一个数与零相加,仍得这个数。

例1、如果两个有理数的和是正数,那么这两个数( )。

(1)都是正数(2)一个是正数,一个是零(3)两个数异号,且正数的绝对值较大 D.以上三种情况都有可能 例2、简单计算(1)()13 4.52⎛⎫-+- ⎪⎝⎭; (2)()()4.5 6.7+++; (3)()2517++; (4)5121313⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭(5)(-51)+(+37); (6)(+15)+(-15); (7)(+4.25)+114⎛⎫- ⎪⎝⎭; (8)114233⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭(9)15+0 ;(10)-4.7+0 ;(11)0+0 例3、复杂有理数计算(1)(+26)+(-14)+(-16)+(+18) (2)112 5.5233-++)75()65()72(61)3(++-+-+ ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+67314213)4(()()()()51162.39 1.573527.6132 1.576767⎛⎫⎛⎫⎛⎫⎛⎫-+-+++-+-+-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭例4、已知132x +与122y -互为相反数,求x y +的值。

例5、小明在一条南北方向的公路上散步,他从A 地出发,每10分钟记录自己的散步情况(向南为正方向,单位:米),1小时后停下来时记录如下: -1008,1100,-976,1010,-827,946此时他在A 地的什么方向,距离A 地多远?小明散步共走了多少米?例6、a 与b 互为相反数,b 与c 相乘的积是最大的负整数,d 与e 的和等于-2,则e d bcba bc ++++ 的值是多少?例7、读一读:式子“1+2+3+4+5...+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写不方便,为简单起见,我们可以将“1+2+3+4+5...+100”表示为∑=1001n n ,这是求和符号。

例如“1+3+5+7+9+...+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-501)12(n n 。

通过对以上材料的阅读,请回答问题:(1)2+4+6+8+...+100(即从2开始的100以内的连续偶数的和求和符号表示为_____; (2)计算:∑==313n n ______(填写最后的计算结果)。

例8、从图(1)中找规律,并在图(2)填上合适的数2、有理数减法①有理数减法法则中,字母a,b 表示任意有理数;0减去任何数得这个数的相反数。

②有理数的减法可转化为有理数的加法进行计算,不要将减法法则与加法法则中异号两书相加混淆。

③计算有理数的减法时,要把减号变为加好,把减数变为它的相反数,即必须同时改变两个符号:意识运算符号由“-”变为“+”;而是减数的性质符号由正变为负或由负变为正。

例1、下列说法正确的是( )A.两数相减,被减数一定大于减数B.0减去一个数仍得这个数C.互为相反的两个数差为0D.减去一个正数,差一定小于被减数 例2、计算: (1)615312-⎪⎭⎫ ⎝⎛- (2)()7.2218--⎪⎭⎫⎝⎛- (3)())5.28(5.28--- (4))1312(0--例3、列出算式并计算下列各题:(1)的相反数的差;的绝对值的相反数与323-31-(2)潜水员从海平面以下24m 处上升到海平面以下15m 处,此潜水员上升了多少米? 例4、已知a<0,b<0,且,b a >试判断a-b 的符号。

相关文档
最新文档