概率论与数理统计期末复习
概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为2()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
中国石油大学090107概率论与数理统计期末复习题及参考答案

《概率论与数理统计》课程综合复习资料一、单选题1.设某人进行射击,每次击中的概率为1/3,今独立重复射击10次,则恰好击中3次的概率为()。
a∙ Φ3Φ7B. ⅛φ3×(∣)7C∙ c ioψ7×(∣)3d∙ ⅛3答案:B2.设X∣, X2, . X〃为来自总体X的一个样本,区为样本均值,EX未知,则总体方差OX的无偏估计量为()。
A.--∑(X∕-X)2“Ti=I1n _ o8. 1 X(X z-X)2 n i=∖1 «0C∙ -∑(X,•一EX)1 〃oD∙ --∑(X i-EX)2〃-答案:A3.设X” X2,…,X〃为来自总体N(〃,/)的一个样本,区为样本均值,已知,记S12=-∑(X z-X)2, 5^=1 X(X z-X)2,则服从自由度为〃-1的f分布统计量是()。
〃一IT n i=∖MT=Sl/3S2 / 4nS) ∕√n答案:D4.设总体X〜/HO),O为未知参数,X1, X2,. -, X“为*的一个样本,0(X1, X2,--,.X n), 0(X1, X2,∙∙∙, X ZJ)为两个统计量,包力为。
的置信度为的置信区间, 则应有()。
A.P{Θ <Θ} = aB.P{Θ<Θ} = ∖-aC.P[Θ<Θ<Θ] = aD.P[Θ<Θ<Θ} = ∖-a答案:D5.某人射击中靶的概率为3/5,如果射击直到中靶为止,则射击次数为3的概率()。
A. ⅛36,设X和Y均服从正态分布X〜N(μ工),Y ~ N(μ32),记P] = P{X <μ-2], p2=P{Y≥μ + 3}f则OoA.对任何实数〃都有p∣ >〃2B.对任何实数〃都有p∣ <〃2C.仅对〃的个别值有Pl =p2D.对任何实数〃都有p∣二〃2答案:D7.设A和B为任意两个事件,且Au3, P(B)>0,则必有()。
A.P(A)<P(A∖B)B.P(A)NP(AIB)C.P(A)>P(A∖B)D.P(A)≤P(A∖B)答案:D8.已知事件48相互独立,P(B) >0,则下列说法不正确的是()。
概率论与数理统计期末考试复习题

概率论与数理统计复习题一、 填空题1. 事件A 、B 、C 中至少有一个发生可用A 、B 、C 表示为C B A ⋃⋃ 2. 若事件A 、B 满足)()|(B P A B P =,则称A 、B __相互独立 3.X 则=)(X E 0.61.已知P (A)=0.8,P(A —B )=0。
5,且A 与B 独立,则P(B)= 3/8 ;2.设A ,B 是两个随机事件,P (A)=0.8,P(AB )=0.4,则P (A-B )= 0.4 ;3. 设事件A 与B 相互独立,P (A)=0.4,P (B )=0.5,则P(A ∪B)= 0。
7 ; 4。
事件A 与B 满足P(A )=0。
5,P(B )=0。
6, P (B|A)=0。
8,则P (A ∪B)= 0。
7 ; 5。
袋中有大小相同的红球4只,黑球3只,则此两球颜色不同的概率为 4/7 ; 6.某射手每次击中目标的概率为0。
28,今连续射击10次,其最可能击中的次数为 3 ; 8。
设随机变量X 服从[1,5]上的均匀分布,当5121<<<x x 时,=<<)(21x X x P 412-x10。
设随机变量X 的概率分布为 则=≥)1(2XP 0。
7 ;11。
设随机变量X 服从二项分布B(n ,p),且E(X)=15,D(X )=10,则n= 45 ;14。
设随机变量X ~N (1,4),,9332.0)5.1(,6915.0)5.0(==φφ则=>)2(X P 0。
3753 ;15.已知总体X ~N(0,1),n X X X ,,,21 是来自总体X 的样本,则21nii X=∑~)(2n χ16. 已知总体X ~n X X X N ,,),,(212σμ是来自总体X 的样本,要检验,:2020σσ=H 则采用的统计量为22)1(σS n -;17。
设T 服从自由度为n 的t 分布,若,)(αλ=>T P 则=<)(λT P 21α-18。
概率论与数理统计期末复习题

概率与数理统计期末复习题一一、填空题1.设随机变量X的概率密度为,则数学期。
2.设随机变量X,Y相互独立,且服从正态分布N(-1,1),则Z=2X-Y的概率密度。
3.进行三次独立试验,在每次试验中事件A出现的概率相等,已知A至少出现一次的概率等于,则事件A在一次试验中出现的概率P(A)= .4.设X,Y是随机变量,D(X)=9,D(Y)=16,相关系数,则D(X+Y)= .5. 口袋中装有2个白球,3个红球,从中随机地一次取出3个球,则取出的3个球中至多有2个红球的概率为 .6. 已知随机变量X服从参数为λ的泊松分布,且, .二、已知随机变量X的概率密度为.求Y= 3lnX的分布函数.三、玻璃杯成箱出售,每箱装有10只玻璃杯.假设各箱含0只,1只和2只次品的概率分别为,,0.04.一顾客要买一箱玻璃杯,售货员随意取出一箱,顾客开箱随机取出3只,若这3只都不是次品,则买下该箱杯子,否则退回.求(1)该顾客买下该箱玻璃杯的概率;(2)在顾客已买下的一箱中,确实没有次品的概率.四、设随机变量(X,Y)的概率密度为,求 ( 1)边缘密度 ; (2)协方差cov(X,Y),并问X 与Y 是否不相关?五、已知一批产品的某一数量指标X服从正态分布,问样本容量n为多少,才能使样本均值与总体均值的差的绝对值小于的概率达到. [ ,,]。
六、使用归工艺生产的机械零件,从中抽查25个,测量其直径,计算得直径的样本方差为.现改用新工艺生产, 从中抽查25个零件,测量其直径,计算得直径的样本方差为. 设两种工艺条件下生产的零件直径都服从正态分布,问新工艺生产的零件直径的方差是否比旧工艺生产的零件直径的方差显着地小()?七、设总体X的的概率密度为其中,是未知参数,是总体X的样本观察值.求(1) 的矩估计量;(2) 的极大似然估计量,并问是的无偏估计吗?八、设随机向量(X,Y)的概率密度为求 (1)条件概率密度;(2) Z=X+Y的概率密度.;概率与数理统计期末复习题二一、一、选择题1.设随机变量X和Y相互独立,其概率分布为X 1 2 Y 1 21/3 2/3 1/3 2/3则下列命题正确的是。
《概率论与数理统计》期末复习重点总结

概率论与数理统计第一章:掌握概率的性质、条件概率公式、全概率公式和贝叶斯公式,会用全概率公式和贝叶斯公式计算问题。
第二章:一维随机变量包括离散型和连续型;离散型随机变量分布律的性质;连续性随机变量密度函数的性质;常见的三种离散型分布及连续型分布;会计算一维随机变量函数的分布(可以出大题);第三章:多维随机变量掌握离散型和连续型变量的边缘分布;条件分布及两个变量独立的定义;重点掌握两个随机变量函数的分布(掌握两个随机变量和、差的密度函数的求法;了解两个随机变量乘、除的分布;掌握多个随机变量最大、最小的分布的密度函数的求法);第四章:重点掌握期望、方差、协方差的计算公式、性质;了解协方差矩阵的构成;第六章:掌握统计量的定义、三大分布的定义和性质;教材142页的四个定理及式3.19、3.20务必记住;第七章:未知参数的矩估计法和最大似然估计法是考点,还要掌握估计量的无偏性、有效性的定义;教材的例题及习题:19页例5;26页19、23、24、36;43页例1;51页例2;53页例5;58页25、36;63页例2;66页例2;77页例1、例2;87页22;99页例12;114页6;147页4、6;151页例2、例3;153页例4、例5;173页5、11样题一、填空1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.3.已知B A ,两个事件满足条件()()B A P AB P =,且()p A P =,则()=B P _________.4.设随机变量X 的密度函数为()2,01,0,x x f x <<⎧=⎨⎩其他,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则()2P Y == . 5、设连续型随机变量X 的分布函数为 , ,则A=B= ;X 的密度函数为 。
概率论与数理统计期末复习参考试题

<概率论与数理统计>期末复习参考试题一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件 1〕A 、B 、C 至少有一个发生 2〕A 、B 、C 中恰有一个发生 3〕A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
那么P(B )A =3.假设事件A 和事件B 互相独立, P()=,A αP(B)=0.3,P(AB)=0.7,那么α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅那么A=______________7. 随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,那么a =________b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,那么{0}P x <= _________ 9. 一射手对同一目的独立地进展四次射击,假设至少命中一次的概率为8081,那么该射手的命中率为_________10.假设随机变量ξ在〔1,6〕上服从均匀分布,那么方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,那么{max{,}0}P X Y ≥= 12.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{a b,c}X Y ≤≤<= 13.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,那么〔x,y 〕关于X 的边缘概率密度在x = 1 处的值为 15.)4.0,2(~2-N X ,那么2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 互相独立,那么(3)D X Y -=17.设X的概率密度为2()x f x -=,那么()D X =18.设随机变量X 1,X 2,X 3互相独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N 〔0,22〕,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,那么D 〔Y 〕=19.设()()25,36,0.4xy D X D Y ρ===,那么()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或~ 。
概率论与数理统计期末总复习资料

古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出m (m ≤a +b)个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;分析:本例的样本点就是从a +b中有次序地取出m 个球的不同取法;第m 次取出的球是白球意味着:第m次是从a 个白球中取出一球,再在a +b-1个球中取出m-1个球。
解:设B ={第m 次取出的球是白球}样本空间的样本点总数: mb a A n +=事件B 包含的样本点: 111--+=m b a a A C r ,则 b a a A aA n r B P mba mb a +===+--+11)( 注:本例实质上也是抽签问题,结论说明按上述规则抽签,每人抽中白球的机会相等,同抽签次序无关。
例2:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: 915C n ==5005事件B 包含的样本点: 563514C C C r ==240,则 P (B )=120/1001=0.048 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子(N ≥n)的任一个之中,求下列事件的概率:(1) A ={指定n 个格子中各有一个质点};(2) B ={任意n 个格子中各有一个质点}; (3) C ={指定的一个格子中恰有m (m ≤n )个质点}.解:样本点为n 个质点在N 个格子中的任一种分布,每个质点都有N 种不同分布,即n 个质点共有N n 种分布。
故样本点总数为:N n(1)在n 个格子中放有n 个质点,且每格有一个质点,共有n !种不同放法;因此,事件A 包含的样本点数:n!,则 n Nn A P !)(=(2)先在N 个格子中任意指定n 个格子,共有nN C 种不同的方法;在n 个格子中放n 个质点,且每格一个质点,共有n !种不同方法;因此,事件B 包含的样本点数: n NnN A C n =!,则n nNNA B P =)((3)在指定的一个格子中放m (m ≤n )个质点共有mn C 种不同方法;余下n-m 个质点任意放在余下的N-1个格子中,共有m n N --)1(种不同方法.因此,事件C 包含的样本点数:mn C m n N --)1(, 则mn m m n nm n mn N N N C N N C C P ---=-=)1()1()1()( 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数} 。
概率论与数理统计期末复习

概率论与数理统计期末复习《概率论与数理统计》总复习提纲第⼀块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,⼏何概率,条件概率,与条件概率有关的三个公式,事件的独⽴性,贝努⾥试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为.1)试验可在相同的条件下重复进⾏;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪⼀个结果会出现.(2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每⼀个可能结果,即Ω中的元素,称为样本点,记为.(3)随机事件:在⼀定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的⼦集,必然事件(记为)和不可能事件(记为). 2、事件的关系与运算(1)包含关系与相等:“事件发⽣必导致发⽣”,记为或;且.(2)互不相容性:;互为对⽴事件且.(3)独⽴性:(1)设为事件,若有,则称事件与相互独⽴. 等价于:若().(2)多个事件的独⽴:设是n个事件,如果对任意的,任意的,具有等式,称个事件相互独⽴.3、事件的运算(1)和事件(并):“事件与⾄少有⼀个发⽣”,记为.(2)积事件(交):“事件与同时发⽣”,记为或.(3)差事件、对⽴事件(余事件):“事件发⽣⽽不发⽣”,记为称为与的差事件;称为的对⽴事件;易知:.4、事件的运算法则1) 交换律:,;2) 结合律:,;3) 分配律:,;4) 对偶(De Morgan)律:,,可推⼴5、概率的概念(1)概率的公理化定义:(2)频率的定义:事件在次重复试验中出现次,则⽐值称为事件在次重复试验中出现的频率,记为,即.(3)统计概率:称为事件的(统计)概率.在实际问题中,当很⼤时,取(4)古典概率:若试验的基本结果数为有限个,且每个事件发⽣的可能性相等,则(试验对应古典概型)事件发⽣的概率为:.(5)⼏何概率:若试验基本结果数⽆限,随机点落在某区域g的概率与区域g的测度(长度、⾯积、体积等)成正⽐,⽽与其位置及形状⽆关,则(试验对应⼏何概型),“在区域中随机地取⼀点落在区域中”这⼀事件发⽣的概率为:.(6)主观概率:⼈们根据经验对该事件发⽣的可能性所给出的个⼈信念.6、概率的基本性质(1)不可能事件概率零:=0.(2)有限可加性:设是n个两两互不相容的事件,即=,(),则有=+.(3)单调不减性:若事件,且.(4)互逆性:且.(5)加法公式:对任意两事件,有-;此性质可推⼴到任意个事件的情形.(6)可分性:对任意两事件,有,且7、条件概率与乘法公式(1)条件概率:设是两个事件,即,则称为事件发⽣的条件下事件发⽣的条件概率.(2)乘法公式:设且则称为事件的概率乘法公式.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设是的⼀个划分,且,,则对任何事件,有称为全概率公式.(2)贝叶斯(Bayes)公式:设是的⼀个划分,且,则对任何事件,有称为贝叶斯公式或逆概率公式.9、贝努⾥(Bernoulli)概型(1)只有两个可能结果的试验称为贝努⾥试验,常记为.也叫做“成功—失败”试验,“成功”的概率常⽤表⽰,其中=“成功”.(2)把重复独⽴地进⾏次,所得的试验称为重贝努⾥试验,记为.(3)把重复独⽴地进⾏可列多次,所得的试验称为可列重贝努⾥试验,记为.以上三种贝努⾥试验统称为贝努⾥概型.(4)中成功次的概率是:其中.疑难分析1、必然事件与不可能事件必然事件是在⼀定条件下必然发⽣的事件,不可能事件指的是在⼀定条件下必然不发⽣的事件.它们都不具有随机性,是确定性的现象,但为研究的⽅便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件与必有⼀个事件发⽣,且⾄多有⼀个事件发⽣,则、为互逆事件;如果两个事件与不能同时发⽣,则、为互斥事件.因⽽,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,⽽互斥适⽤与多个事件的情形.作为互斥事件在⼀次试验中两者可以都不发⽣,⽽互逆事件必发⽣⼀个且只发⽣⼀个.3、两事件独⽴与两事件互斥两事件、独⽴,则与中任⼀个事件的发⽣与另⼀个事件的发⽣⽆关,这时;⽽两事件互斥,则其中任⼀个事件的发⽣必然导致另⼀个事件不发⽣,这两事件的发⽣是有影响的,这时.可以⽤图形作⼀直观解释.在图1.1左边的正⽅形中,图1.1,表⽰样本空间中两事件的独⽴关系,⽽在右边的正⽅形中,,表⽰样本空间中两事件的互斥关系.4、条件概率与积事件概率是在样本空间内,事件的概率,⽽是在试验增加了新条件发⽣后的缩减的样本空间中计算事件的概率.虽然、都发⽣,但两者是不同的,⼀般说来,当、同时发⽣时,常⽤,⽽在有包含关系或明确的主从关系时,⽤.如袋中有9个⽩球1个红球,作不放回抽样,每次任取⼀球,取2次,求:(1)第⼆次才取到⽩球的概率;(2)第⼀次取到的是⽩球的条件下,第⼆次取到⽩球的概率.问题(1)求的就是⼀个积事件概率的问题,⽽问题(2)求的就是⼀个条件概率的问题. 5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,⽽该结果⼜不能简单地看作这诸多事件之和时,可考虑⽤全概率公式,在对样本空间进⾏划分时,⼀定要注意它必须满⾜的两个条件.贝叶斯公式⽤于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第⼆块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设是随机试验的样本空间,如果对于试验的每⼀个可能结果,都有唯⼀的实数与之对应,则称为定义在上的随机变量,简记为.随机变量通常⽤⼤写字母等表⽰.2、离散型随机变量及其分布列如果随机变量只能取有限个或可列个可能值,则称为离散型随机变量.如果的⼀切可能值为,并且取的概率为,则称为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中.常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为,分布列为或(2)⼆项分布:记为,概率函数(3)泊松分布,记为,概率函数泊松定理设是⼀常数,是任意正整数,设,则对于任⼀固定的⾮负整数,有.当很⼤且很⼩时,⼆项分布可以⽤泊松分布近似代替,即,其中(4)超⼏何分布:记为,概率函数,其中为正整数,且.当很⼤,且较⼩时,有(5)⼏何分布:记为,概率函数.3、分布函数及其性质分布函数的定义:设为随机变量,为任意实数,函数称为随机变量的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性;(2)单调性如果,则;(3)右连续,即;(4)极限性;(5)完美性.4、连续型随机变量及其分布分布如果对于随机变量的分布函数,存在⾮负函数,使对于任⼀实数,有,则称为连续型随机变量.函数称为的概率密度函数.概率密度函数具有以下性质:(1);(2);(3);(4);(5)如果在处连续,则.常⽤连续型随机变量的分布:(1)均匀分布:记为,概率密度为分布函数为(2)指数分布:记为,概率密度为分布函数为(3)正态分布:记为,概率密度为,相应的分布函数为当时,即时,称服从标准正态分布.这时分别⽤和表⽰的密度函数和分布函数,即具有性质:①.②⼀般正态分布的分布函数与标准正态分布的分布函数有关系:.5、随机变量函数的分布(1)离散型随机变量函数的分布设为离散型随机变量,其分布列为(表2-2):表2-2则任为离散型随机变量,其分布列为(表2-3):表2-3……有相同值时,要合并为⼀项,对应的概率相加.(2)连续型随机变量函数的分布设为离散型随机变量,概率密度为,则的概率密度有两种⽅法可求.1)定理法:若在的取值区间内有连续导数,且单调时,是连续型随机变量,其概率密度为.其中是的反函数.2)分布函数法:先求的分布函数然后求.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间上,对试验的每⼀个可能结果,都有唯⼀的实数与之对应.从定义可知:普通函数的取值是按⼀定法则给定的,⽽随机变量的取值是由统计规律性给出的,具有随机性;⼜普通函数的定义域是⼀个区间,⽽随机变量的定义域是样本空间.2、分布函数的连续性定义左连续或右连续只是⼀种习惯.有的书籍定义分布函数左连续,但⼤多数书籍定义分布函数为右连续. 左连续与右连续的区别在于计算时,点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于,则定义左连续或右连续时值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数⼆维离散型随机变量的联合分布列,⼆维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独⽴性和不相关性,常⽤多维随机变量,随机向量函数的分布.1、⼆维随机变量及其联合分布函数为n维(n元)随机变量或随机向量.联合分布函数的定义设随机变量,为随机向量的联合分布函数⼆维联合分布函数具有以下基本性质:(1)单调性是变量或的⾮减函数;(2)有界性;(3)极限性(3)连续性关于右连续,关于也右连续;(4)⾮负性对任意点,若,则.上式表⽰随机点落在区域内的概率为:.2、⼆维离散型随机变量及其联合分布列如果⼆维随机变量所有可能取值是有限对或可列对,则称为⼆维离散型随机变量.设为⼆维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布列.………………联合分布列具有下列性质:(1);(2).3、⼆维连续型随机变量及其概率密度函数如果存在⼀个⾮负函数,使得⼆维随机变量的分布函数对任意实数有,则称是⼆维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)⾮负性对⼀切实数,有;(2)规范性;(3)在任意平⾯域上,取值的概率;(4)如果在处连续,则.4、⼆维随机变量的边缘分布设为⼆维随机变量,则称分别为关于和关于的边缘(边际)分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布列.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、⼆维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为⼆维离散型随机变量,其联合分布律和边缘分布列分别为,则当固定,且时,称为条件下随机变量的条件分布律.同理,有(2)连续型随机变量的条件分布设为⼆维连续型随机变量,其联合密度函数和边缘密度函数分别为:.则当时,在和的连续点处,在条件下,的条件概率密度函数为.同理,.6、随机变量的独⽴性设及分别是的联合分布函数及边缘分布函数.如果对任何实数有则称随机变量与相互独⽴.设为⼆维离散型随机变量,与相互独⽴的充要条件是.设为⼆维连续型随机变量,与相互独⽴的充要条件是对⼏乎⼀切实数,有.7、两个随机变量函数的分布设⼆维随机变量的联合概率密度函数为,是的函数,则的分布函数为.(1)的分布若为离散型随机变量,联合分布列为,则的概率函数为:或.若为连续型随机变量,概率密度函数为,则的概率函数为:.(2)的分布若为连续型随机变量,概率密度函数为,则的概率函数为:.8.最⼤值与最⼩值的分布则9.数理统计中常⽤的分布(1)正态分布:(2):(3):(4):疑难分析1、事件表⽰事件与的积事件,为什么不⼀定等于?如同仅当事件相互独⽴时,才有⼀样,这⾥依乘法原理.只有事件与相互独⽴时,才有,因为.2、⼆维随机变量的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯⼀确定边缘分布,因⽽也唯⼀确定条件分布.反之,边缘分布与条件分布都不能唯⼀确定联合分布.但由知,⼀个条件分布和它对应的边缘分布,能唯⼀确定联合分布.但是,如果相互独⽴,则,即.说明当独⽴时,边缘分布也唯⼀确定联合分布,从⽽条件分布也唯⼀确定联合分布.3、两个随机变量相互独⽴的概念与两个事件相互独⽴是否相同?为什么?两个随机变量相互独⽴,是指组成⼆维随机变量的两个分量中⼀个分量的取值不受另⼀个分量取值的影响,满⾜.⽽两个事件的独⽴性,是指⼀个事件的发⽣不受另⼀个事件发⽣的影响,故有.两者可以说不是⼀个问题.但是,组成⼆维随机变量的两个分量是同⼀试验的样本空间上的两个⼀维随机变量,⽽也是⼀个试验的样本空间的两个事件.因此,若把“”、“”看作两个事件,那么两者的意义近乎⼀致,从⽽独⽴性的定义⼏乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和⽅差、标准差及其性质,随机变量函数的数学期望,原点矩和中⼼矩,协⽅差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量的分布列为,如果级数绝对收敛,则称级数的和为随机变量的数学期望.设连续型随机变量的密度函数为,如果⼴义积分绝对收敛,则称此积分值为随机变量的数学期望.数学期望有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若是随机变量,则;对任意个随机变量,有;(4)若相互独⽴,则;对任意个相互独⽴的随机变量,有.2、随机变量函数的数学期望设离散型随机变量的分布律为,则的函数的数学期望为,式中级数绝对收敛.设连续型随机变量的密度函数为,则的函数的数学期望为,式中积分绝对收敛.3、随机变量的⽅差设是⼀个随机变量,则称为的⽅差.称为的标准差或均⽅差.。