2黔西南州2015年初中毕业统一考试试卷(数学)doc

合集下载

2015年黔西南州中考数学试卷鲁打中学模版

2015年黔西南州中考数学试卷鲁打中学模版

密学校 班级姓名 学号密 封 线 内 不 得 答 题秘密★启用前黔西南州2015年初中毕业生学业暨升学模拟考试试卷(样卷)数 学考生注意:1.一律用黑色笔或2B 铅笔将答案填写或填涂在答题卷指定位置内。

2.本试卷共8页,满分150分,答题时间120分钟。

一、选择题(每小题4分,共40分)1. 5-的绝对值的相反数的负倒数是( )A .5B .15C .5-D .0.52.改革开放以来,我国国内生产总值由1978年的3645亿元增长到2008年的300670亿元。

将300670用科学记数法表示应为A.60.3006710⨯ B.53.006710⨯ C.43.006710⨯ D.430.06710⨯ 3.某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65这组数据的众数和中位数分别是( )A 59,63B 59,61C 59,59D 57,614.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )A .15B .25C .12 D .355.把3222x x y xy -+分解因式,结果正确的是( )A.()()x x y x y +-B.()222x x xy y -+C ()2x x y +D ()2x x y -6.下列命题正确的是( )A 、对角线相等的四边形是矩形B 、相邻的两个角都互补的四边形是平行四边形C 、平分弦的直径垂直于弦,并且平分弦所对的两条弧D 、三点确定一个圆7.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是( ).8.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++B .2(1)4y x =--+ C .2(1)2y x =--+ D .2(1)4y x =-++9.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ) A .15° B .30°C .45°D .60°10.在同一直角坐标系中,函数y=3x 与y=x1-图象大致是( )二、填空题(每小题3分,共30分)11.分解因式:a 2-2ab+b 2-1=__________。

贵州省黔东南州2015年中考数学真题试题(含扫描答案)

贵州省黔东南州2015年中考数学真题试题(含扫描答案)

中考衣食住用行衣:中考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。

穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。

食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。

如果可能的话,每天吃一两个水果,补充维生素。

另外,进考场前一定要少喝水!住:考前休息很重要。

好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。

考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。

用:出门考试之前,一定要检查文具包。

看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。

行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。

黔东南州2015年初中毕业升学统一考试试卷数学(本试题满分150分,考试时间120分钟)一.选择题(每小题4分,10个小题共40分)1.52-的倒数是( ) A.52 B.25 C.52- D.25-2.下列运算正确的是( )A.222)(b a b a -=-B.ab ab ab 23=-C.22)(a a a a =-D.2283=3.如图,直线a 、b 与直线c 、d 相交,已知∠1=∠2,,3=110°,则 ∠4=( )A.70°B.80°C.110°D.100°4.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是( )A.4,4B.3,4C.4,3D.3,35.设21,x x 是一元二次方程0322=--x x 的两根,则2221x x +=( )A.6B.8C.10D.126.如图,四边形ABCD 是菱形,AC=8,DB=6,DH⊥AB 于H ,则DH=( ) A.524 B.512 C.12 D.24 7.一个几何体的三视图如图所示,则该几何体的形状可能是( )8.若0<ab ,则正比例函数ax y =与反比例函数xby =在同一坐标系的大致图象可能是( )9.如图,在△ABO 中,AB⊥OB,OB=3,AB=1.将△ABO 绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标为( )A.)3,1(-B.)3,1(-或)3,1(-C.)3,1(--D.)3,1(--或)1,3(--10.如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,给出下列四个结论:①0=abc ;②0>++c b a ;③b a >;④042<-b ac .其中正确的结论有( )A.1个B.2个C.3个D.4个二.填空题(每小题4分,6个小题共24分) 11.=÷26a a _________.2341dcb aBACHDA BOxy23-=x Oyx12.将数据201 500 000用科学计数法表示为_________.13.如图,在四边形ABCD 中,AB//CD ,连接BD.请添加一个适当的条件_______________,使得△ABD≌△CDB.(只需写一个)14.如图,某渔船在海面上朝正东方向匀速航行,在A 处观测到灯塔M 在北偏东60°方向上,且AM=100海里.那么该船继续航行__________海里可使渔船到达离灯塔最近的位置.15.如图,AD 是☉O 的直径,弦BC⊥AD 于E ,AB=BC=12,则OC=_________.16.将全体正整数排成一个三角形数阵:根据上述排列规律,数阵中第10行从左到右的第5个数是________.三.解答题(8个小题,共86分)17.(本题共8分)计算|12|60sin 4)32015()31(01-︒+--+--18.(本题共8分)解不等式组⎪⎩⎪⎨⎧-≥->+22133)2(2x x x ,并将它的解集在数轴上表示出来.19.(本题共10分)先化简,后求值:)252(6332--+÷--m m m m m ,其中m 是方程0322=-+x x 的根.20.(本题共12分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数字为每次所得的数(若指针指在分界线时重转);当两次所得的数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时,返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果; (2)某顾客参加一次抽奖,能获得返还现金的概率是多少?21.(本题共12分)如图,已知PC 平分∠MPN,点O 是PC 上一点,PM 与☉O 相切于点E ,交PC 于A 、B 两点.(1)求证:PN 与☉O 相切; (2)如果∠MPC=30°,PE=32,求劣弧⌒BE 的长.DC BA 北东︒60AM22.(本题12分)如图,已知反比例函数xky =与一次函数b x y +=的图像在第一象限相交于点A (1,4+-k ). (1)试确定这两个函数的表达式;(2)求出这两个函数的另一个交点B 的坐标,并求出△AOB 的面积.23.(本题12分)今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,凯里某单位给该地区某中学捐献一批饮用水和蔬菜共120件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种型号的货车共8量,一次性将这批饮用水和蔬菜全部运往受灾地区某中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件.则凯里某单位安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元.凯里每某单位应选择哪种方案可使运费最少?最少运费是多少?24.(本题12分)如图,已知二次函数c x x y ++-=41321的图像与x 轴的一个交点为A (4,0),与y 轴的交点为B ,过A 、B 的直线为b kx y +=2.(1)求二次函数1y 的解析式及点B 的坐标;(2)由图像写出满足21y y <的自变量x 的取值范围;(3)在两坐标轴上是否存在点P ,使得△ABP 是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.。

2015年贵州省黔南州中考数学试题及解析

2015年贵州省黔南州中考数学试题及解析

2015年贵州省黔南州中考数学试卷一、单项选择题(共13小题,每小题4分,满分52分) 的倒数是2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对5.(4分)(2015•黔南州)如图所示,该几何体的左视图是( )B6.(4分)(2015•黔南州)如图,下列说法错误的是( )8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).17.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)22.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B 表示“去敬老院服务”;用C表示“法制宣传”)24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.2015年贵州省黔南州中考数学试卷参考答案与试题解析一、单项选择题(共13小题,每小题4分,满分52分)的倒数是的倒数是,2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对≈5.(4分)(2015•黔南州)如图所示,该几何体的左视图是()B6.(4分)(2015•黔南州)如图,下列说法错误的是()8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()+y=有意义,y=的自变量9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=,正确;10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的;两反面朝上的概率;一个正面朝上,另一个背面朝上=.11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.××﹣=.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm.AB=30cm16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8米(平面镜的厚度忽略不计).,根据相似三角形的性质可得=817.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).的圆心角的度数,然后利用弧长公式即可求解.的长是:=,故答案是:.18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为4.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为(2,0).,得.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.==+==,,=21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)i=:=10米,1022.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B 表示“去敬老院服务”;用C表示“法制宣传”)××的概率为:=.24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.BOD===,即=××﹣﹣.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.,x+88﹣(﹣(26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.x,且相似比为=落在抛物线上时,有﹣+t((负值舍去)2+28+4。

贵州黔南州中考数学试题及答案

贵州黔南州中考数学试题及答案

2015年贵州省黔南州中考数学试卷一、单项选择题共13小题,每小题4分,满分52分1. 4分 2015 黔南州下列说法错误的是A.﹣2的相反数是2B.3的倒数是C.﹣3 ﹣﹣5 =2D.﹣11,0,4这三个数中最小的数是02. 4分 2015 黔南州在“青春脉动唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为单位:分:9、8、9、7、8、9、7.这组数据的众数和平均数分别是A. 9、8 B. 9、7 C. 8、7 D.8、83. 4分 2015 黔南州下列各数表示正确的是A.6B.0.0158 用四舍五入法精确到0.001 =0.015C.1.804 用四舍五入法精确到十分位 =1.8D.0.0000257=2.57×10﹣44. 4分 2015 黔南州下列运算正确A. a a5=a5B.a7÷a5=a3C. 2a3=6a3D. 10ab3÷ ﹣5ab =﹣2b25. 4分 2015 黔南州如图所示,该几何体的左视图是A.B.C.D.6. 4分 2015 黔南州如图,下列说法错误的是A.若a∥b,b∥c, 则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c7. 4分 2015 黔南州下列说法正确的是A.为了检测一批电池使用时间的长短,应该采用全面调查的方法B.方差反映了一组数据的波动大小,方差越大,波动越大C.打开电视正在播放新闻节目是必然事件D.为了了解某县初中学生的身体情况,从八年级学生中随机抽取50名学生作为总体的一个样本8. 4分 2015 黔南州函数y=+的自变量x的取值范围是A. x≤3B. x≠4C. x≥3且x≠4D.x≤3或x≠49. 4分 2015 黔南州如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D10. 4分 2015 黔南州同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大11. 4分 2015 黔南州如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC 的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角12. 4分 2015 黔南州如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到A. M处B. N处C. P处D.Q处13. 4分 2015 黔南州二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是A.函数图象与y轴的交点坐标是 0,﹣3B.顶点坐标是 1,﹣3C.函数图象与x轴的交点坐标是 3,0 、﹣1,0D.当x<0时,y随x的增大而减小二、填空题共6小题,每小题4分,满分24分14. 4分 2015 黔南州计算:2×﹣+.15. 4分 2015 黔南州如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.16. 4分 2015 黔南州如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米平面镜的厚度忽略不计.17. 4分 2015 黔南州如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于结果保留π.18. 4分 2015 黔南州甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.19. 4分 2015 黔南州如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.三、解答题共7小题,满分74分20. 10分 2015 黔南州 1 已知:x=2sin60°,先化简+,再求它的值.2 已知m和n是方程3x2﹣8x+4=0的两根,求+.21. 6分 2015 黔南州如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角A点处 10米的建筑物是否需要拆除参考数据:≈1.414,≈1.73222. 10分 2015 黔南州如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.1 求证:△AED≌△CFD;2 求证:四边形AECF是菱形.3 若AD=3,AE=5,则菱形AECF的面积是多少23. 12分 2015 黔南州今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:1 抽取的部分同学的人数是多少2 补全直方图的空缺部分.3 若九年级有400名学生,估计该年级去打扫街道的人数.4 九 1 班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.用A表示“打扫街道”;用B表示“去敬老院服务”;用C表示“法制宣传”24. 12分 2015 黔南州如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.1 求⊙O的半径OD;2 求证:AE是⊙O的切线;3 求图中两部分阴影面积的和.25. 12分 2015 黔南州为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v千米/小时是车流密度x辆/千米的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.1 求彩虹桥上车流密度为100辆/千米时的车流速度;2 在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内3 当车流量辆/小时是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26. 12分 2015 黔南州如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A0,4 和C 8,0 ,P t,0 是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.1 求b、c的值;2 当t为何值时,点D落在抛物线上;3 是否存在t,使得以A,B,D为顶点的三角形与△AOP相似若存在,求此时t的值;若不存在,请说明理由.。

2015年初中毕业升学考试试卷数学含答案(真卷出击)

2015年初中毕业升学考试试卷数学含答案(真卷出击)

2015年初中毕业升学考试试卷数学(考试时间共120分钟,全卷满分120分)第Ⅰ卷(选择题,共36分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅰ卷为第1页至第2页.答题时,请用2B 铅笔把各小题正确答案序号填涂在答题卡对应的题号内.如需改动,须用橡皮擦干净后,再填涂其它答案. 在第Ⅰ卷上答题无效.一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,错选、不选或多选均得零分) 1.AB.C.5-D.52.如图1,点A B C 、、是直线l 上的三个点,图中共有线段条数是A .1条 B.2条 C.3条 D.4条3.三条直线a b c 、、,若a c ∥,b c ∥,则a 与b 的位置关系是A .a b ⊥ B.a b ∥ C.a b a b ⊥或∥ D.无法确定 4.图2的几何体中,主视图、左视图、俯视图均相同的是5.若分式23x-有意义,则x 的取值范围是 A .3x ≠ B.3x = C.3x < D.3x > 6.不等式5x +≥8的解集在数轴上表示为A . B. C. D.7.一个正多边形的一个内角为120度,则这个正多边形的边数为 A .9 B.8 C.7 D.6图 1图28.如图3,Rt ABC △中,90C ∠=°,ABC ∠的平分线BD 交AC 于D ,若3cm CD =,则点D 到AB 的距离DE 是A .5cm B.4cm C.3cm D.2cm9.如图4,在正方形ABCD 的外侧作等边ADE △,则AEB ∠的度数为 A .10° B.12.5° C.15° D.20°10.上海“世界博览会”某展厅志愿者的年龄分布如图5,这些志愿者年龄的众数是 A .19岁 B.20岁 C.21岁 D.22岁11.抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法正确的个数是①抛物线与x 轴的一个交点为(20)-,②抛物线与y 轴的交点为(06), ③抛物线的对称轴是:1x = ④在对称轴左侧y 随x 增大而增大A .1 B.2 C.3 D.4 12.如图6,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且3B C '=,则AM 的长是A .1.5 B.2 C.2.25 D.2.52015年初中毕业升学考试试卷第Ⅱ卷(非选择题,共84分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅱ卷为第3页至第10页.答题时,用蓝黑色墨水笔或圆珠笔直接将答案写在试卷上.图3 图4 图5 图6二、填空题(本大题共6小题,每小题3分,满分18分.请将答案直接填写在题中横线上的空白处)13= . 14.因式分解:29x -= .15.写出一个经过点(11),的一次函数解析式 . 16.2010年广州亚运会吉祥物取名“乐羊羊”.图7中各图是按照一定规律排列的羊的组图,图①有1只羊,图②有3只羊,……,则图⑩有 只羊.17.关于x 的一元二次方程(3)(1)0x x +-=的根是 . 18.如图8,AB 是O ⊙的直径,弦2cm BC =,F 是弦BC 的中点,60ABC ∠=°.若动点E 以2cm/s 的速度从A 点出发沿着A B A →→方向运动,设运动时间为()(03)t s t <≤,连结EF ,当t 值为 s时,BEF △是直角三角形. 三、解答题(本大题8分,满分66分.解答应写出必要的文字说明、演算步骤或推理过程) 19.(本题满分6分)计算:30(2)(2010tan 45-+-°.20.(本题满分6分)如图9,在88⨯的正方形网格中,ABC △的顶点和线段EF 的端点都在边长为1的小正方形的顶点上.A B图8 图7(1)填空:ABC ∠= .BC = ; (2)请你在图中找出一点D ,再连接DE DF 、,使以D E F 、、为顶点的三角形与ABC △全等,并加以证明. 21.(本题满分6分)桌面上有4张背面相同的卡片,正面分别写着数字“1”、“2”、“3”“4”.先将卡片背面朝上洗匀.(1)如果让小唐从中任意抽取一张,抽到奇数的概率是 ;(2)如果让小唐从中同时抽取两张.游戏规则规定:抽到的两张卡片上的数字之和为奇数,则小唐胜,否则小谢胜.你认为这个游戏公平吗?说出你的理由. 22.(本题满分8分) 如图10,从热气球P 上测得两建筑物A B 、的底部的俯角分别为45°和30°,如果A B 、两建筑物的距离为90m ,P 点在地面上的正投影恰好落在线段AB 上,求热气球P 的高度.(结果精确到0.01m1.7321.414)图9 45°30°图10目前,“低碳”已成为保护地球环境的热门话题.风能是一种清洁能源,近几年我国风电装机容量迅速增长.图11是我国2003年-2009年部分年份的内力发电装机容量统计图(单位:万千瓦),观察统计图解答下列问题.(1)2007年,我国风力发电装机容量已达万千瓦;从2003年到2009年,我国风力发电装机容量平均每年增长......万千瓦;(2)求2007~2009这两年装机容量的年平均增长率......;(参考数据: 2.24,1.123.74)(3)按(2)的增长率,请你预测2010年我国风力发电装机容量.(结果保留到0.1万千瓦)24.(本题满分10分)某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和不低于90而且费用最低?图11如图12,AB 为O ⊙直径,且弦CD AB ⊥于E ,过点B 的切线与AD 的延长线交于点F . (1)若M 是AD 的中点,连接ME 并延长ME 交BC 于N .求证:MN BC ⊥. (2)若4cos 35C DF ∠==,,求O ⊙的半径. 26.(本题满分12分)如图13,过点(43)P -,作x 轴、y 轴的垂线,分别交x 轴、y 轴于A B 、两点,交双曲线(2)ky k x=≥于E F 、两点. (1)点E 的坐标是 ,点F 的坐标是 ;(均用含k 的式子表示) (2)判断EF 与AB 的位置关系,并证明你的结论; (3)记PEF OEF S S S =-△△,S 是否有最小值?若有,求出其最小值;若没有,请说明理由.2015年初中毕业升学考试 数学参考答案及评分标准图12图13(说明:第17题只写对一个结果给2分,两个结果都写对给3分;第18题每写对一个结果给1分) 三、解答题: 19.本题满分6分.解:原式=811-+- ························································································ 3分=8- ································································································ 6分20.本题满分6分.(1)135ABC ∠=°,BC = ·········································· 2分(2)(说明:D 的位置有四处,分别是图中的1234D D D D 、、、.此处画出D 在1D 处的位置及证明,D 在其余位置的画法及证明参照此法给分)解:EFD △的位置如图所示. ········································· 3分证明:FD BC === ··············································· 4分9045135EFD ABC ∠=∠==°+?° ·································································· 5分 2EF AB ==EFD ABC ∴△≌△ ······················································································· 6分(说明:其他证法参照此法给分) 21.本题满分6分. 解:(1)12··································································································· 2分 (2)(方法一)这个游戏不公平. ··························································································· 3分 理由如下:任意抽取两个数,共有6种不同的抽法,其中和为奇数的抽法共有4种.P ∴(和为奇数)=4263= ················································································ 4分 P (和为偶数)=13························································································ 5分(方法二)设2008年的风力发电装机容量为a 万千瓦.5002520500a aa--= ······················································································· 4分 21260000a = ························································································· 0a >1122a ∴≈ ····························································································· 5分经检验,1122a ≈是所列方程的根. 则2007到2009这两年装机容量的年增长率为11225001.24124%500-=≈ ················· 6分答:2007到2009这两年装机容量的年平均增长率约为124%. (3)(1 1.24)25205644.8+⨯= ····································································· 7分∴2010年我国风力发电装机容量约为5644.8万千瓦. ··········································· 8分 24.本题满分10分.解:(1)设甲种树苗买x 株,则乙种树苗买(300)x -株. ······································ 1分6090(300)21000x x +-= ·············································································· 3分200x = ·················································································· 4分300200100-= ················································································ 5分答:甲种树苗买200株,乙种树苗买100株.(2)设买x 株甲种树苗,(300)x -株乙种树苗时该小区的空气净化指数之和不低于90.0.20.6(300)90x x +-≥ ················································································ 6分 0.21800.690x x +-≥0.490x --≥225x ≤ ·············································································· 7分此时费用6090(300)y x x =+-3027000y x =-+ ············································································· 8分y 是x 的一次函数,y 随x 的增大而减少∴当225x =最大时,302252700020250y =-⨯+=最小(元) ······························ 9分 即应买225株甲种树苗,75株乙种树苗时该小区的空气净化指数之和不低于90,费用最小为20250元. ······························································································· 10分 (说明:其他解法参照此法给分) 25.本题满分10分 (1)(方法一) 连接AC .AB 为O ⊙的直径,且AB CD ⊥于E ,由垂径定理得:点E 是CD 的中点. ··························· 1分 又M 是AD 的中点ME ∴是DAC △的中位线 ········································ 2分MN AC ∴∥ ························································· 3分 AB 为O ⊙直径,90ACB ∴∠=°, ························· 4分90MNB ∴∠=°即MN BC ⊥ ···································· 5分(方法二)AB CD ⊥,90AED BEC ∴∠=∠=° ····················· 1分M 是AD 的中点,ME AM ∴=,即有MEA A ∠=∠ ··········································· 2分又MEA BEN ∠=∠,由A ∠与C ∠同对BD 知C A ∠=∠C BEN ∴∠=∠ ····························································································· 3分又90C CBE ∠+∠=°90CBE BEN ∴∠+∠=° ················································································· 4分 90BNE ∴∠=°,即MN BC ⊥. ····································································· 5分(方法三)AB CD ⊥,90AED ∴∠=° ········································································· 1分由于M 是AD 的中点,ME MD ∴=,即有MED EDM ∠=∠ 又CBE ∠与EDA ∠同对AC ,CBE EDA ∴∠=∠ ············································ 2分 又MED NEC ∠=∠ NEC CBE ∴∠=∠ ························································································ 3分 又90C CBE ∠+∠=°90NEC C ∴∠+∠=° ···················································································· 4分即有90CNE ∠=°,MN BC ∴⊥ ···································································· 5分 (2)连接BDBCD ∠与BAF ∠同对BD ,C A ∴∠=∠4cos cos 5A C ∴∠=∠=······································ 6分 BF 为O ⊙的切线,90ABF ∴∠=°在Rt ABF △中,4cos 5AB A AF ∠== 设4AB x =,则5AF x =,由勾股定理得:3BF x =··········································································7分 又AB 为O ⊙直径,BD AD ∴⊥ABF BDF ∴△∽△ BF DF AF BF∴= ································································································ 8分即3353x x x= 53x = ··································································································· 9分∴直径5204433AB x ==⨯= 则O ⊙的半径为103······················································································· 10分(说明:其他解法参照此法给分) 26.本题满分12分. 解:(1)44k E ⎛⎫--⎪⎝⎭,,33k F ⎛⎫ ⎪⎝⎭, ······································································ 3分 (说明:只写对一个点的坐标给2分,写对两个点的坐标给3分)(2)(证法一)结论:EF AB ∥ ······································································ 4分 证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫⎪⎝⎭,,即得:3443k kPE PF =+=+, ······································································· 5分 31241212123443PA PB k k PE k PF k ====++++, APB EPF ∠=∠PAB PEF ∴△∽△PAB PEF ∴∠=∠ ························································································· 6分 EF AB ∴∥ ································································································· 7分(证法二)结论:EF AB ∥ ············································································ 4分 证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫⎪⎝⎭,,即得:3443k kPE PF =+=+, ······································································· 5分 在Rt PAB △中,4tan 3PB PAB PA ∠== 在Rt PEF △中,443tan 334k PF PEF k PE +∠===+tan tan PAB PEF ∴∠=∠PAB PEF ∴∠=∠ ························································································· 6分 EF AB ∴∥ ································································································· 7分。

2015年黔南州初中毕业生学业 中考数学卷

2015年黔南州初中毕业生学业 中考数学卷

2015年黔南州初中毕业生学业(升学)统一考试·数学(考试时间:120分钟 满分:150分)第Ⅰ卷一、单项选择题 (每小题4分,共13小题,满分52分.) 1. 下列说法错误..的是( ) A. -2的相反数是2 B. 3的倒数是13C. (-3)-(-5)=2D. -11,0,4这三个数中最小的数是02. 在“青春脉动·唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为(单位:分):9,8,9,7,8,9,7.这组数据的众数和中位数分别是( )A. 9、8B. 9、7C. 8、7D. 8、8 3. 下列各数表示正确的是( )A. 57000000=57×106B. 0.0518(用四舍五入法精确到0.001)≈0.015C. 1.804(用四舍五入法精确到十分位)≈1.8D. 0.0000257=2.57×10-4 4. 下列运算正确的是( )A. a ·a 5=a 5B. a 7÷a 5=a 3C. (2a )3=6a 3D. 10ab 3÷(-5ab )=-2b 2 5. 如图所示,该几何体的左视图是( )第5题图6. 如图,下列说法错误..的是( ) A. 若a ∥b ,b ∥c ,则a ∥c. B. 若∠1=∠2,则a ∥c. C. 若∠3=∠2,则b ∥c.D. 若∠3+∠5=180°,则a ∥c. 第6题图 7. 下列说法正确的是( )A. 为了检测一批电池使用时间的长短,应该采用全面调查的方法B. 方差反映了一组数据的波动大小,方差越大,波动越大C. 打开电视正在播放新闻节目是必然事件D. 为了解某县初中学生的身高情况,从八年级学生中随机抽取50名学生作为总体的一个样本 8. 函数y =3-x +1x -4的自变量x 的取值范围是( )A. x ≤3B. x ≠4C. x ≥3且x ≠4D. x ≤3或x ≠49. 如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 且相交于点E ,则下列结论中不成立...的是( )A. ∠A =∠DB. CB ︵=BD ︵C. ∠ACB =90°D. ∠COB =3∠D 第9题图 10. 同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( ) A. 两正面都朝上 B. 两背面都朝上C. 一个正面朝上,另一个背面朝上D. 三种情况发生的概率一样大11. 如图,直线l 外不重合的两点A 、B ,在直线l 上求作一点C ,使得AC +BC 的长度最短.作法为:①作点B 关于直线l 的对称点B ′;②连接AB ′与直线l 相交于点C ,则点C 为所求作的点.在解决这个问题时没有运用到的知识或思想方法是( )A. 转化思想B. 三角形的两边之和大于第三边C. 两点之间,线段最短D. 三角形的一个外角大于与它不相邻的任意一个内角 第11题图 12. 如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②所示,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处第12题图 第13题图13. 二次函数y =x 2-2x -3的图象如图所示,下列说法中错误..的是( ) A. 函数图象与y 轴的交点坐标是(0,-3) B. 顶点坐标是(1,-3)C. 函数图象与x 轴的交点坐标是(3,0),(-1,0)D. 当x <0时,y 随x 的增大而减小二、填空题(每小题4分,共6小题,满分24分)14. 计算:213×9-12+378-1=_______. 15. 如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,半径OC ⊥AB 相交外圆于点C.测得CD =10 cm ,AB =60 cm ,则这个车轮的外圆半径为______.16. 如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是_______米(平面镜的厚度忽略不计).第15题图 第16题图 第17题图17. 如图,边长为1的菱形ABCD 的两个顶点B 、C 恰好落在扇形AEF 的弧EF 上,若∠BAD =120°,则弧BC 的长等于_______(结果保留π).18. 甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……,后一位同学报出的比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为______.19. 如图,函数y =-x 的图象是二、四象限的角平分线,将y =-x 的图象以点O 为中心旋转90°与函数y =1x的图象交于点A ,再将y =-x 的图象向右平移至点A ,与x 轴交于点B ,则点B 的坐标为_________.第19题图三、解答题(本大题共7小题,满分74分) 20. (本小题共10分,每小题各5分)(1)已知:x =2sin 60°,先化简x 2-2x +1x 2-1+1x +1,再求它的值.(2)已知m 和n 是方程3x 2-8x +4=0的两根,求1m +1n .21. (本小题共6分)如图是一座人行天桥的示意图,天桥的高是10米,CB⊥DB,坡面AC的倾斜角为45°,为了方便行人推车过天桥市政府部门决定降低坡度,使新坡面DC的坡度为i= 3 ∶3,若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:2≈1.414,3≈1.732)第21题图22. (本小题共10分)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形;(3)若AD=3,AE=5,则菱形AECF的面积是多少?第22题图23. (本小题共12分)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如下直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:第23题图(1)抽取的部分同学的人数是多少? (2)补全直方图的空缺部分;(3)若九年级有400名学生,估计该年级去打扫街道的人数;(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”“去敬老院服务”和“法制宣传”的概率.(用A 表示“打扫街道”;用B 表示“去敬老院服务”;用C 表示“社区文艺演出”;用D 表示“法制宣传”)24. (本小题共12分)如图,在Rt △ABC 中,∠A =90°,O 是BC 边上一点,以点O 为圆心的半圆与AB 边相切于点D ,与AC ,BC 边分别交于点E ,F ,G ,连接OD ,已知BD =2,AE =3,tan ∠BOD =23.(1)求⊙O 的半径OD 的长; (2)求证:AE 是⊙O 的切线; (3)求图中两部分阴影面积的和.第24题图25. (本小题共12分)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流速度为20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v 是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上的车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26. (本小题共12分)如图,在平面直角坐标系xOy 中,抛物线y =-16x 2+bx +c 过点A (0,4)和C (8,0),P (t ,0)是x 轴正半轴上的一个动点,M 是线段AP 的中点,将线段MP 绕点P 顺时针旋转90°得线段P B.过点B 作x 轴的垂线,过点A 作y 轴的垂线,两直线相交于点D.(1)求b ,c 的值;(2)当t 为何值时,点D 落在抛物线上;(3)是否存在t ,使得以A ,B ,D 为顶点的三角形与△AOP 相似?若存在,求此时t 的值;若不存在,请说明理由.第26题图2015贵州黔南州1. D 【解析】选项 逐项分析正误A -2的相反数是2,故正确B 3的倒数是13,故正确C (-3)-(-5)=-3+5=2,故正确 D∵-11<0<4,∴这三个数中最小的是-11√2. A 【解析】把9、8、9、7、8、9、7这七个数字按从小到大的顺序排列得:7、7、8、8、9、9、9,其中9出现的次数最多,则众数是9,8排在最中间,则中位数是8.3. C 【解析】选项 逐项分析正误A 57000000=5.7×107≠5.7×106,故A 错误B 0.0158用四舍五入法精确到0.001≈0.016≠0.015,故B 错误C 1.804用四舍五入法精确到十分位≈1.8,故C 正确 √D0.0000257=2.5×10-5≠2.5×10-4,故D 错误4. D 【解析】选项 逐项分析 正误A a ×a 5=a 6≠a 5B a 7÷a 5=a 2≠a 3C (2a )3=8a 3≠6a 3 D10ab 3÷(-5ab )=-2b 2√5. B 【解析】根据三视图的特点,左视图是从几何体的左侧看到的视图,该几何体从左侧看到是图形如选项B.6. C 【解析】对于C :若∠2=∠3,则d ∥e ,并不能判断出b ∥c ,∴错误的是C 选项.7. B 【解析】选项 逐项分析正误A 为了检测电池的使用时间的长短,应采用抽样调查,∴A 错误B 差反映数据的波动大小,方差越大,波动越大,∴B 正确√C 打开电视机播放新闻节目为随机事件,∴C 错误D样本不具有代表性,∴错误8. A 【解析】函数y =3-x +1x -4的自变量应满足:3-x ≥0且x -4≠0,解得x ≤3,故选A. 9. D 【解析】对于D ,同弧所对的圆心角等于圆周角的2倍,∴∠COB =2∠D ,故D 不成立.10. C 【解析】抛掷两枚质地均匀的硬币,两面都朝上或朝下的概率都是14,一面朝上,一面朝下的概率为12,∴概率最大的是C.11. D 【解析】在最短距离问题中,没有运用到一个外角大于与它不相邻的任意一个内角,故选D. 12. D 【解析】△MNR 的变化只是高的改变,底边并不改变,当R 运动到点P 时面积最大,从点P 到点Q ,面积不变,从点Q 到点M ,面积变小,∴当x =9时,点R 在点Q 处,故选D.13. B 【解析】选项 逐项分析正误A 令x =0,代入二次函数y =x 2-2x -3中,得y =-3,∴函数图象与y 轴的交点坐标是(0,-3),故正确B y =x 2-2x -3=(x -1)2-4,∴顶点坐标是(1,-4),故错误√C令x 2-2x -3=0,解得x 1=3,x 2=-1,∴函数图象与x 轴的交点坐标为(3,0),(-1,0),故正确D 当x <1时,y 随x 的增大而减小,∴当x <0时,y 随x 的增大而减小,故正确14. -12 【解析】原式=23-23+(-12)=-12.15. 50 cm 【解析】连接OB ,∵ OC ⊥AB ,∴点D 为AB 的中点,∴BD =30,设OB 为x ,则OD =x -10,根据勾股定理OB 2=OD 2+BD 2,即x 2=(x -10)2+302解得x =50,∴半径为50 cm .第15题解图16. 8 【解析】∵根据入射角等于反射角,∴∠APB =∠CPD ,∵AB ⊥BD ,CD ⊥BD ∴△ABP ∽△CDP ,∴AB BP =CDDP ,∴高度CD =8米. 17.π3【解析】∵四边形ABCD 为菱形,∴AD ∥BC , ∵∠BAD =120°,∠ABC =60°,∵AB =BC , △ABC 为等边三角形,∴∠BAC =60°,∴弧BC =60π×1180=π3.18. 4 【解析】甲报的数为1,5,9,13,17,21,25,29,33,37,41,45,49,这些数中是3的倍数的有9、21、33、45,总共有四个,∴拍手次数为4.19. (2,0) 【解析】∵y =-x 旋转90°得y =x ,∴y =x 与y =1x 的在第一象限的交点A (1,1),过点A作AC 垂直于x 轴于点C ,∵y =x 平分第一三象限,∴AC =OC =BC =1,∴OB =2,∴点B 的坐标为(2,0).第19题解图20.解:(1)∵x =2sin 60°=2×32=3, ∴x = 3.(1分) x 2-2x +1x 2-1+1x +1=(x -1)2(x +1)(x -1)+1x +1(3分) =x -1x +1+1x +1 =xx +1.(4分) ∵x =3,∴原式=xx +1=3-32.(5分)(2)3x 2-8x +4=0, ∵a =3,b =-8,c =4, ∴m +n =83,mn =43,(2分)∴1m +1n =m +n mn =8343=2.(5分) 21.解:∵BC =10,∠CAB =45°,∠CBA =90°, ∴AB =10.(1分)∵tan ∠CDB =BC BD =33, 第21题解图∴BD =3BC3=3×10=17.32(米),(3分)∴DA =DB -AB =17.32-10=7.32(米).(4分) ∵7.32+3=10.32>10,(5分)∴离原坡角10米的建筑物需要拆除.(6分) 22.解:(1)∵PQ 为线段AC 的垂直平分线, ∴AD =CD ,∠ADE =∠CDF =90°(1分) ∵CF ∥AB ,∴∠EAD =∠FCD ,∠CFD =∠AED ,(2分)在△AED 与△CFD 中,⎩⎪⎨⎪⎧∠EAD =∠FCD AD =CD ∠CFD =∠AED,∴△AED ≌△CFD (ASA );(4分) 第22题解图(2)∵△AED ≌△CFD ,∴DE =DF ,AD =C D.(6分)又∵EF 为线段AC 的垂直平分线,∴EF ⊥AC ,∴四边形AECF 为菱形;(8分)(3)∵AD =3,AE =5,∴ED =4.(9分)∴AC =6,EF =8, ∴菱形的面积为12AC ×EF =12×6×8=24.(10分) 23.解:(1)50;(2分)【解法提示】15÷30%=50名.(2)社区文艺演出人数为10名;(2分)【解法提示】20÷50×100%=40%,50×(1-30%-10%-40%)=10(名).第23题解图①(3)估计该年级去打扫街道的人数是160名学生;(3分)【解法提示】打扫街道的人数所占比例为2050=25,九年级有400名学生,则打扫街道的人数为400×25=160(名).(4)P =624=14.(1分) 画树状图如解图:第23题解图②(画对一个树状图给1分,共4分)24.解:(1)∵AB 与⊙O 相切,∴OD ⊥A B.(2分)在Rt △OBD 中,BD =2,tan ∠BOD =BD OD =23, 第24题解图 ∴OD =3; (4分)(2)连接OE ,(5分)∵∠A =90°,则CA ⊥AB ,∴AE ∥O D.又∵AE =OD =3,∴四边形AEOD 是平行四边形,(7分)∴AD ∥EO ,∵∠A =90°,∴OE ⊥AC ,又∵OE 是⊙O 的半径,∴AE 是⊙O 的切线;(8分)(3)由(2)知AD =OE =3,∠DOE =∠A =90°.∵OD ∥AC ,∴BD AB =OD AC ,(9分) 即22+3=3AC, 解得AC =7.5.(10分)∴EC =AC -AE =7.5-3=4.5,∴S 阴影=S △BDO +S △OEC -(S 扇形OFD +S 扇形OEG )(11分)=12×2×3+12×3×4.5-90π×32360=39-9π4.(12分) 25.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,(1分)由题意,得⎩⎪⎨⎪⎧80=20k +b 0=220k +b ,(2分) 解得⎩⎪⎨⎪⎧k =-25b =88,(3分)∴当20≤x ≤220时,v =-25x +88,(4分) 当x =100时,v =48(千米/小时);(5分)(2)由题意,得⎩⎨⎧-25x +88>40-25x +88<60,(6分) 解得70<x <120.(7分)∴应控制大桥上的车流密度在70<x <120范围内;(8分)(3)设车流量y 与x 之间的关系式为y =v x ,当20≤x ≤220时,y =(-25x +88)x =-25(x -110)2+4840,(9分) ∴当x =110时,y 最大=4840.(11分)∴当车流密度是110辆/千米,车流量y 取得最大值时4840辆/小时.(12分)26.解:(1)由抛物线y =-16x 2+bx +c 过点A (0,4)和C (8,0),(1分) 可得⎩⎪⎨⎪⎧c =4-16×64+8b +c =0, 解得⎩⎪⎨⎪⎧c =4b =56;(4分) 第26题解图 (2)∵∠AOP =∠PEB =90°,∠OAP =90°-∠APO =∠EPB ,∴△AOP ∽△PEB ,且相似比为AO PE =AP PB=2,(5分) ∵AO =4,∴PE =2,OE =OP +PE =t +2,又∵DE =OA =4,∴点D 的坐标为(t +2,4),(6分)∴点D 落在抛物线上时,有-16(t +2)2+56(t +2)+4=4, 解得t =3或t =-2.∵t >0,∴t =3,故当t 为3时,点D 落在抛物线上.(7分)(3)存在t ,能够使得以A ,B ,D 为顶点的三角形与△AOP 相似.理由:①当0<t <8时,若△POA ∽△ADB ,则PO AD =AO BD ,即t t +2=44-12t ,整理,得t2+16=0,∴t无解;(8分)若△POA∽△BDA,同理,解得t=-2+25(负值舍去);(9分)②当t>8时,若△POA∽△ADB,则POAD=AOBD,即tt+2=412t-4,解得t=8+45(负值舍去);(10分)若△POA∽△BDA,同理,解得t无解.(11分)综上所述,当t=-2+2 5 或t=8+4 5 时,以A,B,D为顶点的三角形与△AOP相似.(12分)。

2015年贵州省黔南州中考真题数学

2015年贵州省黔南州中考真题数学

A.∠A=∠D B. CB = BD C.∠ACB=90° D.∠COB=3∠D 解析:考查圆周角定理,垂径定理,同弧所对的圆周角相等.对各个选项进行分析判断: A、根据同弧所对的圆周角相等可知,∠A=∠D,正确; B、根据垂径定理可知, CB = BD ,正确; C、根据圆周角定理可知,∠ACB=90°,正确; D、根据圆周角定理可知,∠COB=2∠CDB,故错误. 答案:D. 10. 同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( A.两正面都朝上 B.两背面都朝上 C.一个正面朝上,另一个背面朝上 D.三种情况发生的概率一样大 解析:画树状图为: )
1 ,B 正确; 3
C、(-3)-(-5)=-3+5=2,C 正确; D、-11,0,4 这三个数中最小的数是-11,D 错误. 答案:D. 2. 在“青春脉动·唱响黔南校园青年歌手大赛”总决赛中,7 位评委对某位选手评分为(单 位:分):9、8、9、7、8、9、7.这组数据的众数和平均数分别是( ) A.9、8 B.9、7 C.8、7 D.8、8 解析:考查众数和平均数.9 出现了三次,出现次数最多,所以这组数据的众数是 9, 这组数据的平均数是: 答案:A. 3. 下列各数表示正确的是( ) 6 A.57000000=57×10 B.0.0158(用四舍五入法精确到 0.001)=0.015 C.1.804(用四舍五入法精确到十分位)=1.8 -4 D.0.0000257=2.57×10 解析:把各项中较大与较小的数字利用科学记数法表示,取其近似值得到结果,进而作出判 断: 7 A、57000000=5.7×10 ,错误; B、0.0158(用四舍五入法精确到 0.001)≈0.016,错误; C、1.804(用四舍五入法精确到十分位)≈1.8,正确; -5 D、0.0000257=2.57×10 ,错误, 答案:C. 4. 下列运算正确( 5 5 A.a·a =a )

2015年贵州省黔南州中考数学试题及答案

2015年贵州省黔南州中考数学试题及答案

2015年##省黔南州中考数学试卷一、单项选择题〔共13小题,每小题4分,满分52分〕1.〔4分〕〔2015•黔南州〕下列说法错误的是〔〕A.﹣2的相反数是2B.3的倒数是C.〔﹣3〕﹣〔﹣5〕=2D.﹣11,0,4这三个数中最小的数是02.〔4分〕〔2015•黔南州〕在"青春脉动•唱响黔南校园青年歌手大赛"总决赛中,7位评委对某位选手评分为〔单位:分〕:9、8、9、7、8、9、7.这组数据的众数和平均数分别是〔〕A.9、8 B.9、7 C.8、7 D.8、83.〔4分〕〔2015•黔南州〕下列各数表示正确的是〔〕A.57000000=57×106B.0.0158〔用四舍五入法精确到0.001〕=0.015C. 1.804〔用四舍五入法精确到十分位〕=1.8D.0.0000257=2.57×10﹣44.〔4分〕〔2015•黔南州〕下列运算正确〔〕A.a•a5=a5B.a7÷a5=a3C.〔2a〕3=6a3D. 10ab3÷〔﹣5ab〕=﹣2b25.〔4分〕〔2015•黔南州〕如图所示,该几何体的左视图是〔〕A.B.C.D.6.〔4分〕〔2015•黔南州〕如图,下列说法错误的是〔〕A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c7.〔4分〕〔2015•黔南州〕下列说法正确的是〔〕A.为了检测一批电池使用时间的长短,应该采用全面调查的方法B.方差反映了一组数据的波动大小,方差越大,波动越大C.打开电视正在播放新闻节目是必然事件D.为了了解某县初中学生的身体情况,从八年级学生中随机抽取50名学生作为总体的一个样本8.〔4分〕〔2015•黔南州〕函数y=+的自变量x的取值范围是〔〕A.x≤3B.x≠4C.x≥3且x≠4D.x≤3或x≠49.〔4分〕〔2015•黔南州〕如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是〔〕A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D10.〔4分〕〔2015•黔南州〕同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是〔〕A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大11.〔4分〕〔2015•黔南州〕如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是〔〕A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角12.〔4分〕〔2015•黔南州〕如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到〔〕A.M处B.N处C.P处D.Q处13.〔4分〕〔2015•黔南州〕二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是〔〕A.函数图象与y轴的交点坐标是〔0,﹣3〕B.顶点坐标是〔1,﹣3〕C.函数图象与x轴的交点坐标是〔3,0〕、〔﹣1,0〕D.当x<0时,y随x的增大而减小二、填空题〔共6小题,每小题4分,满分24分〕14.〔4分〕〔2015•黔南州〕计算:2×﹣+.15.〔4分〕〔2015•黔南州〕如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.16.〔4分〕〔2015•黔南州〕如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米〔平面镜的厚度忽略不计〕.17.〔4分〕〔2015•黔南州〕如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF 的弧EF上.若∠BAD=120°,则弧BC的长度等于〔结果保留π〕.18.〔4分〕〔2015•黔南州〕甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.19.〔4分〕〔2015•黔南州〕如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.三、解答题〔共7小题,满分74分〕20.〔10分〕〔2015•黔南州〕〔1〕已知:x=2sin60°,先化简+,再求它的值.〔2〕已知m和n是方程3x2﹣8x+4=0的两根,求+.21.〔6分〕〔2015•黔南州〕如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角〔A点处〕10米的建筑物是否需要拆除?〔参考数据:≈1.414,≈1.732〕22.〔10分〕〔2015•黔南州〕如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.〔1〕求证:△AED≌△CFD;〔2〕求证:四边形AECF是菱形.〔3〕若AD=3,AE=5,则菱形AECF的面积是多少?23.〔12分〕〔2015•黔南州〕今年3月5日,黔南州某中学组织全体学生参加了"青年志愿者"活动,活动分为"打扫街道"、"去敬老院服务"、"到社区文艺演出"和"法制宣传"四项,从九年级同学中抽取了部分同学对"打扫街道"、"去敬老院服务"、"到社区文艺演出"和"法制宣传"的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:〔1〕抽取的部分同学的人数是多少?〔2〕补全直方图的空缺部分.〔3〕若九年级有400名学生,估计该年级去打扫街道的人数.〔4〕九〔1〕班计划在3月5日这天完成"青年志愿者"活动中的三项,请用列表或画树状图求恰好是"打扫街道"、"去敬老院服务"和"法制宣传"的概率.〔用A表示"打扫街道";用B表示"去敬老院服务";用C表示"法制宣传"〕24.〔12分〕〔2015•黔南州〕如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.〔1〕求⊙O的半径OD;〔2〕求证:AE是⊙O的切线;〔3〕求图中两部分阴影面积的和.25.〔12分〕〔2015•黔南州〕为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v〔千米/小时〕是车流密度x〔辆/千米〕的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.〔1〕求彩虹桥上车流密度为100辆/千米时的车流速度;〔2〕在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?〔3〕当车流量〔辆/小时〕是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26.〔12分〕〔2015•黔南州〕如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A〔0,4〕和C〔8,0〕,P〔t,0〕是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.〔1〕求b、c的值;〔2〕当t为何值时,点D落在抛物线上;〔3〕是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷 第1页 共10页秘密★启用前2015年黔西南州初中毕业生学业暨升学模拟考试试卷数 学考生注意:1.一律用黑色笔或2B 铅笔将答案填写或填涂在答题卷指定位置内。

2.本试卷共4页,满分150分,答题时间120分钟。

一、选择题(每小题4分,共40分)1.下列二次根式中,最简二次根式是 ( ) A 、22x B 、12+b C 、a 4 D 、x1 2.分式11-x 有意义,则x 的取值范围是 A .1>x B .1≠xC .1<xD .一切实数3.如图1,在菱形ABCD 中,AC 与BD 相交于点O ,AC=8,BD=6,则菱形的边长AB 等于 A .10 B .7 C .6 D .5 4.下列命题正确的是 ( )A 、对角线相等的四边形是矩形B 、相邻的两个角都互补的四边形是平行四边形C 、平分弦的直径垂直于弦,并且平分弦所对的两条弧D 、三点确定一个圆5.已知△ABC ∽△C B A '''且21=''B A AB ,则C B A ABC S S '''∆∆:为 A .1:2 B .2:1 C .1:4 D .4:16.如图2,点P 在⊙O 外,PA 、PB 分别与⊙O 相切于A 、B 两点,∠P=50°,则∠AOB 等于 A .150° B .130° C .155° D .135° 7.我省为了解决药品价格过高的问题,决定大幅度降低药品价格,其中将原价为a 元的某种常用药降价40%,则降价后此格为 ( ) A 、元4.0a B 、 元6.0aC 、60%a 元D 、40%a 元数学试卷 第2页 共10页8.在同一直角坐标系中,函数y=3x 与y=x1-图象大致是9.如图3,在Rt △ABC 中,∠C=90°,AC=4cm,BC=6cm,动点P 从点C 沿CA 以1cm/s 的速度向A 点运动,同时动点Q 从C 点沿CB 以2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ 的面积y(cm ²)与运动时间x(s)之间的函数图像大致是10.在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图4①;将AB 折成正三角形,使点A 、B 重合于点P ,如图4②;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 的延长线与x 轴交于点N(n ,0),如图4③,当m=3时,n 的值为A.4-B .432-C .332-D .332二、填空题(每小题3分,共30分)1.分解因式:a 2-2ab+b 2-1=__________。

12.42500000用科学记数法表示为 .13.如图5,四边形ABCD 是平行四边形,AC 与BD 相交于点O ,添加一个条件: ,可使它成为菱形.14.如图6,AB 是⊙O 的直径,BC 是⊙O 的弦,若∠AOC=80°,则∠B= .15.分解因式:4842++xx= .16.如图7,点A是反比例函数xky=图像上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k= .17.已知圆锥的底面圆半径为3,母线长为5,则圆锥的侧面积是.18.在半径为9cm的圆中,60°的圆心角所对的弧长为______cm.19.如图8,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.20.已知23A=3×2=6,35A=5×4×3=60,25A=5×4×3×2=120,36A=6×5×4×3=360,依此规律47A= .三、(本题共12分)21.(1)计算:8)21(45tan)20143(10+-︒-+--(2)解方程:31112=-+-xxx.四、(本题共12分)22.如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO(1)求证:PC是⊙O的切线。

(2)若OE∶EA=1∶2,PA=6,求⊙O的半径。

(3)求sin∠PCA的值。

数学试卷第3页共10页数学试卷 第4页 共10页五、(本题共14分)23.为了提高中学生身体素质,学校开设了A :篮球、B :足球、C :跳绳、D :羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图10(未画完整). (1)这次调查中,一共调查了 名学生; (2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.六、(本题共14分)24.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)数学试卷 第5页 共10页时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元? 七、阅读材料题(本题共12分)25.求不等式0)3)(12(>+-x x 的解集.解:根据“同号两数相乘,积为正”可得:①⎩⎨⎧>+>-03012x x 或 ②⎩⎨⎧<+<-03012x x .解①得21>x ;解②得3-<x . ∴不等式的解集为21>x 或3-<x .请你仿照上述方法解决下列问题: (1)求不等式0)1)(32(<+-x x 的解集.(2)求不等式02131≥+-x x 的解集.八、(本题共16分)26.如图11,在平面直角坐标系中,平行四边形ABOC 如图放置,将此平行四边形绕点O 顺时针旋转90°得到平行四边形C O B A '''.抛物线322++-=x x y 经过点A 、C 、A ′三点.(1)求A 、A ′、C 三点的坐标;(2)求平行四边形ABOC 和平行四边形C O B A '''重叠部分OD C '∆的面积;(3)点M 是第一象限内抛物线上的一动点,问点M 在何处时,A AM '∆的面积最大?最大面积是多少?并写出此时M 的坐标.黔西南州2015年初中毕业生学业暨升学统一考试试卷数学参考答案及评分标准数学试卷第6页共10页数学试卷 第7页 共10页一、选择题(每小题4分,共40分) 1.C 2.B 3. D 4.A 5. C 6. B 7. C 8. B 9. C 10.A二、填空题(每小题3分,共30分)11.5a12. 4.25×107 13. AC ⊥BD 14. 40° 15. 2)1(4+x16. -4 17. π15 18. 2 19. 2520. 840 三、21.题(本题共两个小题,每小题6分,共12分)(1)解:原式=1+1-2+22……………………………………………………………(4分) =22…………………………………………………………………(6分) (2)解:去分母得:213(1)x x -=- ……………………………………………(2分) 2x -=- ………………………………………………………………………(3分) 2=x ………………………………………………………………………(4分) 检验:把2=x 代入(1-x )≠0,∴2=x 是原分式方程的解 ………………(6分) 四、22题(每小题6分,共12分)(1)证明:过点O 作OD ⊥PB,连接OC. …………(2分) ∵AP 与⊙O 相切, ∴OC ⊥AP. ……………………(3分) 又∵OP 平分∠APB, ∴OD=OC.……………………(4分) ∴PB 是⊙O 的切线. …………………………………(6分)(2)解:过C 作CF ⊥PE 于点F .……………………………………………………(1分)在Rt △OCP 中,OP=522=+CP OP ……………………………………………(2分)∵CF OP CP OC S OCP ⋅=⋅=∆2121 ∴512=CF ……………………………………………………………………(3分)在R t △COF 中,95OF ==∴524593=+=FE在Rt △CFE 中,551222=+=EF CF CE ………………………………………(6分)数学试卷 第8页 共10页五、23题(3+4+7分,共14分)(1)200…………………………………………………………………………………(3分) (2)如图 ………………………………………………………………………………(4分) (3)用321、C 、CC 表示喜欢跳绳的学生,用B 表示喜欢足球的学生,列表如下∴P(一人是喜欢跳绳,一人是喜欢足球的学生)=21126=………………………………(7分) 六、24题(本题5+5+4共14分) 解:(1)设每吨水的政府补贴优惠价和市场调节价分别为x 元,y 元.依题意得………(1分)⎩⎨⎧=+=+32812421212y x y x ……………………………………………………………(3分)解方程组得:⎩⎨⎧==5.21y x ………………………………………………………(4分)答:每吨水的政府补贴优惠价1元, 市场调节价2.5元 …………………(5分)数学试卷 第9页 共10页(2)当x ≤12时,y=x; ………………………………………………………………(2分)当x>12时,y=12+2.5(x-12)即y=2.5x-18. …………………………………………………………………(5分)(3)当x=26时,y=2.5×26-18=65-18=47(元) ……………………………(3分) 答:小黄家三月份应交水费47元. …………………………………(4分)七、25题(每小题6分,共12分)(1)根据“异号两数相乘,积为负”可得 ①⎩⎨⎧<+>-01032x x 或 ② ⎩⎨⎧>+<-01032x x ……………………………(3分)解不等式组①得无解,解不等式组②得231<<-x ………………………………(4分) ∴原不等式的解集为231<<-x ……………………………………………(6分) (2)依题意可得①⎪⎩⎪⎨⎧>+≥-020131x x 或 ②⎪⎩⎪⎨⎧<+≤-020131x x ……………………………(3分)解①得x ≥3,解②得x<-2………………………………………………………(4分)∴原不等式的解集为x ≥3或x<-2……………………………………………(6分) 八、26题(本题4+6+6分,共16分)(1)解:(1)当0=y 时,0322=++-x x ……………………………………… (1分)解得1,321-==x x ……………………………………………………………(3分) ∴C (-1,0),A ′(3,0).当x=0时,y=3.∴A(0,3) ……………………………(4分)(2)∵C (-1,0),A(0,3) , ∴B(1,3)∴101322=+=OB ………………………………………………………………(1分) ∴△AOB 的面积为131322S =⨯⨯= ………………………………………………(2分) 又∵平行四边形ABOC 旋转90得平行四边形A ′B ′OC ′,∴∠ACO =∠OC ′D 又∵∠ACO =∠ABO ,∴∠ABO =∠OC ′D.数学试卷 第10页 共10页又∵∠C ′OD =∠AOB ,∴△ C ′OD ∽△BOA …………………………………………………………(4分) ∴22)101()(='=∆'∆OB C O S S BOA OD C ……………………………………………………(5分)∴203='∆OD C S ………………………………………………………………(6分) (3)设M 点的坐标为(32,2++-m m m ),连接OM ……………………(1分)3321321)32(3212⨯⨯-⨯⨯+++-⨯⨯='∆m m m s A AM ……………(3分) =)30.(29232<<+-m m m …………………………………………(4分)当23=m 时,A AM S ''∆取到最大值为827 ………………………………(5分)∴M(415,23) ………………………………………………(6分)。

相关文档
最新文档