茆诗松概率论与数理统计教程课件第一章 (2)课件

合集下载

概率论与数理统计教程(茆诗松)第一章

概率论与数理统计教程(茆诗松)第一章

5. 试用A、B、C 表示下列事件: ① A 出现; A ② 仅 A 出现;A B C ③ 恰有一个出现;A B C A B C A B C ④ 至少有一个出现;ABC ⑤ 至多有一个出现;A B C A B C A B C A B C ⑥ 都不出现; A B C
⑦ 不都出现; ABCABC ⑧ 至少有两个出现;A B A C B C
• 非负性公理: P(A)0;
• 正则性公理: P(Ω)=1;
• 可列可加性公理:若A1, A2, ……, An ……
互不相容,则
U
P Ai P(Ai ) i1 i1
3/22/2020
华东师范大学
第一章 随机事件与概率
1.2.2 排列与组合公式
第23页
• 从 n 个元素中任取 r 个,求取法数. • 排列讲次序,组合不讲次序. • 全排列:Pn= n! • 0! = 1. • 重复排列:nr • 选排列: P nr(nn !r)!n(n1)......(nr1)
第29页
注意
• 抛一枚硬币三次 抛三枚硬币一次 • Ω1={(正正正), (反正正), (正反正), (正正反),
(正反反), (反正反), (反反正), (反反反)} 此样本空间中的样本点等可能. • Ω2={(三正), (二正一反), (二反一正), (三反)} 此样本空间中的样本点不等可能.
➢ 而实际去做 N 次试验,得 n 次针与平行线相 交,则频率为: n/N.
➢ 用频率代替概率得: 2lN/(dn). ➢ 历史上有一些实验数据.
3/22/2020
A发生但 B不发生
• 对立: A
A 不发生
3/22/2020
华东师范大学
第一章 随机事件与概率

概率统计的课件(茆诗松)1-1

概率统计的课件(茆诗松)1-1
A(U Ai ) U( AAi )
i 1 i 1 n n
UA I
i 1 i i 1 i
n
n
i 1
Ai Ai
I
n
i 1
Ai U Ai
i 1
n
UA I
i 1
I
i 1
Ai U Ai
i 1
例4 利用事件关系和运算表达多 个事件的关系
A ,B ,C 都不发生——
•样本空间中的元素可以是数也可以不是数. • 样本空间至少有两个样本点. 只含两个样本点的样 本空间是最简单的样本空间.
注: 样本空间分类 (1) 离散型样本空间 样本点的个数为有限或可列个. 如试验1—4 (2) 连续型样本空间 样本点的个数为无限不可列个. 如试验5
三. 随机事件
把样本空间的某些子集称为随机事件,简称 事件。常用大写字母A,B,C,„表示。 特别地,如果事件只含一个试验结果(即样本 空间的一个元素),则称该事件为基本事件。
A1 , A2 ,L , An ,L 两两互斥
Ai Aj , i j , i, j 1, 2,L
A B 记为 A B, 称为直和. 注:A 与B 互斥时,
A B A ( B A) ( A B) B(任意和可写为直和)
7. 事件的对立
AB , A B
(有限交封闭) (可列交封闭)
④若A1 ,L An ,L F,则 I Ai F
i=1
⑤若A,B∈F,则A-B∈F (差封闭)
本节首先介绍了随机试验、样本 空间、随机变量等的基本概念,然 后给出了随机事件的各种运算及运 算法则,最后给出了事件域的概念。
的下述子集合表示什么事件?指出哪些是基本 事件。 A1={1}, A2={2}, … , A6={6} 分别表示掷出的结果为“一点”至“六点”, 它 们都是基本事件; B={2,4,6} 表示掷出的结果为“偶数点”,非基本事件; C={1,3,5,} 表示“掷出的结果为奇数点”,非基本事件;

概率论与数理统计教程(茆诗松)第1章

概率论与数理统计教程(茆诗松)第1章
A = “针与平行线相交” 的充要条件是: x ≤ l/2 sin ϕ . 针是任意投掷的,所以这个问题可用几何方法 求解得
SA ∫0 P( A) = = SΩ
27 July 2011
π
l sinϕdϕ 2l 2 = d(π / 2) dπ
华东师范大学
第一章 随机事件与概率
第9页
§1.3 概率的性质
= (3/10)×(2/9)+(7/10)×(3/9) = 3/10
27 July 2011
华东师范大学
第一章 随机事件与概率
第24页 24页
1.4.4
贝叶斯公式
乘法公式是求“几个事件同时发生”的概率; 全概率公式是求“最后结果”的概率; 贝叶斯公式是已知“最后结果” ,求“原因” 的概率.
27 July 2011
第一章 随机事件与概率
第19页 19页
条件概率的三大公式
乘法公式; 全概率公式; 贝叶斯公式.
27 July 2011
华东师范大学
第一章 随机事件与概率
第20页 20页
1.4.2
性质1.4.2
乘法公式
(1) 若 P(B)>0,则 P(AB) = P(B)P(A|B); 若 P(A)>0,则 P(AB) = P(A)P(B|A). (2) 若 P(A1A2 ······An−1)>0,则 P(A1A2 ······An) = P(A1)P(A2|A1) ······ P(An|A1A2 ······An−1)
古典方法 设 Ω 为样本空间,若
① Ω只含有限个样本点; ② 每个样本点出现的可能性相等, 则事件A的概率为: P(A) = A中样本点的个数 / 样本点总数

概率论与数理统计课件(PPT)

概率论与数理统计课件(PPT)
随机现象:不确定性与统计规律性
概率论——研究和揭示随机现象 的统计规律性的科学
目录
• • • • • • 第一章 随机事件及其概率 第二章 随机变量 第三章 随机变量的数字特征 第四章 样本及抽样分布 第五章 参数估计 第六章 假设检验
第一章 随机事件及其概率
• 随机事件及其运算 • 概率的定义及其运算 • 条件概率 • 事件的独立性
注意到不论是对概率的直观理 解,还是频率定义方式,作为事件 的概率,都应具有前述三条基本性 质,在数学上,我们就可以从这些 性质出发,给出概率的公理化定义
1.定义(p8) 若对随机试验E所对应的样本空间中 的每一事件A,均赋予一实数P(A),集合函数
P(A)满足条件:
(1) P(A) ≥0;
(2) P()=1;
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon K. Pearson K. Pearson
n
2048 4040 12000 24000
nH
1061 2048 6019 12012
fn(H)
0.5181 0.5069 0.5016 0.5005
N ( A) P( A) N ()
P(A)具有如下性质(P7)
(1) 0 P(A) 1;
(2) P()=1; P( )=0 (3) AB=,则 P( A B )= P(A) +P(B)
例:有三个子女的家庭,设每个孩子是男是女的概率 相等,则至少有一个男孩的概率是多少?
解:设A--至少有一个男孩,以H表示某个孩子是男孩 ={HHH,HHT,HTH,THH,HTT,TTH,THT,TTT}
1.1随机事件及其概率

茆诗松概率论与数理统计1.2第一章1.2

茆诗松概率论与数理统计1.2第一章1.2
24/22
1.2
概率的定义及其确定方法
• 例6 (会面问题)甲乙两人相约在0到T这段时间 内在某处会面. 先到的人等候另一个人, 经过时 间t(t<T)后离去. 设每人在0到T这段时间内各时刻 到达该地是等可能的, 且两人到达的时刻互不牵 连. 求甲,乙两人能会面的概率. • 解:以x,y分别表示甲乙两人到达的时刻, 那末 0xT, 0yT. 若以x,y表示平面上点的坐标,则: (1)所有基本事件可以用一边长为T正方形 内所有点表示. (2)两人能会面的条件是 |x-y|t .
n 个人
结果有点出 乎人们意料

n 20 p 0.41
365个盒子 ,则 n P{ n 个人生日各不相同 } A365n 365 n A P{ 至少有两人生日相同 } 1 365n 365 25 30 40 50 55 100 0.57 0.71 0.89 0.97 0.99 0.9999997
件次品出现在 n 次中的方式有 C n k 种 , 故由乘法
原理,共有 C n k K k ( N - K ) n-k 种取法。故 A 中基本 事件个数为Cnk Kk(N-K)n-k,因此有 n k n k K N K k P ( A) Nn k n k n K K k N 1 N , ( k 0,1,2, , n).
0.0016 0.0010 0.0009 0.0006
N
S
0.0706
0.0634
C
F
0.0268
0.0256
B
V
0.0156
0.0102
10/22
1.2
概率的定义及其确定方法
当 n 很大时,事件 A 的频率 f n ( A) 接近一个常数 ,即有

概率统计的课件(茆诗松)1-2

概率统计的课件(茆诗松)1-2

排列 从 n 个不同的元素中取出 r个 (不放
回地)按一定的次序排成一列,称为一个排列. 不同的排法共有
n! ( r n) P n(n 1)(n 2) L (n r 1) (n r )! n
r n
注: 全排列
Pn n !
可重复排列 从 n 个不同的元素中有放回地
取出 r 个排成一列, 不同的排法有 n 种.
(1)A=“某指定的 n 个盒子中各有一球”; (2)B=“恰有 n 个盒子中各有一球”; (3)C=“至少有两个球在同一盒子中”.
n! P( A) n ; N
C n! N! P( B) n n N N ( N n)!
n n N
n N
N C n! P(C ) 1 P( B) n N
m1 m2 f n ( A B) f n ( A) f n ( B ) n
注: 1. 频率稳定于概率, 但不能说成
“频率的极限是概率” 2. 当试验次数较大时有
事件发生 的概 率

事件发生 的频 率
对本定义的评价 缺点:粗糙 不便 优点:直观 模糊 使用 易懂
三、概率的古典定义
练习 两船欲停同一码头但不能同时停泊, 两船在一昼夜内到达的时间是等可能的. 若两船到达后需在码头停留的时间分别是 1 小时与 2 小 时,试求在一昼夜内,任一 船到达时,不需 要等待空出码头的概率. (P31)
例9(蒲丰投针)平面上 有间隔为a(a>0) 的等距平行线,向平面任意投掷一枚长 为l (l<a)的针,求针与任一平行线相交的 概率.(P24)
m min(n, M ).
例5 (有放回抽样) :设N件产品中有M 件
是次品,N-M 件是正品。现从N件中随机地 有放回地抽取n件产品。求:事件Bm ={所 取的n件产品中恰有m 件次品}的概 率.(P20)

茆诗松概率论与数理统计教程课件第一章 (2)

茆诗松概率论与数理统计教程课件第一章 (2)
上表所列的答案是出乎很多人意料的, 因为”一个 班级至少有两个人生日相同”的概率, 并不如大多 数人直觉中想象的那样小, 而是相当大. 这个例子告 诉我们, “直觉”有时并不可靠, 这就说明研究随机 现象统计规律的重要性.
4. 求概率的几何方法
例四. 设有N件产品,其中D件次品,从中任取n件,求 其中恰有k(k≤D)件次品的概率.
解 : 样本空间就是从 N个产品中取 n件的不同 方式, 样本点数就是方式数
n CN
所求事件是 n个产品中有 k件次品 , 这个事件可以 通过两个步骤完成 :
k (1)从D件次品里取 k件, 方式数为 C D
n k (2)从N D个正品中取 n k件, 方式数为C N D
概率的定义并没有告诉人们如何去求概率, 也没有 说一个特定的样本空间对应一个特定的概率, 只 是告诉人们以任何方式定义的概率必须满足的条 件.
概率的求法, 根据问题的特点, 分别采取以下 的不同途径进行:
• 频率方法
• 古典方法
• 几何方法
2. 求概率的频率方法
事实上, 人们很早就开始了这方面的思考. 例如, “频 率”早就被引入来描述事件发生的频繁程度. 为了研究女婴出生的可能性, 统计学家克 拉梅(1893-1985) 利用瑞典1935年的官 方资料, 测得女婴出生的频率在0.482左 右摆动, 从而得出女婴出生的概率为 0.482.
分房模型在统计物理学里也有应用. 在那里将本例 中的“人”理解成“粒子”, “房间”理解成不同 的“能级”.
例七.(生日问题) 某班级有n个人 (n≤365), 问至少 有两个人的生日在同一天的概率有多大? 解: 假定一年按365天计算, 把365天当作365个“房间”,
那么问题类比于例五. 这时, 事件“n个人生日全不相同”就相当于例五中 的(2):“恰有n个房间, 其中各住一人”. 令A={n个人中至少有两个人的生日在同一天}, 则其 对立事件是{n个人的生日全不相同}. 根据例五(2)知

概率论与数理统计课件第1章

概率论与数理统计课件第1章

第1章随机事件与概率概率论与数理统计是研究随机现象规律性的学科.概率论侧重于对随机现象出现的可能性大小做出数量上的描述,形成一整套数学理论和方法;数理统计是以概率论为基础研究收集数据、分析数据并据以对所研究的问题作出一定结论的科学和艺术.概率论与数理统计是既有理论基础又有应用潜力的学科,其理论与方法已广泛应用于林业、农业、工程、社会学、经济学等领域中,还在不断向新兴学科渗透并相互促进发展.§1.1 随机现象及其统计规律性客观世界的各种现象大体可分为两类:一类称为决定性现象,即在一定的条件下,只出现一个结果.例如,在标准大气压下,水升温至100摄氏度时沸腾;每天清晨,太阳总从东方升起;向空中抛一物体必然下落等.另一类称为非决定性现象,即在一定的条件下,并不总是出现相同结果,在概率论中称为随机现象. 比如,播种一粒银杏种子,可能发芽可能不发芽;掷一颗骰子,可能出现1至6点等.该类现象有以下两个特点:①结果不止一个;②人们事先不能确定出现的结果.随机现象是概率论与数理统计的研究对象.1.1.1 随机试验对随机现象进行的试验和观察称为随机试验.例1.1随机现象的例子(1)播种一粒银杏种子,观察银杏种子发芽;(2)掷一颗骰子,观察出现的点数;(3)单位时间内,某手机被呼叫的次数;(4)某种型号冰箱的使用寿命;(5)测量课本的长度,观测其误差.在一定条件下,对自然与社会现象进行的观察或实验称为试验.在概率论中,将满足下述条件的试验称为随机试验:(1)试验在相同条件下是可以重复进行的;(2)试验的结果不至一个,但全部可能结果事先是知道的;(3)每一次试验都会出现上述全部可能结果中的某一个结果,至于是哪一个结果则事先无法预知.1.1.2随机现象的统计规律性对一个随机试验来说,每次试验结果具有不确定性,规律性不强,但大量重复性试验的结果就存在一定的规律性.例如,若抛掷一枚均匀硬币,一次抛掷,出现正面还是出现反面很难确定,但重复大量次抛掷,出现正面次数占抛掷总次数的1/2. 历史上有许多科学家做过抛掷硬币的试验. 抛掷均匀硬币,其结果见表1—1.表1—1 历史上抛掷硬币试验可以看出,试验中出现正面次数与抛硬币次数的比值,当试验次数较小时,随机波动较大;当试验次数较大时,随机波动较小. 随着试验次数的增大, 出现正面次数与抛硬币次数的比值逐渐稳定于固定值0.5,出现很强的规律性.随机现象在大量次试验中所呈现出的规律性,称为随机现象的统计规律性.由于概率论和数理统计所研究的试验都是随机试验,所以随机试验简称为试验.§1.2 随机事件及其关系1.2.1样本空间与随机事件1. 样本空间随机现象一切可能的基本结果组成的集合称为样本空间,用}{ω=Ω表示,其中ω表示基本结果,又称为样本点.例1.2 给出例1.1中随机现象的样本空间:(1) 播种一粒银杏种子的样本空间:},{211ωω=Ω,其中1ω表示银杏种子发芽,2ω表示银杏种子不发芽.(2) 掷一颗骰子的样本空间:},,,{6212ωωω =Ω,其中i ω表示出现i 点,6,,2,1 =i .也可更直接地记此样本空间为:}6,,2,1{2 =Ω.(3) 单位时间内某手机被呼叫的次数的样本空间:},2,1,0{3 =Ω.(4)某种型号冰箱使用寿命的样本空间:}0{4≥=Ωt t .(5) 测量课本的长度,测量误差的样本空间:}{5+∞<<∞-=Ωx x .2. 随机事件随机现象的某些样本点组成的集合称为随机事件,简称事件,一般用大写字母,,,A B C 表示.例如,掷一颗骰子,=A “出现奇数点”是一个事件,即}5,3,1{=A .关于事件的定义,有以下几个说明.(1)任一事件A 是样本空间Ω的子集.在概率论中我们可用维恩(Venn )图表示(见图1—1).(2)当A 中某个样本点出现了,就说事件A 发生了.(3)事件既可以用语言描述,也可以用集合表示.(4)由样本空间Ω中的单个元素组成的子集称为基本事件.样本空间的最大子集,即其本身称为必然事件,记作Ω.样本空间的子集之一,空集称为不可能事件,记作φ.例1.3 掷一颗骰子的样本空间为:}6,,2,1{ =Ω.事件=A “出现2点”,即}2{=A ,它是一个基本事件.事件=B “出现的点数不超过6”,即Ω==}6,5,4,3,2,1{B ,它就是必然事件.事件=C “出现的点数小于1”,即φ=C ,它就是不可能事件.1.2.2 事件的关系及运算假设以下讨论是在同一个样本空间Ω中进行的.1.事件间的关系图1—11)包含关系如果A 中的样本点都是B 中的样本点,则称A 包含于B (见图1—2),或称B 包含A ,也称A 为B 的子事件,记为B A ⊂或A B ⊃.用概率论语言描述为:事件A 发生必然导致事件B 发生.例如,冰箱的使用寿命T 超过30000h ,记为事件}30000{>=T A ,使用寿命T 超过35000h ,记为事件}35000{>=T B ,则B A ⊃.对任一事件A ,必有Ω⊂⊂A φ.2)相等关系如果事件A 与事件B 满足:A 中的样本点都是B 中的样本点,同时B 中的样本点又都是A 中的样本点,即B A ⊂且A B ⊂,则称事件A 与事件B 相等,记为B A =.例如,抛掷两颗骰子,记事件A =“两颗骰子的点数之和为奇数”,事件B =“两颗骰子的点数为一奇一偶”,显然,B A =.3)互不相容关系如果A 与B 没有相同的样本点(见图1—3),则称A 与B 互不相容.用概率论语言描述为:事件A 与事件B 不能同时发生.例如,掷一颗骰子,事件=A “出现偶数点”,B =“出现奇数点”,显然A 与B 互不相容.例1.4 掷一颗骰子的样本空间为:}6,,2,1{ =Ω.图1—3图1—2事件=A “出现2点”,即}2{=A ,=B “出现偶数点”,即}6,4,2{=B ,显然B A ⊂;=C “出现非奇数点”,即}6,4,2{=C ,显然C B =;=D “出现奇数点”,即}5,3,1{=C ,显然C ,,与B A D 都互不相容.2.事件间的运算事件的运算与集合的运算类似,有和、积、差等运算.(1)事件A 与B 的和,记为B A .其含义为“由事件A 与B 中所有样本点组成的新事件”(见图1—4).用概率论语言描述为:事件A 与B 中至少有一个发生.事件的和运算可推广至有限个或可列个的情形: n i i A 1=或∞=1i i A . (2)事件A 与B 的积,记为B A 或简记为AB .其含义为“由事件A 与B 中公共的样本点组成的新事件”(见图1—5) .用概率论语言描述为:事件A 与B同时发生.事件的积运算可推广至有限个或可列个的情形: n i i A 1=或 ∞=1i i A .(3)事件A 与B 的差,记为B A -.其含义为“由事件A 中而不在B 中的样本点组成的新事件”(见图1—6).用概率论语言描述为:事件A 发生而B 不发生.图1—4图1—5(4)对立事件事件A 的对立事件,记为A ,即“由在Ω中而不在A 中的样本点组成的新事件”(见图1—7). 用概率论语言描述:A 不发生,即A A -Ω=.注意 (1)A A =,φ=Ω,Ω=φ.(2)A 与B 为对立事件的充分必要条件是φ=B A ,且Ω=B A . 例1.5 掷一颗骰子的样本空间为}6,,2,1{ =Ω.设}4,2,1{=A , }5,4,1{=B . 则=B A }5,4,2,1{;}4,1{=B A ;}2{=-B A ;}6,5,3{=A .例1.6 设C B A ,,是某个随机现象的三个事件,则(1) “A 发生,C B ,都不发生”的事件可表示为:C B A C B A --=;(2) “B A ,都发生,C 不发生”的事件可表示为:C AB C AB -=;(3) “C B A ,,都发生”的事件可表示为:ABC ;(4) “C B A ,,中至少有一个出现”的事件可表示为:C B A C B A = .图1—6(1)图1—6(2)图1—73.事件的运算性质(1)交换律A B B A =,BA AB =.(2)结合律)()(C B A C B A =,)()(BC A C AB =.(3)分配律BC AC C B A =)(,)()()(C B C A C B A =.(4)对偶律(德莫根公式)B A B A = ,B A AB =. 对偶律可推广至有限个及可列个的情形: n i i n i i A A 11===, ni i n i i A A 11===, ∞=∞==11i i i i A A , ∞=∞==11i i i i A A .§1.3 事件的概率及其性质1.2.1 概率的定义1.概率的频率定义定义1.1 设在n 次随机试验中,事件A 出现的次数为)(A n ,这里的)(A n 也称为事件A 出现的频数.称事件A 出现的频数与随机试验总数之比,即nA n A f n )()(= 为事件A 出现的频率.容易验证频率满足:(1)非负性 0)(≥A f n ;(2)规范性 1)(=Ωn f ;(3)有限可加性 若m A A A ,21 ,,,两两互不相容,则)()(11i mi n m i i n A f A f ∑=== .随机现象的统计规律性表明:随着试验重复次数n 的增加,事件A 出现的频率)(A f n 会稳定在某一常数p 附近,即频率的稳定值,这个频率的稳定值就是事件A 发生的概率,因此我们可以用事件A 频率来定义事件A 的概率,即)()(A f A P n ≈(n 足够大).下面用例子进一步说明频率的稳定性.例1.7 考虑某树种发芽率试验. 从一大批树种中随机抽取7批树种做发芽试验,其结果见表1—2.表1—2 树种发芽试验的频率表可以看出,树种发芽的频率也具有随机波动性.当树种粒数较小时,随机波动较大;当树种粒数较大时,随机波动较小.最后,随着树种粒数的增大,发芽率逐渐稳定于固定值0.9. 用概率频率的定义可以描述为:该树种发芽的概率为0.9.2.概率的古典定义古典概型满足:(1)样本空间Ω中只有有限个样本点,即},,,{21n ωωω =Ω;(2)每个样本点发生可能性相等,即nP P P n 1)()()(21====ωωω , 若事件A 含有k 个样本点,则事件A 的概率为nk A A P =Ω=中所有样本点的个数所含样本点的个数事件)(. 例1.8 掷两枚硬币,记事件=A “一个正面朝上,一个反面朝上”, =B “两个正面朝上”, =C “至少一个正面朝上”,求)(A P ,)(B P ,)(C P .解 此试验的样本空间为=Ω{(正,正),(正,反),(反,正),(反,反)},即样本空间为Ω有4个样本点.由于=A {(正,反),(反,正)},即A 含有2个样本点,所以21)(=A P ;由于=B {(正,正)},即B 含有1个样本点,所以41)(=B P ;由于=C {(正,正),(正,反),(反,正)},即C 含有3个样本点,所以43)(=C P .例1.9 设有两种树苗栽成一排,每种树苗都是4棵,为了美观,树苗必须交叉排列栽植,求其栽植概率.解 利用排列组合知识,有351!8!4!412=⋅⋅=A P .例1.10 今年有12名同学进行暑期社会实践,其中有3名同学是女生,现将它们随机地平均分配到三个小组中去,问: ⑴每个小组都分配到一名女同学的概率是多少? ⑵3名女同学分配在同一小组的概率是多少? 解 12同学平均分配到三个小组中的分法总数为 !4!4!4!124448412=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.⑴ 每个小组分配到一名女同学的分法有!3. 对应每种分法,其余9名同学平均分配到三个小组的分法共有!3!3!3!9333639=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛,故所求的概率为 5516!4!4!4!12!3!3!3!9!31==P . ⑵ 将3名女同学分配在同一小组的分法有3种,对应每种分法,其余9名同学的分法共有!4!4!1!9444819=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛,故所求的概率是 553!4!4!4!12!4!4!1!932=⋅=P . 例1.11 设袋中有白球a 只,黑球b 只.每次从中任取一只,取后放回袋中,共取n 次,试求=k A “n 次取球中有k 次取到白球”的概率.解 利用排列组合知识,有kn k k b a b b a a k n A P -++⎪⎪⎭⎫ ⎝⎛=)()()(,n k ,,1,0 =.若记p ba a=+,则 kn k k p p k n A P --⎪⎪⎭⎫ ⎝⎛=)1()(,n k ,,1,0 =.例1.12 设有n 个球,每个球都等可能地被放到N 个不同盒子中的任一个,每个盒子所放球数不限.试求(1)指定的)(N n n ≤个盒子中各有一球的概率1p ; (2)恰好有)(N n n ≤个盒子中各有一球的概率2p . 解 利用排列组合知识,有 (1) nN n p !1=; (2) )!(!!2n N N N N n n N p nn -=⎪⎪⎭⎫ ⎝⎛=. 例1.13 n 个人生日全不相同的概率是n p 多少?解 把n 个人看成是n 球,将一年365天看成是N =365个盒子,则“n 个人生日全不相同”就相当于“恰好有)(N n n ≤个盒子中各有一球”, 所以n 个人生日全不相同的概率为365!365(365)!n np n =-. 当60n =时,10.9922n p -=,表明在60个人的群体中至少有两个人生日相同的概率超过99%.3.概率的几何定义 几何概型满足:(1)样本空间Ω充满某个区域,其度量(长度、面积或体积等)大小可用ΩS 表示;(2)任意一点落在度量相同的 子区域内是等可能的,与子区域的形 状及子区域在Ω中位置无关,若事件 A 为Ω中的某个子区域(见图1—8), 图 ? 1 — 8其度量大小可用A S 表示,则事件A 的概率为Ω=S S A P A)(. 例1.14 甲、乙两人约定上午8点到9点之间在茶馆会面,并约定先到者应等候另一人20分钟,过时即可离去.求两人会面的概率.解 以x 和y 分别表示甲、乙两人到达 约会地点的时间,则两人能够会面的充要 条件为20≤-y x . 在平面上建立直角坐标 系,如图1—9,则95604060222=-==ΩS S P A .4.概率的公理化定义定义1.2 设Ω为一个样本空间,对Ω中的任一随机事件A ,定义一个实数值)(A P 满足:(1)非负性 0)(≥A P ; (2)规范性 1)(=ΩP ;(3)可列可加性 若 ,,21A A ,两两互不相容,有 ∑∞=∞==11)(i i i i A P A P )( ,则称)(A P 为事件A 的概率.由概率的公理化定义知,概率是事件(集合)的映射,当这个映射能满足上述公理的三条,就被称为概率.1.3.2 概率的性质 性质1 0)(=φP._ 图 1 — 9_x因为1)(=ΩP ,则0)(1)(=Ω-=P P φ.性质2 (有限可加性)若有限个事件n A A A ,21 ,,互不相容,则 ∑===ni i n i i A P A P 11)()( . 性质3 对任一事件A 有 )(1)(A P A P -=.例1.15 设袋中有5只白球,7只黑球.从中任取3只,求至少取到1只白球的概率.解 记=A “取出的3只中至少有1只白球”,则A 包括三种情况:取到白球1只黑球2只,或取到白球2只黑球1只,或取到白球3只黑球0只, 如此计算较为复杂.而A 只包括一种情况,即“取到的3只全是黑球”,从而159.044731237)(==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=A P , 所以841.04437)(1)(==-=A P A P . 性质4 若B A ⊃,则)()()(B P A P B A P -=-.证明 因为B A ⊃,所以)(B A B A -= ,且B A -与B 互不相容,则 )()()(B A P B P A P -+=, 即)()()(B P A P B A P -=-.推论(单调性)若B A ⊃,则)()(B P A P ≥.性质5 对任意两个事件B A ,,有)()()(AB P A P B A P -=-. 例16 从1,2,…,100中任取一数,求它能被2整除但不能被3整除的概率.解 记=A “取到的数能被2整除”,=B “取到的数能被3整除”,AB =“取到的数能被2和3整除”,则 “能被2整除但不能被3整除”的事件可表示为B A -.由性质5,有)()()(AB P A P B A P -=-50171001610050=-=. 性质6(加法公式)对任意两个事件B A ,,有)()()()(AB P B P A P B A P -+= .对任意n 个事件n A A A ,21 ,,,有 ∑∑∑≤<<≤≤<≤==+-=nk j i kjinj i jini i n i i A A A P A A P A P A P 1111)()()()()()1(211n n A A A P --++. 推论(半可加性) 对任意两个事件B A ,,有)()()(B P A P B A P +≤ . 例17 从1~1000中随机取一整数,问取到的整数能被4或6整除的概率是多少?解 设A 为“取到的整数能被4整除”,B 为“取到的整数能被6整除”,则所求概率为)()()()(AB P B P A P B A P -+= 由于25041000=,16761000166<<,8412100083<<, 则 1000250)(=A P ,1000166)(=B P ,100083)(=AB P ,所以 )()()()(AB P B P A P B A P -+=100033310008310001661000250=-+=.例18已知41)()()(===C P B P A P ,12/1)()(==BC P AB P ,0)(=AC P .则C B A ,,中至少有一个发生概率是多少?C B A ,,都不发生概率是多少?解 因为0)(=AC P ,AC ABC ⊂,所以由概率的单调性知0)(=ABC P .再由加法公式,得C B A ,,中至少有一个发生概率为)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=12712243=-=. C B A ,,都不发生概率是)(1)(C B A P C B A P -==125. 1.4 条件概率和乘法公式在实际问题中,除了要考虑某事件A 的概率外,有时还需要考虑在“事件B 已经发生”的条件下,某事件A 发生的概率.一般情况下,前后两者的概率不同.为了有所区别,常称后者的概率为条件概率,记为)(B A P 或)(A P B ,读作“在事件B 发生的条件下,事件A 发生的条件概率”.1.4.1 条件概率例1.19 从标有号为1,2,3,4,5,6的6个同型同质的球中等可能地任取一球,事件A =“取得标号为4”,事件B =“取得标号为偶数”,求“在取得标号为偶数条件下,取得标号为4”的概率.解 由于6个球中有3个标号为偶数,按古典概型计算,得31)(=B A P ,而61)(=A P ,由此可见)()(A P B A P ≠.还可以得到“很巧合”的结论,可以计算得61)(=AB P ,21)(=B P ,从而,)()(21/6131)(B P AB P B A P ===. 受此启发,可以给出条件概率的定义.定义1.3 设B A ,是两个随机事件,且0)(>A P ,称 )()()(A P AB P A B P =为在事件A 发生条件下事件B 发生的条件概率.不难验证,条件概率)(A P ⋅满足概率定义中的三条公理,即 (1)非负性 对于任一事件B ,有0)(≥A B P ; (2)规范性 1)(=ΩA P ;(3)可列可加性 若 ,,21B B ,两两互不相容,则∑∞=∞==11)(i i i i A B P A B P )( .因为条件概率符合上述三则公理,所以关于概率的一些重要结果都适用于条件概率.例如,)(1)(A B P A B P -=;对于任意事件21,B B ,有)()()()(212121A B B P A B P A B P A B B P -+= .例1.20 某种动物出生后活到20岁的概率为0.8,活到30岁的概率为0.72,求现年为20岁的这种动物活到30岁的概率.解 记A =“动物出生后活到20岁”,B =“动物出生后活到30岁”,则)(A P =0.7,)()(AB P B P ==0.72,由条件概率计算公式,得9.08.072.0)()()()()(====A PB P A P AB P A B P . 例1.21 掷两颗骰子,已知有一个出现6点,求点数之和不小于9的概率.解 方法一 该试验的样本空间为)}6,6(,),2,6(),1,6(,),6,1(,),2,1(),1,1{( =Ω 共36个样本点.记=A “至少有一个6点”,则)}6,6(),5,6(),6,5(),,4,6(),6,4(),3,6(),6,3(),2,6(),6,2(),1,6(),6,1{(=A ,含有11个样本点;记=B “点数之和不小于9”,则)}6,6(),5,6(),6,5(),5,5(),4,6(),6,4(),4,5(),5,4(),3,6(),6,3{(=B ,含有10个样本点. 而)}6,6(),5,6(),6,5(),4,6(),6,4(),3,6(),6,3{(=AB ,含有7个样本点.由条件概率计算公式,得1173611367)()()(===A P AB P A B P . 方法二 可先将样本空间缩小为)}6,6(),5,6(),6,5(),,4,6(),6,4(),3,6(),6,3(),2,6(),6,2(),1,6(),6,1{(=ΩA ,共有11个样本点.样本空间A Ω中,事件A B )}6,6(),5,6(),6,5(),4,6(),6,4(),3,6(),6,3{(=,含有7个样本点,直接计算得117)(=A B P .1.4.2 乘法公式 (1)若0)(>A P ,则)()()(A B P A P AB P =. (2)若0)(121>-n A A A P ,则)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P .例1.22 某单位100人进行年欢游戏活动,共有1号,2号,…,100号共100支签, 其中有10支中奖签,依次轮流进行抽签,求恰好第三人抽中奖签的概率.解 记=i A “第i 人抽中奖签”,100,,2,1 =i .则所求概率为)()()()(213121321A A A P A A P A P A A A P ==083.09810998910090≈⨯⨯. 1.5 全概率公式和贝叶斯公式1.5.1 全概率公式设n B B B ,,,21 是样本空间Ω的事件,满足: (1)n B B B ,,,21 互不相容; (2) ni i B 2=Ω=;(3)n i B P i ,,2,1,0)( =>则称n B B B ,,,21 是样本空间Ω的一个完备事件组.如果n B B B ,,,21 是样本空间Ω的一个完备事件组,则对样本空间Ω的任一事件A ,有)()()(1i ni i B A P B P A P ∑==.这就是全概率公式. 证明 因为)()(11ni i n i i AB B A A A ====Ω=,且n AB AB AB ,,,21 互不相容,则由可加性可得)())(()(11i ni ni i AB P AB P A P ∑==== ,再将)()()(i i i B A P B P AB P =,n i ,,2,1 =,代入式(1.21)即得)()()(1i ni i B A P B P A P ∑==.关于全概率公式的几点说明:(1)全概率公式的最简单的形式,若1)(0<<B P ,则)()()()()(B A P B P B A P B P A P +=; (2)条件n B B B ,,,21 为样本空间Ω的一个完备事件组,可改成n B B B ,,,21 互不相容,且 ni i A B 2=⊃,)()()(1i ni i B A P B P A P ∑==仍成立.1.5.2 贝叶斯公式设n B B B ,,,21 是样本空间Ω的一个完备事件组,如果0)(>A P ,则)()()()()(1jnj ji i i B A P B P B A P B P A B P ∑==,n i ,,2,1 =.例1.23 设某县有A 、B 、C 、D 、E 共5个片区种植杨树,各个片区种植面积分别占总面积的15%,20%,25%,30%,10%,各个片区杨树中“79杨”的百分比分别为80%,70%,60%,75%,90%,如从该县杨树中任抽取一颗,求:(1)任取一颗为“79杨”的概率;(2)若取到的是“79杨”,求它依次是A 、E 片区种植的概率. 解 记事件Y =“取到“79杨””.(1)由全概率公式,有)()()()()()()()()()()(E Y p E p D Y p D p YC p C p B Y P B p A Y p A p Y p ++++= =90.010.075.030.060.025.070.020.080.015.0⨯+⨯+⨯+⨯+⨯=0.725.(2)由贝叶斯公式,有()2912725.080.015.0)()()(=⨯==Y p A Y p A p Y A p , ()14518725.090.010.0)()()(=⨯==Y p E Y p E p Y E p .1.6 事件的独立性与伯努利概型1.6.1事件的独立性1.两个事件的独立性两个事件之间的独立性是指:一个事件的发生不影响另一个事件的发生.例如,在掷两枚硬币的试验中,记事件=A “第一枚硬币出现正面”,记事件=B “第二枚硬币出现正面”.显然A 与B 的发生是相互不影响的.从概率的角度看,如果事件B 的发生不影响事件A 的发生,即)()(A P B A P =,由此又可推出)()(B P A B P =,即事件A 的发生也不影响事件B 的发生.可见独立性是相互的,它们等价于)()()(B P A P AB P =.另外,对于0)(=B P ,或0)(=A P ,式(1.24)仍然成立.由此,我们给出两个事件相互独立的定义.定义1.4 如果)()()(B P A P AB P =成立,则称事件A 与B 相互独立,简称A 与B 独立.否则称A 与B 不独立或相依.性质1 若事件A 与B 独立,则A 与B 独立;A 与B 独立;A 与B 独立.证明 这里只证事件A 与B 独立,其余类似.因为B A AB A =从而)()()(B A P AB P A P +=由此得 )()()](1)[()()()()()()(B P A P B P A P B P A P A P AB P A P B A P =-=-=-=所以事件A 与B 独立.2.多个事件的相互独立性定义1.5 设C B A ,,是3个事件,如果有⎪⎩⎪⎨⎧===)()()()()()()()()(C P A P AC P C P B P BC P B P A P AB P , 则称C B A ,,两两独立.若还有)()()()(C P B P A P ABC P =,则称C B A ,,相互独立.进一步地,给出3个以上事件的相互独立性.定义1.6 设有个n 事件n A A A ,,,21 ,若)(21k i i i A A A P )()()(21k i i i A P A P A P = )1(n i k ≤≤成立,则称n 事件n A A A ,,,21 相互独立.性质2 n 个相互独立的事件中,任意一部分与另一部分独立.性质3 将n 个相互独立的事件中的任一部分换为对立事件,所得的诸事件仍为相互独立的.例1.24 设三事件C B A ,,相互独立,试证B A -与C 相互独立. 证明 因为)()()()())(())((C P B P A P C B A P C B A P C B A P ===-)()()()(C P B A P C P B A P -==.可以推得:B A 与C 独立;AB 与C 独立.例1.25 甲、乙两射手彼此独立地向同一目标射击,甲射中目标的概率为0.8,乙射中目标的概率为0.9,求目标被击中的概率.解 记=A “甲射中目标”,=B “乙射中目标”,则“目标被击中”B A =,故)()()()()(B P A P B P A P B A P -+==98.09.08.09.08.0=⨯-+.1.6.2 伯努利概型将随机试验E 重复进行n 次,各次试验的结果互不影响,即每次试验结果出现的概率都不依赖于其它各次试验的结果,这样的试验称为n 重独立试验.特别地,若在n 重独立试验中,每次试验的结果只有两个:A 与A ,且q A P p A P ==)(,)( )1,10(=+<<q p p ,则这样的试验称为伯努利(Bernoulli )试验或伯努利概型.对于伯努利概型,我们需要计算事件A 在n 次独立试验中恰好发生k 次的概率.性质4 在伯努利概型中,设事件A 在各次试验中发生的概率)10()(<<=p p A P ,则在n 次独立试验中恰好发生k 次的概率k n k n k n qp k P -=)()(, 其中n k q p ,,2,1,0,1 ==+.证明 设事件i A 表示“事件A 在第i 次试验中发生”,则有),,2,1(1)(,)(n i q p A P p A P i i ==-== .因为各次试验是相互独立的,所以事件n A A A ,,,21 是相互独立的.由此可见,n 次独立试验中事件A 在指定的k 次(如在前面k 次)试验中发生而在其余k n -次试验中不发生的概率)()()()()(1111n k k n k k A P A P A P A P A A A A P ++=k n k k n n q p q q p p --=⋅=个个)( 由于事件A 在n 次独立试验中恰好发生k 次共有⎪⎪⎭⎫ ⎝⎛k n 种不同的方式,每一种方式对应一个事件,易知这⎪⎪⎭⎫ ⎝⎛k n 个事件是互不相容的,所以根据概率的可加性得k n k n q p k n k P -⎪⎪⎭⎫⎝⎛=)( ,n k ,,2,1,0 =. 由于上式右端正好是二项式n q p )(+的展开式中的第1+k 项,所以通常把这个公式称为二项概率公式.例1.26 某种植物移栽成活率为0.8,现移栽10颗,求有8颗成活的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通过对各种概率问题的深入研究, 抽象出概 率的一般特征(这种研究方法常称为弱抽象), 伟大的数学家, 现代概率论奠基者, 柯尔莫哥 洛夫(Kolmogorov)提出了概率的公理化的定 义, 引领了现代概率论的发展.
概率的公理化定义 (或称柯尔莫哥洛夫公理):
设Ω 为样本空间, F 为Ω 上的一个事件域. 如果对 任一事件A∈F , 定义在F 上的实值函数P(A)满足
概率的定义并没有告诉人们如何去求概率, 也没有 说一个特定的样本空间对应一个特定的概率, 只 是告诉人们以任何方式定义的概率必须满足的条 件.
概率的求法, 根据问题的特点, 分别采取以下 的不同途径进行:
• 频率方法
• 古典方法
• 几何方法
2. 求概率的频率方法
事实上, 人们很早就开始了这方面的思考. 例如, “频 率”早就被引入来描述事件发生的频繁程度. 为了研究女婴出生的可能性, 统计学家克 拉梅(1893-1985) 利用瑞典1935年的官 方资料, 测得女婴出生的频率在0.482左 右摆动, 从而得出女婴出生的概率为 0.482.
例如, 研究女婴出生的概率, 瑞典人通过大 量观察, 测得女婴出生的频率在0.482左右 波动, 得出女婴出生的概率约为0.482.
再如, 掷两颗骰子获得双6的概率, 通过简 单理论推算知道, 其严格等于1/36.
所以, 概率研究的情形很多, 也对概率给出一个一般性的 定义, 使得这些特殊的计算方法 得出的概率均符合这个一般性的 定义???
(1)非负性: 对于任意 A F , P(A) 0
(2)正则性: P(Ω) 1
( 3)可 列 可 加 性 : 若A1 , A 2 ,, An ,互 不 相 容 ,有 P
A
i 1 i
i 1
P(Ai )
则称P(A)为事件A的概率, 称(Ω ,F ,P)为概率空间.
频率(Frequency)的定义:
设随机事件A在n次试验中出现nA次, 则事件A 在n次试验中发生的频率为
nA f n ( A) n
易知, 随机事件的频率具有以下性质:
频率的性质:
(1)对任意事件 A, 0 f n ( A) 1
(2)对必然事件 S, fn ( S ) 1
(3)若A1 ,, Ak 是k个互不相容事件 ,则 f n ( A1 A2 Ak ) f n ( A1 ) f n ( A2 ) f n ( Ak )
第二节 概率的定义及其确定方法
1. 概率的定义 2. 求概率的频率方法
3. 求概率的古典方法
4. 求概率的几何方法
1. 概率的定义
事件的概率, 通俗地讲, 是指该事件发生可能性大 小地度量. 在历史上, 由于随机试验及随机事件的类型很多, 人们也就从不同侧面用不同方式研究了如何度 量事件发生的可能性.
统计学家克拉梅(1893-1985)用瑞典1935 年地官方资料(见下表), 发现女婴出生频 率总是在0.482左右波动.
例二(被闪电击中概率的研究).
如何求一个人在某年中被 闪电击中的概率?
中国1.1×109人中, 在2005年被闪电击中 的人数为3300人, 通过概率的频率方法 我们知道, 某人被闪电击中的概率为
n= 50 ƒn(H) 0.44 0.50 0.42 0.50 0.48 0.42 0.36 0.48 0.54 0.62
n=500 nH 251 249 256 253 251 246 244 258 262 247 ƒn(H) 0.502 0.498 0.512 0.506 0.502 0.492 0.488 0.516 0.524 0.494
容易验证, 通过频率法定义的概率满足概 率的公理化定义, 实际上, 我们只要验证 频率满足那三条性质.
求概率的频率方法的最大优势在于它让我 们能够求得通过理论方法无法求得的概 率. 现在我们来看两个例子:
例一(女婴出生率的研究).
拉普拉斯在18世纪末对伦敦, 彼得堡, 柏林 和法国的众多统计资料进行研究, 发现这 些国家的女婴出生率都稳定地接近于 0.488.
为了证明这种说法, 我们考虑“抛硬币”的试 验: 将一枚硬币抛5次,50次,500次各做10遍, 得到的数据如下表.
试验序 号 1 2 3 4 5 6 7 8 9 10
n= 5 nH 2 3 1 5 1 2 4 2 3 3 ƒn(H) 0.4 0.6 0.2 1.0 0.2 0.4 0.8 0.4 0.6 0.6 nH 22 25 21 25 24 21 18 24 27 31
fn(H) 0.5181 0.5069 0.5016 0.5003
这种大量重复试验中事件出现的频率的稳定性表明, 随机事件发生的可能性大小是随机事件本身所固 有的客观属性, 我们用这个频率的稳定值来表示 事件发生的可能性大小是合理的, 这就是概率的 频率化定义.
概率的频率化定义:
当与随机事件有A关的随机试验可大量重复进行时, 如进行n次. 当n很大时, 事件A出现的频率 fn(A)=nA/n 将稳定地在某一数值p附近摆动, 且一般 随试验次数n的增大, 摆动的幅度也越来越小, 则称 该数值p为事件A发生的概率, 记为P(A)=p
从上表也可以看出一些好消息, 在n较大时, 事件的频率表现 出一定的稳定性: 即随着n的增大, fn(A)越来越趋近于一个 常数. 历史上许多人投掷硬币实验的结果也证实了这点.
实验者
德摩根
蒲丰 卡.皮尔逊 卡.皮尔逊
n 2048 4040 12000 24000
nH 1061 2048 6019 12012
直觉告诉我们, 事件的频率应能在一定程度上反映 事件发生的可能性大小. 因为如果事件发生的可 能性大, 它在n次试验中出现的机会也多, 事件发 生的频率就大些.
但是, 频率也有明显的缺陷: 随机事件的频率fn(A) 随着试验总次数n的不同而不同, 这种波动性在n 较小时较为明显, 这就为频率作为一个潜在的衡 量事件发生可能性的指标蒙上了阴影.
相关文档
最新文档