74650-1014中文资料
744314047;中文规格书,Datasheet资料

Bezeichnung :description :Marking = part numberEigenschaften /properties Lerrlaufinduktivität/initial inductance Nenn-Induktivität /33% Umgebungstemperatur / temperature:+20°CWE-Superflux ME08-01-01ME 06-09-27NameDatum / dateArbeitstemperatur / operating temperature: -40°C - +150°C Metra HIT 27I für/for R DCFreigabe erteilt / general release:Kunde / customerF Werkstoffe & Zulassungen / material & approvals :Würth Elektronik..................................................................................G Eigenschaften / general specifications :not exceed 150°C under worst case operating conditions.It is recommended that the temperature of the part does coating:blackHP 34401 A & Fluke 54II für/for I DC; Luftfeuchtigkeit / humidity:WAYNE KERR 3260B für/for L 0; I SAT Elektrische Eigenschaften / electrical properties :Umgebungstemp. / ambient temperature: -40°C - +100°C Basismaterial / base material:Draht / wire: AIEIW-200 D Prüfgeräte / test equipment :http://www.we-online.deDatum / date..................................................................................Unterschrift / signatureKontrolliert / approvedWürth Elektronik eiSos GmbH & Co. KGD-74638 Waldenburg · Max-Eyth-Strasse 1 - 3 · Germany · Telefon (+49) (0) 7942 - 945 - 0 · Telefax (+49) (0) 7942 - 945 - 400Geprüft / checked .................................................................................................POWER-CHOKE WE-HCIE Testbedingungen / test conditions :Änderung / modificationVersion 1Version 2Bezeichnung :description :H Induktivitätskurve / Inductance curve :ME08-01-01ME 06-09-27NameDatum / dateD-74638 Waldenburg · Max-Eyth-Strasse 1 - 3 · Germany · Telefon (+49) (0) 7942 - 945 - 0 · Telefax (+49) (0) 7942 - 945 - 400http://www.we-online.deGeprüft / checked Kontrolliert / approvedÄnderung / modificationWürth Elektronik eiSos GmbH & Co. KGVersion 2..............................................................................................................................................Version 1Datum / dateUnterschrift / signature Würth Elektronik....................................................................................................................................................................Freigabe erteilt / general release:Kunde / customerPOWER-CHOKE WE-HCIDATUM / DATE : 2008-01-01Bezeichnung :description :I Temperaturanstieg / Temperature rise curve :ME08-01-01ME 06-09-27NameDatum / dateWürth ElektronikVersion 2..........................................................................................................................................Freigabe erteilt / general release:Kunde / customerDatum / dateUnterschrift / signature...............................................................................................................................................................Version 1D-74638 Waldenburg · Max-Eyth-Strasse 1 - 3 · Germany · Telefon (+49) (0) 7942 - 945 - 0 · Telefax (+49) (0) 7942 - 945 - 400http://www.we-online.deGeprüft / checked Kontrolliert / approvedÄnderung / modificationWürth Elektronik eiSos GmbH & Co. KGBezeichnung :description :a 330,0± 2,0mmb 21,0± 0,8mmc 13,00± 0,5mmd 100,0± 1,5mmME08-01-01ME 06-09-27NameDatum / dateD-74638 Waldenburg · Max-Eyth-Strasse 1 - 3 · Germany · Telefon (+49) (0) 7942 - 945 - 0 · Telefax (+49) (0) 7942 - 945 - 400Geprüft / checked Kontrolliert / approvedÄnderung / modificationWürth Elektronik eiSos GmbH & Co. KGVersion 2................................................................................................................................................Version 1Datum / dateUnterschrift / signature Würth Elektronik....................................................................................................................................................................Freigabe erteilt / general release:Kunde / customerRollenspezifikation / Reel specification:SPEICHERDROSSEL WE-HCI POWER-CHOKE WE-HCIThe Force for tearing off cover tape is 20 to 70 grams in arrow direction150°feeding directionThis electronic component has been designed and developed for usage in general electronic equipment. Before incorporating this component into any equipment where higher safety and reliability is especially required or if there is the possibility of direct damage or injury to human body, for example in the range of aerospace, aviation, nuclear control, submarine, transportation, (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc, Würth Elektronik eiSos GmbH must be informed before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component which is used in electrical circuits that require high safety and reliability functions or performance.分销商库存信息: WURTH-ELECTRONICS 744314047。
日标美标对应

钢铁标准对照表2009-09-29 14:02:36 阅读105 评论0 字号:大中小 订阅 详细钢铁标准对照表棒钢、型钢、钢板标准号标准名称标准号 标准名称JIS G 3101 一般结构用轧制钢材ASTM A 36-94结构用钢材 ASTM A 283-93a 低中强度碳素钢 JIS G 3106 焊接结构用轧制钢材JIS G 3136 建筑结构用轧制钢材 ASTM A 529-94结构用钢(屈服点 30kg. 厚度 ) ASTM A 570-95结构用热轧碳素钢钢板及钢带 ASTM A 572-94C结构用高强度低合金铌-钒钢 ASTM A 573-93a结构用韧性改善碳素钢钢板 ASTM A 633-95结构用正火低合金高强度钢 ASTM A 678-94a结构用淬火、回火碳素钢钢板 ASTM A 709-95a桥梁结构用钢材 BS EN 10025-93非合金结构及交货技术条件 DIN EN 10025-93NF EN 10025-93BS EN 10025-90(旧标准) 非合金结构钢及交货技术条件DIN EN 10025-91(旧标准)NF EN 10025-90(旧标准)BS 4360-90(旧标准) 焊接结构用钢材BS 4360-86(旧标准) 焊接结构用钢材DIN 17100-80(旧标准)一般结构用钢材DIN 17102-83(旧标准)焊接细晶粒钢NF A 35-501-87(旧标准)结构用钢材ISO 630-95结构用钢材 ISO 4950/2-95高强度钢钢板(正火或CR 处理) ISO 4950/3-95高强度钢板(淬火回火) ISO 4951-79高强度钢棒及型钢 ISO 4995-93结构钢热轧薄板 ISO 4996-91结构钢高强度热轧薄板 ISO 6316-93结构钢热轧钢带 JIS G 3128 焊接结构用高强度钢钢板ASTM A 514-94a焊接性调质高强度合金钢 ASTM A 517-93压力容器用低合金淬火、回火高强度钢ASTM A 709-95a桥梁结构用钢材 ISO 9328/4-91 压力用途钢板焊接性高强度细晶粒钢(N 或QT )JIS G 3114 焊接结构用耐候性热轧钢材ASTM A 588-94低合金高强度结构钢钢材 ASTM A 709-95a桥梁结构钢钢材 BS EN 10155-93耐候性结构钢DIN EN 10155-93NF EN 10155-93BS 4360-90(旧标准) 焊接结构用钢材VDEhSEW087-81耐候性结构钢NF A 35-502-84(旧标准)耐候性结构钢ISO 4952-81耐候性结构钢 ISO 5952-83耐候性结构用热轧薄板 JIS G 3125 高耐候性轧制钢材ASTM A242-93a低合金高强度结构钢钢材 BS EN 10155-93耐候性结构钢 DIN EN 10155-93NF EN 10155-93BS 4360-90(旧标准) 焊接结构钢钢材NF-A 35-502-84(旧标准)耐候性结构钢ISO 4952-81耐候性结构钢 ISO 5952-83耐候性结构用热轧薄板 JISG3103锅炉及压力容器用碳素钢及钼钢钢板ASTM A 204-93压力容器用钼钢钢板 ASTM A 285-90 压力容器用低中强度碳素钢钢板 JIS 压力容器用薄ASTM A 414-92 压力容器用碳素钢薄钢板G3115 钢板JISG3115-1压力容器用厚钢板ASTMA515-92 中、高温压力容器用碳素钢钢板 JIS G3116 高压气容器用钢板及钢带ASTM A 516-90中、低温压力容器用碳素钢钢板 JISG3118中、常温压力容器用碳素钢钢板ASTM A 612-90中、低温压力容器用高强度碳素钢钢板 ASTM A 662-93中、低温压力容器用碳-锰钢钢板 BS EN 10028-2-93压力容器用钢板 DIN EN 10028-2-93 非合金钢及合金钢 NF EN 10028-2-92 BS EN 10028-3-93 压力容器用钢板 DIN EN 10028-3-93 焊接性细晶粒钢(N)NF EN 10028-3-92JIS G 3118 常温压力容器用钢板 BS 1501/1-80(旧标准)有火及无火压力容用钢板DIN 17155-83(旧标准)锅炉用钢板NF A 36-205-82(旧标准) 锅炉、压力容器用非合金钢钢板ISO 9328/2-91压力容器用钢板非合金钢及低合金钢ISO 9328/4-91焊接性高强度细晶粒钢(N 或 QT) ISO 4978-83 焊接气体容器用钢板JIS G3124 中、常温压力容器用高强度钢钢板 BS EN 10028-2-93 压力容器用钢板DIN EN 10028-2-93 非合金钢及合金钢BS 1501/2-88有火及无火压力容器用钢板(合金钢钢板) DIN 17102-83(旧标准)焊接用细晶粒钢ISO 9328/4-91压力用途钢板焊接性高屈服点细晶粒钢(N 或 EQ)JIS G3119 锅炉、压力容器用锰-钼、锰-钼-镍钢钢板ASTM A 302-93压力容器用锰-钼、锰-钼镍钢钢板 ASTM A 533-93压力容器用锰-钼、锰-钼-镍淬火、回火钢钢板 JIS G3120压力容器用调质型锰-钼、锰-钼-镍钢钢板ASTM A 734-87a压力容器用淬火、回火高强度低合金钢钢板 JIS G4109 锅炉及压力容器用铬-钼钢钢板 ASTM A 387-92压力容器用铬-钼合金钢钢板 BS EN 10028-2-93 压力容器用钢板DIN EN 10028-2-93 非合金钢及合金钢NF EN 10028-2-92BS 1501/2-88 有火及无火压力容器用钢板(合金钢) DIN 17155-83(旧标准)锅炉用钢板 NF A 36-206-83(旧标准) 锅炉、压力容器用钢板 钼、锰-钼、铬-钼合金钢ISO 9328/2-91压力用途用钢板非合金及低合金钢ISO 9328/3-91低温用镍合金钢 JIS G4110高温压力容器用高强度铬、钼钢钢板 ASTM A 542-95 压力容器用淬火、回火、铬-钼、铬-钼-钒合金钢钢板 ASTM A 832-95压力容器用铬-钼-钒钢钢板 JIS G 3126 低温压力容器用碳素钢钢板 ASTM A 516-90常温及低温压力容器用碳素钢钢板 ASTM A 537-95压力容器用热处理碳-锰-硅钢 ASTM A 662-93中、低温压力容器用碳-锰钢 ASTM A 841-95压力容器用TMCP 钢 BS EN 10028-3-93 压力容器用钢板DIN EN 10028-3-93 焊接性细晶粒钢(N)NF EN 10028-3-93BS EN 10113-2-93焊接细晶粒结构用钢交货条件(正火及正火钢材)DIN EN 10113-2-93NF EN 10113-2-93BS 1051/1-80(旧标准)有火及无火压力容器用钢板DIN 17102-83(旧标准)焊接细晶粒钢NF A 36-208-82 低温压力容器用非合金及镍合金钢钢板ISO 9328/4-91压力用途用钢板焊接性高强度细晶粒钢(N 或 QT)JIS G 3127 低温压力容器用镍钢钢板ASTM A 203-93镍合金钢钢板 ASTM A 353-93二次正火回火9%镍合金钢钢板 ASTM A 553-95 淬火回火8镍、9镍合金钢钢板ASTM A 844-93直接淬火9%镍合金钢钢板BS 1501/2-88(旧标准)有火无火压力容器用钢板(合金钢)DIN 17280-85低温用钢 NF A 36-208-82低温压力容器用非合金及镍合金钢钢板 ISO 9328/3-91压力用途用钢板、低温用镍合金钢 JIS G3104 铆钉用圆钢ASTM A 31-95锅炉用铆钉钢钢材 ASTM A 502-93结构用铆钉 DIN 17111-80螺钉、螺帽及铆钉用低碳非合金钢 JIS G 3112 钢筋混凝土用钢棒 ASTM A 615-94混凝土加强用小钢环钢钢棒 ASTM A 706-93a混凝土加强用低合金导形钢棒 BS 4449-88混凝土加强用热轧钢棒 DIN 488/1-84钢筋混凝土用钢棒 NF A 35-015-84混凝土加强用圆钢 NF A 35-016-86混凝土加强用高附着性钢棒 JIS G 3199 钢板及扁钢的厚度方向特性 BS EN 10164-93与表面垂直方向的性能改善钢材DIN EN 10164-93NF EN 10164-93BS 6780-86(旧标准) 钢板及扁钢厚度方向深冲值VbEh*SEL096-88厚度方向应力改善钢板、扁钢 注*表示VdEh 为法国钢铁协会的标准NFA 36-202-81(旧标准) 与表面垂直方向的特性钢板ISO 7778-83钢板及扁钢的厚度方向特性 JIS G 3353 一般结构用焊接轻量H 型钢ASTM A 769-94电阻焊接型钢 JIS E1101普通钢轨 ASTM A 1-92碳素钢T 型轨 BS 11-85轨道用钢轨 ISO 5003-80非合金钢轨道用及支线用平底钢轨 JIS G 3131 热轧软钢钢板及钢带ASTM A 569一般用热轧碳素钢钢板及钢带 /A 569M-91aASTM A 621深冲用热轧碳素钢钢板及钢带 /A621M-92ASTM A 622深冲用特殊镇静钢热 /A622M-92轧碳素钢钢板及钢带 BS 1449 Part1碳素钢、碳锰钢薄钢板 SEC :91加工用热轧宽幅薄钢板 :91规定最低强度的热轧宽幅薄钢板 :91加工用热轧窄幅薄钢板 :91规定最低强度的热轧窄幅薄钢板 :91热处理用一般用途热轧窄幅薄钢板 DIN 1614/1-86非合金钢热轧钢板、钢带 NF A 36-102-93合金钢、非合金钢热轧钢板 NF A 36-301-92弯曲深冲加工用热连轧钢板(钢板、板卷)ISO 3573-86一般用、深冲用热轧碳素钢钢板 ISO 6317-82一般用、深冲用热轧碳素钢钢带 JIS G 冷轧钢板及钢ASTM A 109-93 冷轧碳素钢钢带3141 带 ASTM A 109M-91冷轧碳素钢钢带(公制) SATM A 366一般用冷轧碳素钢钢板 /A 366M-91ASTM A 619深冲用碳素钢钢板 /A 619M-92ASTM A 620深冲用特殊镇静钢冷轧碳素钢钢板 /A 620M-92BS 1449:Part1碳素钢、碳锰钢薄钢板 SEC :91加工用冷轧宽幅薄钢板 :91规定最低强度的冷轧宽幅薄钢板 :91加工用冷轧窄幅薄钢板 :91规定最低强度的窄幅薄钢板 :91热处理用一般用途窄幅薄钢板 BS EN 10130:91加工用冷轧低碳钢薄钢板 DIN 1624-87冷轧软钢带(宽度<650mm ) DIN EN 10130:91加工用冷轧低碳钢薄钢板 DIN 1623/2-86结构用冷轧钢板及钢带 NF EN 10130:91加工用冷轧低碳钢薄钢板 ISO 3574-86一般用、深冲用冷轧碳素钢钢板 ISO 5954-84保证硬度的冷轧碳素钢钢板 JIS G 3133 搪瓷用脱碳钢板及钢带ASTM A 424-92搪瓷用钢板 ISO 5001-93搪瓷用冷轧碳素钢钢板 DIN 1623/3-87搪瓷用冷轧钢板及钢带 JIS G 配管用碳素钢ASTM A 53-95 配管用焊接及无缝钢管(黑管、白管)3452 钢管 API 5L-95管线管 BS 1387-85(90)适用于BS21带螺纹的钢管 DIN 1615-84无特别规定的非合金钢焊接钢管 DIN 2440-78中等壁厚带螺纹钢管 DIN 2441-78厚壁带螺纹钢管 ISO 65-81带螺纹钢管 ISO 559-91水管、排水管、气体输送用钢管 JIS G 3454 压力配管用碳素钢钢管 ASTM A 135-93配管用电阻焊钢管 ASTM A 53-95配管用焊管及无逢钢管 API 5L-95管线管 BS 3601-87(93)压力配管用碳素钢钢管(普通级) BS 3602(1)-87(93)压力配管用碳素钢钢管(高级) DIN 1626-84 有特别规定的非合金钢焊接钢管 DIN 1629-84有特别规定的非合金钢无缝钢管 DIN 2442-63公称压力为1-100kg/cm 用带螺纹的无缝钢管 ISO 2604(II)-75压力用无缝钢管 ISO 2604(III)-75压力用电阻焊钢管 ISO 9329(I)-89压力用无缝钢管/非合金钢 ISO 9330(I)-90压力用焊接钢管/非合金钢 JIS G 3455 高夺配管用碳素钢钢管 DIN 1628-84优质非合金钢焊接钢管 DIN 1630-84 优质非合金无缝钢管 ISO 2604(II)-75压力用无缝钢管 ISO 9329(I)-89压力用无缝钢管/非合金钢 JIS G 高温配管用碳ASTM A 106-94a 高温配管用碳素钢无缝钢管3456 素钢钢管 DIN 17175-79 无缝耐热钢钢管 DIN 17177-79电阻焊耐热钢钢管BS 3602(1)-87(93) 压力配管用碳素钢钢管(对高温强度有规定) ISO 2604(II)-75 压力用无缝钢管 ISO 2604(III)-75 压力用电阻焊钢管JIS G 3457 配管用电弧焊碳素钢钢管ASTM A 134-93a配管用电焊、电弧焊钢管(>= 16") ASTM A 139-93a 配管用电焊、电弧焊钢管(>= 4") DIN 1626-84 有特别规定的非合金钢焊接钢管 ISO 559-91 水管、排水管、气体输送用钢管JIS G 3458 配合用合金钢钢管ASTM A 335高温配管用无缝铁素体钢钢管/A 335M-94 BS 3604 压力配管用铁素体合金钢钢管 (1)-90(1)无缝钢管(S) (1)-91(2)电弧焊管(W)DIN 17175-79 无缝耐热钢钢管 DIN 17177-79 电阻焊耐热钢钢管 ISO 2604(II)-75 压力用无缝钢管 ISO 2604(III)-75 压力用电阻焊钢管 JIS G 3459 配管用不锈钢钢管ASTM A 312配管用无缝及焊接奥氏体不锈钢钢管/A 312M-94bASTM A 358高温配管用焊接奥氏体铬-镍钢钢管/A 358M-94a ASTM A 376Central-station 高温配管用奥氏体钢钢管/A 376M-93配管用无缝及焊接铁素体/奥氏体不锈钢钢管/A 790M-94 BS 3605 压力配管用奥氏体不锈钢钢管 (1)-91 (1)无缝钢管(S) (2)-92 (2)电弧焊钢管(W) DIN 17455-85 一般不锈钢焊接钢管 DIN 17456-85 一般不锈钢无缝钢管 DIN 17457-85 有特别规定的不锈钢焊接钢管 DIN 17458-85 有特别规定的不锈钢无缝钢管JIS G 3460 低温配管用钢管ASTM A 333低温配管用无缝及焊接钢管/A 333M-94 BS 3603-91低温压力配管用钢管 DIN 17174-85低温用焊接钢管 DIN 17173-85 低温用无缝钢管 ISO 2604(II)-75 压力用无缝钢管 ISO 2604(III)-75 压力用电阻焊钢管 JIS G3468 配管用焊接大口径不锈钢钢管ASTM A 358高温焊接奥氏体钢钢管/A 358M-94a ASTM A 409耐蚀热用焊接大口径奥氏体钢钢管 /A 409M-92 BS 3605(2)-92压力配管用奥氏体不锈钢钢管 DIN 17455-85 一般用途不锈钢焊接钢管 DIN 17457-85 有特别规定的不锈钢焊接钢管 ISO 2604(V)-78压力用焊接奥氏体钢钢管JIS G3461锅炉、热交换器用碳素钢钢管 锅炉用电阻焊碳素钢钢管/A 178M-90a ASTM A 179热交换器及冷凝器用冷轧无缝低碳钢钢管/A 179M-90a ASTM A 192高压锅炉用碳素钢无缝钢管/A 192M-91 ASTM A 210锅炉及过热器用无缝中碳钢钢管/A 210M-91ASTM A 214热交换器及冷凝器用电阻焊碳素钢钢管/A 214M-90aASTM A 226高压锅炉及过热器用电阻焊碳素钢钢管/A 226M-90a BS 3059 锅炉及过热器用钢管(1)-93, (2)-90BS 3606-92 热交换器用钢管 DIN 17175-79 高温用无缝钢管 DIN 17177-79 高温用电阻焊钢管 ISO 2604(II)-75 压力用无缝钢管 ISO 2604(III)-75 压力用电阻焊钢管 JIS G 3462 锅炉、热交换器用合金钢管ASTM A 199热交换器及冷凝器用冷轧无缝中合金钢钢管/A 199M-92ASTM A 209锅炉及过热器用无缝碳-钼合金钢钢管 /A 209M-91 ASTM A 213锅炉、过热器及热交换器用铁素体及奥氏体合/A 213M-94b 金钢无钢管ASTM A 250锅炉及过热器用电阻焊碳-钼合金钢钢管/A 250M-91 ASTM A 423无缝及电阻焊低合金钢钢管/A 423M-91 BS 3059(2)-90 锅炉及过热器用钢管 BS 3606-92 热交换器用钢管 DIN 17175-79 高温用无缝钢管 DIN 17177-79 高温用电阻焊钢管 ISO 640(II)-75 压力用无缝钢管 ISO 2604(III)-75 压力用电阻焊钢管JIS G3463锅炉、热交换器用不锈钢钢管 ASTM A 213 锅炉、过热器及热交换器用铁素体及奥氏体合金钢无缝钢管/A 213M-94b ASTM A 213 锅炉、过热器及热交换器用铁素体称奥氏体合金钢无缝钢管/A 213M-94b ASTM A 249锅炉、过热器、热交换器及冷凝器用奥氏体不锈钢焊接钢管/A 249M-94aASTM A 268一般用途铁素体、马氏体不锈钢无缝及焊接钢管/A 268M-94ASTM A 269-94a 一般用途奥氏体不锈钢钢无缝及焊接钢管ASTM A 789一般用途铁素体/奥氏体钢无缝及焊接钢管/A 789M-94 BS 3059(2)-90 锅炉及过热器用钢管 BS 3606-92热交换器用钢管DIN 17455-85 一般用途不锈钢焊接钢管 DIN 17456-85 一般用途不锈钢无缝钢管 DIN 17457-85 有特殊规定的不锈钢焊接钢管 DIN 17458-85 有特殊规定的不锈钢无缝钢管 ISO 2604(II)-75 压力用无缝钢管 ISO 2604(III)-75 压力用电阻焊钢管 ISO 2604(V)-78 压力用奥氏体钢焊接钢管JIS G 3464 低温热交换器用钢管ASTM A 334低温用碳素钢、合金钢无缝及焊接钢管/A 334M-91 BS 3603-91低温压力用碳素钢及合金钢钢管DIN 17174-85低温用焊接钢管DIN 17173-85 低温用无缝钢管 DIN 2604(II)-75 压力用无缝钢管 ISO 2604(III)-75 压力用电阻焊钢管JIS G3467加热炉用钢管 ASTM A 161-94石油精炼用低碳及碳-钼钢无缝钢管 ASTM A 200-94石油精炼用合金钢无缝钢管 ASTM A 271-94 石油精炼用奥氏体铬-镍钢无缝钢管 JIS G 3444 一般结构用碳素钢钢管ASTM A 500-93 结构用冷轧焊接及无缝碳素钢圆管及方管 ASTM A 501-93结构用热轧焊接及无缝碳素钢钢管 DIN 17120-84 一般结构用焊接钢管 DIN 17121-94 一般结构用无缝钢管 DIN 17123-86 结构用焊接细晶粒钢钢管 DIN 17124-86结构用无缝细晶粒钢钢管 JIS G 机械结构用碳ASTM A 512-94机械结构用冷锻碳素钢钢管3445 素钢钢管JIS G3472汽车结构用电阻焊碳素钢钢管 ASTM A 513-94机械结构用电阻焊碳素钢及合金钢钢管JIS G 3473 汽缸筒用碳素钢钢管ASTM A 519-94 机械结构用碳素钢及合金钢无缝钢管 BS 1717-83(1989)自行车及摩托车用钢管JIS G 3441 机械结构用合金钢钢管 ASTM A 519-94 机械结构用碳素钢及合金钢无缝钢管 BS 1717-83(1989)自行车及摩托车用钢管JIS G 3446 机械结构用不锈钢钢管 ASTM A 511-90机械结构用不锈钢无缝钢管JIS G 3466 不锈钢方形钢管ASTM A 500-93机械结构用碳素钢冷轧焊接及无缝管圆管及方管JIS G 3447 不锈钢民用钢管ASTM A 270-90卫生工业无缝及焊接奥氏体不锈钢钢管JIS G 4903 配管用镍铬合金钢无缝钢管ASTM B 167-94a镍-铬-铁合金无缝钢管 ASTM B 407-95镍-铁-铬合金无缝钢管 ASTM B 423-95 镍-铁-铬-钼-铜合金无缝钢管JIS G4904 热交换器用镍铬合金钢无缝钢管ASTM B 163-95a冷凝器、热交换器用镍及镍合金钢无缝钢管 ASTM B 167-94a 镍-铬-铁合金无缝钢管 ASTM B 407-95镍-铁-铬合金无缝钢管 ASTM B 423-95镍-铁-铬-钼-铜合金无缝钢管JIS A5525钢管桩ASTM A 252-93 焊接及无缝钢管桩JIS C 钢制电线管BS 31-40(1988) 电气配线用钢制配线管及连接件8305ANSI C 镀锌钢制电线管ANSI C 镀锌金属电线管UL *6-93金属制电线管1. 机构结构用碳素钢、合金钢标准号及名称牌号ISO683/1,10,11AISISAEBS 970Part1,3 BSEN10083-1,2DIN 17210 DIN EN10083-1,2NF A35-551 NFEN10083-1,2TOCT 4543JIS G 4051S10C C101010040A1Ck10XC10-机械结构用碳素钢045A1C10045M1S12C1012040A12-XC12-S15CC15E41015055M15Ck15--C15M2C15S17C-1017--XC18-S20C-1020070M21C221C22-1C222C222C222C223C223C223C22S22C-1023----S25C C2510251C251C251C25-C25E42C252C252C25C25M23C253C253C25S28C-1029---25GS30C C301030080A31C301C3030G C30E4080M32C302C30C30M21C303C303C302C303C30S33C-----30GS35C C3510351C351C351C3535G C35E42C352C352C35C35M23C353C353C35S38C1038--35GS40C C401039080M41C401C4040G C40E410401C402C402C40C40M22C403C403C403C40S43C1042080A42-40G1043S45C C4510451C451C451C4545G C45E410462C452C452C45C45M23C453C453C45S48C080A47-45GS50C C501049080M51C501C5050G C50E41C502C502C50C50M22C503C503C503C50S53C 1050---50G 1053S55C C551055070M551C551C55-C55E41C552C552C55C55M22C553C553C553C55S58C C6010591C601C601C6060G C60E410602C602C602C60C60M23C603C603C60S09CK--045A1Ck10XC10-045M1S15CK---Ck15XC12-S20CK----XC18-JIS G 4102SNC236-----40XH 镍铬钢SNC415------SNC631-----30XH3ASNC81515NiCr13-655M13--SNC836------JIS G 4103SNCM22020NiCrMo28615805A221NiCrMo220N C D2-镍铬钼钢20NiCrMoS28617805M221NiCrMoS2 8620805A228622805M22SNCM24041CrNiMo28637----41CrNiMoS28640SNCM415------SNCM420-4320---20XH2M(20XHM)SNCM431------SNCM439-4340----SNCM447------SNCM616------SNCM625------SNCM630------SNCM815------JIS G 4104SCr41516MnCr5---16MC515X铬钢16MnCrS515XASCr42020Cr45120-20CrS420MC 520X 20CrS4SCr43034Cr4513034Cr434Cr434Cr430X 34CrS4513234CrS434CrS434CrS4SCr43534Cr4513237Cr437Cr437Cr435X 34CrS437CrS437CrS437CrS437Cr437CrS4SCr44037Cr45140530M441Cr441Cr440X37CrS441Cr441CrS441CrS441Cr441CrS441CrS4SCr445-----45X JIS G 4105SCM415------铬钼钢SCM41818CrMo4----20XM 18CrMoS4SCM420--708M2--20XM SCM421------SCM430-4131---30XM 30XMASCM432SCM43534Cro4413734CrMo434CrMo434CrMo435XM 34CrMoS434CrMoS434CrMoS434CrMoS4SCM44042CrMo44140708M442CrMo442CrMo4-42CrMo4142709M442CrMoS442CrMoS4S4042CrMo442CrMoS4SCM445-4145----4147SCM822------JIS G 4106SMn42022Mn61522150M19---机械结构用锰钢及铬锰钢SMn433-1534150M36--30G235G2SMn43836Mn61541150M36--35G240G2SMn44342Mn61541---40T245T2SMnC420------SMnC443------JIS G 4202SACM64541CrA1-Mo74-----铝铬钼钢JIS G 4052SMn420H22Mn61522H----保证淬透性SMn433H------结构钢SMn438H36Mn61541H----SMn443H42Mn61541H----SMnC420H------SMnC443H------SCr415H 16MnCr5---16MC515X 16MnCrS5SCr420H 20Cr45120H-20Cr420MC520X 20CrS4SCr430H 34Cr45130H34Cr434Cr434Cr430X 34CrS45132H34CrS434CrS434CrS4SCr435H 34Cr45135H37Cr437Cr437Cr435X 34CrS437CrS437CrS437CrS437Cr437CrS4SCr440H 37Cr45140H41Cr441Cr441Cr440X 37CrS441CrS441CrS441CrS441Cr441CrS4SCM415H------SCM418H 18CrMo4-----18CrMoS4SCM420H--708H2---SCM435H 34CrMo44135H34CrMo434CrMo434CrMo4-34CrMoS44137H34CrMoS434CrMoS434CrMoS4SCM440H 42CrMo44140H42CrMo442CrMo442CrMo4 42CrMoS44142H42CrMoS442CrMoS442CrMoS4SCM445H-4145H----4147HSCM822H------SNC415H------SNC631H------SNC815H15NiCr13-655H13---SNCM220 H 20NiCrMo28617H805H17-20N C D2-20NiCrMoS28620H805H28622H805H22SNCM420H-4320H----JIS G 4107SNB5-501----高温用合金钢螺栓材SNB7-4140708M442CrMo4--4142709M44145630-860SNB16--670-86040CrMo - V4742CDV4-JIS G 4108SNB21-1~5--670-86040CrMo - V4742CDV4-特殊用途合金钢螺栓用棒钢SNB22-1~5-4142H-42CrMo4--SNB23-1~5-E4340H----SNB24-1-4340----~5注1) BS 15062) DIN 17240, DIN 1654 Part43) NF A35-5582. 不锈钢、耐热钢标准号及名称JIS ISO美国英国德国法国原苏联欧洲标准UNS AISI BS DIN NF GOCT ENJIS G4303~ 4305SUS201A-2S20100201Z12CMN17-07AzZ12CrMnNiN17-7-5不锈钢棒SUS202A-3S20200202284S1612X17T9AH4X12CrMnNiN18-9-5热轧不锈钢钢板及钢带SUS301l4S30100301301S21X12CrNi7 7Z11CN17-0807X16H6X10CrNi18-8冷轧不锈钢钢板及钢带SUS301LX12CrNi18-7X2CrNiN18-7 SUS X12CrNiN17301J17 JIS G4308~ 4309SUS30212,10(1)S3*******302S25Z12CN18-0912X18H9不锈钢线材SUS302BS3*******B不锈钢丝SUS30317S30300303303S21X10CrNiS189Z8CNF18-09X8CrNiS18-9 SUS303Se17a S3*******Se303S4112X18H10EJIS G4313~ 4315SUS30411S30400304304S31X5CrNi18 10Z7CN18-0908X18H10X4CrNi18-10弹簧用不锈钢带SUS304L10S30403304L304S11X2CrNi9 11Z3CN19-1103X18H11X2CrNi19-11弹簧用不锈钢丝SUS304N1S3*******NZ6CN19-09Az冷镦SUS S30452用不锈钢丝304N 2SUS304L N10NS30453 304LNX2CrNiN18 10Z3CN18-10AzX2CrNiN18-1JIS G 4317~4320 SUS 304J1热轧不锈钢等边角钢 SUS 304J2冷轧不锈钢钢棒 SUS304J3S30431S30431不锈钢锻件用钢坯 SUS305 13S30500 305305S19 X5CrNi18 12Z8CN18-12 06X18H11 X4CrNi18-12冷成形不锈钢等边SUS305J1角钢SUS309S 13(1)S3*******SZ10CN24-13SUS310S 16(1)S3*******S310S31Z8CN25-210X23H18X6CrNi25-20SUS31620S31600316316S31X5CrNiMo1712 2Z7CND17-12-02X4CrNiMo17-12-220aX5CrNiMo1713 3Z6CND18-12-03X4CrNiMo17-13-3SUS316L 19S31603316L316S11X2CrNiMo1713 2Z3CND17-12-02X2CrNiMo17-12-219aX2CrNiMo1714 3Z3CND17-13-0303X17H14M3X2CrNiMo17-13-3SUS316N S3*******NX2CrNiMo18-14-3SUS316L N 19N S3*******LNX2CrNiMoN17 12 2Z3CND17-11AzX2CrNiMoN17-11-219aNX2CrNiMoN17 13 3Z3CND17-12AzX2CrNiMoN17-13-3SUS316T i S31635X6CrNiMoTi17 12 2Z6CNDT17-1208X17H13M2TX6CrNiMoTi17-12-2SUS 316JSUS 316J 1L SUS317S31700317317S16SUS317L 24S31703317L317S12X2CrNiMo1816 4Z3CND19-15-04X2CrNiMo18-15-4SUS317L N S31753Z3CND19-14AzX2CrNiMoN18-12-4SUS317J 1X2CrNiMoN17 -13-5SUS317J2SUS317J3LSUS317J4LN08367 SUS317J A-4N08904N08904904S14Z2NCDU25-20N1CrNiMoCuN25-25-5SUS 32115、11(1)S3*******321S31X6CrNiTi1810Z6CNT18-1008X18H10TX6CrNiTi18-10SUS 34716、12(1)S3*******347S31X6CrNiNb18-10Z6CNNb18-1008X18H12BX6CrNiNb18-10SUS384D25(2)S3*******Z6CN18-16SUSXM7D26(2)S3*******Cu394S17Z2CNU18-10X3CrNiCu18-9-4XUSXM15 J1S38100Z15CNS20-12X1CrNiSi18-15-4SUS329J1S3******* SUS329J 3L S39240S31803Z3CNDU22-05Az08X21H6M2TX2CrNiMoN22-5-3SUS329J 4L S39275S3126Z3CNDU25-07AzX2CrNiMoCuN25-6-3SUS4052S40500405405S17X6CrA113Z8CA12X6CrA113SUS410LZ3C14429S4******* SUS4308,4(1)S4*******430S17X6Cr17Z8C1712X17X6Cr17SUS430F8a S4*******F X7CrMoS18Z8CF17X6CrMoS17 SUS430L X 8b S43035X6CrTI17,X6CrNb17Z4CT17X3CrTi17X2CrTi17SUS430J1LZ4CNb17X3CrNb17 SUS4349c S4*******434S17X6CrMo17 1Z8CD17-01X6CrMo17-1SUS436L S4*******X1CrMoTi16-1SUS 436J 1L SUS444F1S44400444Z3CDT18-02X2CrMoTi18-2SUS447J1S44700SUSXM27S44627Z1CD26-01SUS403S4******* SUS4103S41000410410S21X10Cr13Z13C13X12Cr13SUS410S 1S41008410S403S17X6Cr13Z8C1208X13X6Cr13SUS410F2SUS410J1S41025 SUS4167S41600416416S21Z11CF13X12CrS13SUS420J 14S42000420420S29X20Cr13Z20C1320X13X20Cr13SUS420J 25S42000420420S37X30Cr13Z33C1330X13X30Cr13SUS420FS4*******F Z30CF13X29CrS13 SUS420F 2 SUS 429J 1 SUS4319b S4*******431S29X20CrNi17 2Z15CN16-0220X17H2X19CrNi17-2SUS440AS4*******A Z70C15X70CrMo15 SUS440BS4*******BSUS440CA-1b S4*******C Z100CD1795X18X105CrMo17 SUS440F S44020S4402SUS6301(3)S17400S1740Z6CNU17-04X5CrNiCuNb16-4SUS6312(3)S17700S1770X7CrNiA1 177Z9CNA17-0709X17H7IOX7CrNiA117-7SUS632J1 JIS G4311~ 4315SUH31331S42Z35CNWS14-1445X14H14B2M耐热钢棒SUH35X53CrMnNi214349S52Z52CMN21-09耐热钢板-4SUH36S63008349S54X53CrMnNi21 9Z55CMN21-09AZ55X20G9AH4SUH37S63017381S34SUH 38 SUH30913(1)S3*******309S24Z12CN24-13SUH31017(1)S3*******310S24CrNi2520Z12CN25-2020X25H20C2SUH33018(1)N08330N0833Z12NCS35-16SUH660S66286Z6NCTV25-20SUH66112(4)R30155SUH21CrA11205SUH 4091Ti,1(1)S4*******409S19X6CrTi12Z6CT12SUH Z3CT12X2CrTi12409LSUH4467(1)S4*******Z12C2515X28SUH 1X4CrSi93(4)S65007401S45X45CrSi9 3Z45CS9SUH3Z40CSD1040X10C2MSUH 4X85CrMoV18 2(4)443S65Z80CSN20-02SUH 11X85CrSi8 2(4)40X9C2SUH 60020X12BHM B(I)PSUH616S42200注:1. ISO是根据ISO 683/13对照。
UL746C-Chinese.

American National StandardDECEMBER 27,1995(本标题页重打于:1999年7月7日)1UL 746CStandard forPolymeric Materials - Use inElectrical Equipment Evaluations初版时,本标准被冠名为“Test for Polymeric Enclosure of Portable Electrical Appliances”,并编号为UL 746.51。
初版—1973年6月再版—1978年3月第三版—1989年5月第四版1995年12月27日在页面注明December 27,1995的段落,已被美国国家标准局(ANSI)批准。
为了维持ANSI的批准文本,在发布已修订的页面及新增页面时,这些页面被保留下来。
写在某些要求之后的生效日期,是UL确定的日期。
批准为ANSI/UL 746C-1990,1990年11月16日批准为ANSI/UL 746C-1995,1995年6月12日国防部(DoD)在1998年11月3日采纳UL 746C标准,新增页面或新版本的出版不会使DoD的采纳失效。
通过修正已有页面及加入新页面来对本标准进行修订。
只有在加入最新修订内容后,UL标准才成为最新标准,所有修正条款都在最新的已更正过的条款后列出来。
ISBN 1-55989-949-2COPYRIGHT© 1973, 1999 UNDERWRITERS LABORATORIES INC.目录项目内容页码前言简介1 范围 62 概述 63 术语8 外壳4 概述105 便携式器具106 固定式或驻立式器具137 代用材料要求16 电气绝缘要求8 机械/电性能要求189 内垫板27 性能要求10 概述30 电性能11 概述3012 绝缘强度3013 大电流电弧引燃(HAI)3014 灼热电阻丝引燃(HWI)-异常过载测试或整机电热棒测试3115 斜面漏电起痕电压3216 体积电阻率32 阻燃性17 阻燃性- 12mm火焰3218 阻燃性- 3/4”火焰3219 阻燃性-127mm(5”)火焰3320 塑壳阻燃性- 746 -5VS 3321 塑壳阻燃性- 大面积要求3322 防火涂层33项目内容页码机械性能23 压缩强度3424 冲击强度34 塑件的尺寸变化24A 蠕变35 耐久性25 耐久性3526 紫外光照射3627 浸水37 特殊使用要求28 异常工作3729 恶劣条件38 热性能30 成形应力松驰变形3831 马达输入3832 成形应力松驰变形后电源线拉力测试3833 温度要求-总则3834 功能使用温度指数3935 普通热指数4036 相对热指数4337 相对热性能4338 相对热性能(第二方案)4439 短时温度高于最高使用温度47 特殊应用40 概述- 胶粘剂4741 功能分析4742 分析程序4743 线圈架4844 绝缘保护涂层48 金属化零件45 概述4846 塑性镀层4947 脆性镀层49项目内容页码性能测试48 概述4949 整机耐电弧测试5050 异常过载测试5051 阻燃性- 12mm火焰测试5252 阻燃性- 3/4”火焰测试5353 阻燃性-127mm(5”)火焰测试5454 塑壳阻燃性- 746 -5VS 测试5455 防火涂层测试5656 压缩强度测试5757 冲击强度测试5858 紫外光照射测试6059 浸水测试6460 异常工作测试6461 恶劣条件测试6462 成形应力松驰变形测试6562A 整机球压测试6563 马达输入测试6564 相对热性能6565 相对热性能(第二方案)6666 短时温度高于最高使用温度6667 温度要求- 举例说明6868 温度要求- 举例说明(第二方案)6969 胶粘剂- 特殊应用70 线圈架70 绝缘保护涂层测试7371 金属化零件- 性能要求7871A 胶带测试7872 漏电流测试8073 整机电热棒测试82 标识74 概述84A.本标准包含“范围”所述产品的基本要求。
74649-2501中文资料

FEATURES AND SPECIFICATIONS2.00 by 2.25mm (.079 by .089") Pitch 5-Row, 6-Row and 8-Row VHDM-HSD ™Module-to-BackplaneConnector SystemFeatures and Benefitss Up to 5.0 Gbps bandwidth per signal pair enables state-of-the-art system design and performance s2.00 by 2.25mm (.079 by .089”) pitch provides real signal density of 10 differential pairs for 5-row and 6-row and 15 differential pairs for 8-row per centimeter (25 and 38 pairs respectively per inch) sMinimum distance between daughtercards:– 5-row system offers 15.00mm (.591")– 6-row system offers 18.00mm (.709")– 8-row system offers 22.00mm (.866")sGround planes between signal columns provide tightly controlled impedance for rise times down to 50 picoseconds (10-90%). This ensures very low cross talk between signals within and between columnssGround pins are in the same grid as signal pins, allowing wider channels for PCB routing and traces up to 0.25mm (.010”) wides6-row or 8-row VHDM-HSD wafers can be applied to the same stiffener as standard VHDM ® 6-row or 8-row wafers. The combination of VHDM and VHDM-HSD wafers, grouped together in the same stiffener, provides cost effective solutions to different performance parametersThe Very High Density Metric High Speed Differential (VHDM-HSD) connector system has been expanded to include 5-row, 6-row and 8-row daughtercard and backplane modules. VHDM-HSD is designed for differential-pair architecture applications that require very high interconnect density and signal integrity in a single-ended configuration.The same great modularity features and components ofVHDM are provided in the VHDM-HSD. The 5-row and 6-row systems feature 2 signal pairs per column and the8-row system features 3 signal pairs per column inincrements of 10 and 25 columns. All circuits areutilized as signal circuits without the need to use some asground circuits.The daughtercard connector consists of a metal stiffener just as with the VHDM system. The system combines the signal wafers, power modules and guidance modules into one continuous connector that can be ordered as a single specific part number. The card pitch of the VHDM-HSD 8-row system is the same as the standard VHDM 8-row system, allowing both signal wafer types for single ended and differential pair to be used together. Thismodularity and design flexibility allow engineers toincorporate both connector systems on the sameplatforms. The system is based on a 2.00mm (.079")pitch and includes vertical and right angle products thatcan be configured up to 2000 circuits. The maximumlength of a daughtercard connector on a single stiffeneris 300mm (12").The backplane connectors feature headers with open ends for continuous side-to-side stacking and headers with guide pins and polarizing keys on either end to aid in proper alignment of the mating daughtercard. The power modules occupy just a small width and hold sequentially matable pins that each manage 10.0 amps of current.Molex offers application tooling for pressing VHDM-HSD connectors into PCBs as separate modules or as complete assemblies. VHDM-HSD cable assemblies are also available for connecting backplane headers to high-performance cables.Note: VHDM and VHDM-HSD are trademarks or registered trademarks of Teradyne,Inc.元器件交易网FEATURES AND SPECIFICATIONS2.00 by 2.25mm (.079 by .089") Pitch 5-Row, 6-Row and 8-Row VHDM-HSD ™Module-to-Backplane Connector SystemPress Fit Right Angle ReceptacleApplicationsThe VHDM-HSD products are used in very high speed, short rise-time, high circuit count applications connecting daughtercards to the backplane:s Network Switches s Routerss Computer Serverss Telecommunication Equipment sInternetworking DevicesORDERING INFORMATIONDaughtercard AssemblyConfiguration 5-Row 6-Row 8-Row Signal wafers, power modules and guide modules sequentiallyassigned by application VHDM-HSD wafers74670-XXXX 74880-XXXX 74680-XXXX Combination of VHDM and VHDM-HSD wafers74686-XXXX 74886-XXXX74686-XXXXBackplane Header Signal Module Standard Loaded Pin Height 0.76µm (30µ”) Gold5-Row6-Row8-Row10-Column 25-Column 10-Column 25-Column 10-Column 25-Column Open Ended4.25mm (.167”)74695-100374695-250374979-100374979-250374649-100374649-25034.75mm (.187”)74695-100174695-250174979-100174979-250174649-100174649-25015.15mm (.203”)74695-100474695-250474979-100474979-250474649-100474649-25046.25mm (.266”)74695-100274695-250274979-100274979-250274649-100274649-2502Left Guide PinNo Polarizing Key 4.25mm (.167”)74696-100374696-2503––74650-100374650-25034.75mm (.187”)74696-100174696-2501––74650-100174650-25015.15mm (.203”)74696-100474696-2504––74650-100474650-25046.25mm (.266”)74696-100274696-2502––74650-100274650-2502Left Guide Pin“A” Polarizing Key 4.25mm (.167”)74696-101374696-2513––74650-101374650-25134.75mm (.187”)74696-101174696-2511––74650-101174650-25115.15mm (.203”)74696-101474696-2514––74650-101474650-25146.25mm (.266”)74696-101274696-2512––74650-101274650-2512Right Guide PinNo Polarizing Key 4.25mm (.167”)74697-100374697-2503––74651-100374651-25034.75mm (.187”)74697-100174697-2501––74651-100174651-25015.15mm (.203”)74697-100474697-2504––74651-100474651-25046.25mm (.266”)74697-100274697-2502––74651-100274651-2502Right Guide Pin“A” Polarizing Key 4.25mm (.167”)74697-101374697-2513––74651-101374651-25134.75mm (.187”)74697-101174697-2511––74651-101174651-25115.15mm (.203”)74697-101474697-2514––74651-101474651-25146.25mm (.266”)74697-101274697-2512––74651-101274651-2512Backplane Power and Guide Components5-Row and 6-Row 8-Row Power Module 74029-600074029-8000Keying Post 74069-001074069-0010Guide Pin74076-0001/000274076-0001/0002Americas Headquarters Lisle, Illinois 60532 U.S.A.1-800-78MOLEX amerinfo@ Far East North Headquarters Yamato, Kanagawa, Japan 81-462-65-2324feninfo@ Far East South Headquarters Jurong, Singapore 65-6-268-6868fesinfo@ European Headquarters Munich, Germany 49-89-413092-0eurinfo@ Corporate Headquarters 2222 Wellington Ct.Lisle, IL 60532 U.S.A.630-969-4550Visit our Web site at /product/backplan/hsd.htmlOrder No. USA-158 Rev. 2Printed in USA/2.5K/JI/JI/2003.03©2003, MolexNote: VHDM and VHDM-HSD are trademarks or registered trademarks of Teradyne,Inc.元器件交易网。
各国常用材料牌号对照表

35
CK35
A 194 Gr 2H
K 04 002
板材
Q255
A 516 Gr 65/70
K 02 403/K 02 700
管材
20Mn
A 106 Gr B
K 03 006
配件
20
A105
K 03 504
AISI410钢
棒料
42CrMo
42CrMo4
A 434 Class BB
G 41 400c
A 351 Gr CF3M
J 92 800
A 744 Gr CF3M
轧材/锻件
00Cr19Ni10
X2CrNi19 11
A 182 Gr F 304 L
S 30 403
00Cr17Ni14Mo2
X2CrNiMo17 13 2
A 182 Gr F 316 L
S 31 603
棒材
00Cr19Ni10
X2CrNi19 11
X2CrNiMoN22 5
A 182 Gr F 51
S 31 803
螺栓和螺柱
00Cr24Ni6Mo3N
X2CrNiMoN22 5
A 276 S31803
S 31 803
螺母
00Cr24Ni6Mo3N
X2CrNiMoN22 5
A 276 S31803
S 31 803
创作时间:二零二一年六月三十日
螺栓和螺柱
35CrMoV
40CrMoV47
A 193 GrB7
G 41 400
螺母
30CrMo
24CrMo5
A 194 Gr 2H
K 04 002
12%铬钢
常用阀门材料中美对照热处理规范以机械性能以及适用介质温度

高温用奥氏体
不锈钢铸钢
A351
CF3
ZG00Cr18Ni10
1040-1150快冷
485
205
<187
硝酸、尿素
<425
A351
CF3M
ZG00Cr17Ni14Mo2
1040-1150快冷
485
205
<187
尿素、甲胺液
<455
A351
CN7M
ZG0Cr20Ni29Cu4Mo2
仅用于固溶处理
1050-1100快冷
515
205
<187
硝酸、蒸气
<800/540
A182F304H
(1Cr18Ni9)
1050-1100快冷
515
205
<187
硝酸、蒸气
<800/540
A182F321
0Cr18Ni9Ti
1050-1100快冷+
860-880稳定处理
515
205
<187
硝酸、蒸气
<800/540
高温用铁素体
A182
F50
(00Cr25Ni6Mo2N)
1050-1100
690-900
450
<197
海水
<540
奥氏体钢锻件
A182
F51
(00Cr22Ni5.5Mo3N)
1020-1080
620
450
<197
水、油品、蒸、Cl离
<425
A182
F1
16Mo(YB)
900-950
美标ASTM标准的中文对照大全

美标A S T M标准的中文对照大全(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除ASTM A6/A6M-2004 a结构用轧制钢板、型钢、板桩和棒钢通用要求ASTM A36/A36M2004碳结构钢标准规范ASTM A106-2002a高温用无缝碳钢公称管规范ASTM A143-2003热侵镀锌结构钢制品防脆化的标准实施规程和催化探测方法ASTM A179/A179M-1990a(R2001)热交换器和冷凝器用无缝冷拉低碳钢管标准规范ASTM A192-2002高压设备用无缝碳钢锅炉管标准规范ASTM A209/A209M-2003锅炉和过热器用无缝碳钼合金钢管标准规范ASTM A210/A210M-2003锅炉和过热器用无缝中碳钢管技术条件ASTM A213/A213Mb-2004锅炉过热器和换热器用无缝铁素体和奥氏体合金钢传热管技术条件ASTM A234/A234M-2004中、高温用锻制碳钢和合金钢管道配件ASTM A252-98(R2002)焊接钢和无缝钢管桩的标准规范ASTM A262-2002a探测奥氏体不锈钢晶间腐蚀敏感度的标准实施规范ASTM A269/A269-2004通用无缝和焊接奥氏体不锈钢管标准规范ASTM A333/A333M-2004低温设备用无缝和焊接钢管的规范标准ASTM A334/A334M-2004低温设备用无缝和焊接碳素和合金钢管的标准规范ASTM A335-2003高温设备用无缝铁素体合金钢管标准规范ASTM A370/A370M-2003a钢制品力学性能试验方法和定义标准ASTM A387/A387M-2003压力容器用铬钼合金钢板的标准规范ASTM A403/A403M-2004锻制奥氏体不锈钢管配件的标准规范ASTM A450/A450M-2004碳素钢管、铁素体合金钢管及奥氏体合金钢管一般要求的标准规范ASTM A500-2003a圆形与异型冷成型焊接与无缝碳素钢结构管标准规范ASTM A515-2003中温及高温压力容器用碳素钢板的标准规范ASTM A516-2004a中温及低温压力容器用碳素钢板的标准规范ASTM A530-2003特种碳素钢和合金钢管一般要求的标准规范ASTM A615/A615M-2004a混凝土配筋用异形钢筋和无节钢胚棒标准规范ASTM A703/A703M-2004标准技术条件—承压件钢铸件通用要求ASTM A781/A781M-2004a铸件、钢和合金的标准规范及通用工业的一般性要求ASTM A788/A788M-2004a标准技术条件—钢锻件通用要求ASTM B209/B209M -2004铝和铝合金薄板和中厚板标准规范ASTM E6-2003金属材料布氏硬度的标准测试方法ASTM E18-2003金属材料洛氏硬度和洛氏表面硬度的标准测试方法ASTM E29-2002使用有效数字确定试验数据与规范符合性作法ASTM E8-2004金属材料拉伸试验的标准测试方法ASTM E94-2004放射性检查的标准指南ASTM E125-1963(R2003)铁铸件的磁粉检验用标准参考照片ASTM E164-2003焊件的超声接触检验的标准操作规程ASTM E208-1995a(R2000)用导向落锤试验测定铁素体钢无塑性转变温度的标准试验方法ASTM E213-2004金属管超声检验方法ASTM F36-1995测定垫片材料压缩率及回弹率的标准试验方法ASTM F37-1995垫片材料密封性的标准试验方法ASTM F38-1995垫片材料的蠕变松弛的标准试验方法ASTM F112-1995色覆垫片密封性能的标准试验方法ASTM F146-1995a垫片材料耐液体标准试验方法ASTM F1311-1995(R2001)大口径组装式碳钢法兰标准规范ASTM G1-2003腐蚀试样的制备、清洁处理和评定用标准实施规范ASTM G36-73(R1981) 参考资料标准实用规程:在沸的氯化镁溶液中进行的应力腐蚀裂纹试验ASTM G46-1976(R1986) 参考资料标准实用规程:麻点腐蚀的检验和评定ASTM G48-1976(R1980) 参考资料使用三氯化铁溶液做不锈钢及其合金的耐麻点腐蚀和抗裂口腐蚀性试验的标准方法ASTM标准中译本丛书(一)碳钢、铸铁、不锈钢及合金钢材料标准规范(含18个标准)ASTM A105/A105M-2002管道部件用碳钢锻件ASTM A126-1995(R2001)阀门、法兰和管道附件用灰铁铸件ASTM A181/A181M-2001通用管路用碳钢锻件标准规范ASTM A193/A193M-2001高温用合金钢和不锈钢螺栓材料ASTM A194/A194M-2001 a高温用合金钢和不锈钢螺栓材料ASTM A216/A216M-2001 a高温用可熔焊碳钢铸件标准规范ASTM A217/A217M-2002高温承压件用马氏体不锈钢和合金钢铸件标准规范ASTM A276-2002 a不锈钢棒材和型材ASTM A278/A278M-2001高温不超过650°F(350℃)的承压部件用灰铸铁件 ASTM A320/A320M-2002低温用合金钢栓接材料 ASTM A350/A350M-2002要求冲击韧性试验的管件用碳钢及低合金钢锻件标准规范 ASTM A351/A351M-2000承压件用奥氏体、奥氏体-铁素体(双相)钢铸件规范ASTM A352/A352M-1993(R1998)低温承压件用铁素体和马氏体钢铸件标准规范 ASTM A395/A395M-1999高温用铁素体球墨铸铁承压铸件 ASTM A439-1983(R1999)奥氏体球墨铸铁件 ASTM A536-1984(R1999)球墨铸铁件 ASTM A694/A694M-2000高温输送用管法兰、管件、阀门及零件用碳钢和合金钢锻件标准规范 ASTM A965/A965M-2002高温高压部件用奥氏体钢锻件 ASTM标准中译本丛书(二)法兰、管件、阀门及部件(含9个标准) ASTM A182/A182M-2002高温用锻制或轧制合金钢法兰、锻制管件、阀门和部件 ASTM A961-2002管道用钢制法兰、锻制管件、阀门和零件的通用要求标准规范 ASTM B462-2002高温耐腐蚀用锻制或轧制的UNS NO6030、UNS NO6022、UNS NO6200、UNS NO8020、UNS NO8024、UNS NO8026、UNS NO8367、UNS NO10276、UNS N10665、UNS N10675和UNS R20033合金管法兰、锻制管件、阀门和零件标准规范 ASTM F885-1984公称管径为NPS 1/4~2的青铜截止阀外形尺寸标准规范 ASTM F992-1986(R2001)阀门铭牌标准规范 ASTM F993-1986(R2001)阀门锁紧装置标准规范 ASTM F1030-1986(R1998)阀门操作装置的选择准则ASTM F1098-1987(R1998)公称管径有NPS2~24的蝶阀外形尺寸标准规范。
The Guide to PAS 2050-2011

How to carbon footprint your products, identify hotspots and reduce emissions in yoursupply chainThe Guide to PAS 2050:2011The Guide toPAS2050:2011How to carbon footprint your products, identifyhotspots and reduceemissions in yoursupply chainAcknowledgementsThe development of this Guide was co-sponsored by:Defra (Department for Environment, Food and Rural Affairs)DECC (Department of Energy and Climate Change)BIS (Department for Business, Innovation and Skills)Acknowledgement is given to ERM who authored this Guide. ERM has completed over 1,000 carbon footprints across more than 50 sectors and provides carbon footprinting and carbon reduction services to both UK and international clients. Acknowledgement is also given to the following organizations who assisted in its development:ADAS UK LimitedDefraFood and Drink FederationInstitute of Environmental Management and AssessmentCarbon TrustFirst published in the UK in 2011byBSI389 Chiswick High RoadLondon W4 4AL© British Standards Institution 2011All rights reserved. Except as permitted under the Copyright, Designs and Patents Act 1988, no part of thispublication may be reproduced, stored in a retrieval system or transmitted in any form or by any means –electronic, photocopying, recording or otherwise – without prior permission in writing from the publisher.Whilst every care has been taken in developing and compiling this publication, BSI accepts no liability forany loss or damage caused, arising directly or indirectly in connection with reliance on its contents exceptto the extent that such liability may not be excluded in law.While every effort has been made to trace all copyright holders, anyone claiming copyright should get intouch with the BSI at the above address.BSI has no responsibility for the persistence or accuracy of URLs for external or third-party internet websitesreferred to in this book, and does not guarantee that any content on such websites is, or will remain,accurate or appropriate.The right of ERM to be identified as the author of this Work have been asserted by the authors inaccordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.T ypeset in Futura by Helius – Printed in Great Britain by Berforts. British Library Cataloguing in Publication DataA catalogue record for this book is available from the British LibraryISBN 978-0-580-77432-4Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1What is PAS 2050? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Why should I use PAS 2050? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Why this Guide? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2The 2011 revision of PAS 2050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2Making product carbon footprinting work in practice . . . . . . . . . . . . . . . . . . . . .3The stepwise footprinting process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Step 1. Scoping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51.1. Describe the product to be assessed and the unit of analysis . . . . . . . . . . . .51.2. Draw a map of the product life cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61.3. Agree and record the system boundary of the study . . . . . . . . . . . . . . . . . .71.4. Prioritize data collection activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Step 2. Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Types of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132.1. Draw up a data collection plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142.2. Engaging suppliers to collect primary data . . . . . . . . . . . . . . . . . . . . . . . .142.3. Collecting and using secondary data . . . . . . . . . . . . . . . . . . . . . . . . . . . .162.4. Collecting data for ‘downstream’ activities . . . . . . . . . . . . . . . . . . . . . . . .182.5. Assessing and recording data quality . . . . . . . . . . . . . . . . . . . . . . . . . . . .19Step 3. Footprint calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213.1. General calculation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213.2. Calculations for specific aspects of the footprint . . . . . . . . . . . . . . . . . . . .30Step4. Interpreting footprint results and driving reductions . . . . . . . . . . . . . . . . . . .424.1. Understanding carbon footprint results . . . . . . . . . . . . . . . . . . . . . . . . . . .42ContentsContents4.2. How certain can I be about the footprint and hotspots? . . . . . . . . . . . . . . .434.3. Recording the footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444.4. How can I use footprinting to drive reductions? . . . . . . . . . . . . . . . . . . . .45 Annex A. Further examples of functional units . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Annex B. Setting functional units and boundaries for services . . . . . . . . . . . . . . . . . .49 Annex C. Orange juice example: data prioritization . . . . . . . . . . . . . . . . . . . . . . . .51 Annex D. Primary data collection tips and templates . . . . . . . . . . . . . . . . . . . . . . . .59 Annex E. Sampling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Annex F. A data quality assessment example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Annex G. Biogenic carbon accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Annex H. Worked CHP example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Annex I. Supplementary requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .741Introduction2Introductionclarification on only one, or a small number, of aspects of the calculation process. The concept of supplementary requirements is akin to ‘Product Category Rules’ (i.e. developed through ISO 140255)and ‘Product rules’ (GHG Protocol Product Standard) and may include either of these (if consistent with PAS 2050).This symbol is used in this Guide to denote where you might be able to usefully refer to supplementaryrequirement documents for further clarity or information.Before you begin to carry out your assessment, look to see if there are supplementary requirements that may help you assess the emissions associated with your product. Where they exist they should always be used.If there are no supplementary requirements for your sector, check to see whether other rules or guidance may be applicable.6)If not, you may even want to consider starting to develop supplementary requirements within your industry.For further discussion of supplementary requirements,see Annex I.The Guide to PAS 2050:20113Making product carbonfootprinting work in practiceProduct carbon footprinting should be used as a practical tool that is tailored to the needs of your organization.It can be used to identify the main sources of emissions for all types of goods and services, from oranges to nappies and from bank accounts to hospitality.Consideration of the goal/objectives of a carbon footprint study is of paramount importance, to ensure that it will deliver the information that you need. In assessing your own organization's needs, consider the following:•Your core business priorities.How could an in-depthunderstanding of the wider GHG impacts, risks and opportunities of goods and services support your strategy/business priorities? Are any products, supply chains or markets particular priorities? What are the expectations of your customers and investors?•Judicial selection of products.Identify the productsthat make most sense to assess and improve, e.g. the top-five best sellers or top-three new designs. Decide where you want to focus your attention, bearing in mind that you cannot do everything at once.•The intended audience for a study. This affectsthe degree of accuracy and resolution needed. A footprint analysis to be used to identify opportunities for reduction can be undertaken efficiently and at a high level initially, to be built on as needed. For external claims, gaining assurance is best practice,and a rigorous approach to data collection will need to be demonstrated.•Your timescale. How does this process fit in withyour product management cycle? Decide how much5)ISO 14025:2006 Environmental labels and declarations – T ype III environmental declarations – Principles and procedures.6)For example, see the PCR library at .tw/about/index.asp.Introduction 45ScopingStep IScoping is the most important step when undertakingany product carbon footprint study. It ensures that theright amount of effort is spent in getting the right datafrom the right places to achieve robust results in themost efficient manner possible.There are four main stages to scoping, and they arebest undertaken sequentially.Step I: Scoping 6‘downstream’ of your activities are not overlooked,such as recyclability at end-of-life, or potential to influence use phase emissions.For each stage on the process map:•provide a description of the activity to aid with datacollection•identify the geographic location of each distinct stepwhere possible•include all transport and storage steps between stages.An example for orange juice is shown in Figure 1.1.3. Agree and record the system boundary of the studyOnce the process map is complete, it can be used to help identify which parts of the overall system will, and will not, be included in the assessment.As an output from this scoping stage, you should clearly document and record the ‘system boundary’ in terms of:•a list of all included life cycle stages (e.g. rawmaterials, production, use, end-of-life)•a list of all included activities and processes within each life cycle stage•a list of all excluded activities and processes,and thesteps taken to determine their exclusion.Consider the following when setting system boundaries:•which GHG emissions and removals to include•cradle-to-gate (i.e. business-to-business) assessmentsversus cradle-to-grave (business-to-consumer)assessments•which processes and activities to include or exclude •time boundaries.In some cases, supplementary requirements maydictate the system boundary that should be used for a particular product system. Where these are compatible with PAS 2050, the system boundary set out in these documents should be used.The Guide to PAS 2050:20117Which GHG emissions and removals to include?According to PAS 2050, a carbon footprint must include all emissions of the 63 GHGs listed in the specification.These include carbon dioxide (CO 2), nitrous oxide (N 2O)and methane (CH 4), plus a wide range of halogenated hydrocarbons including CFCs, HCFCs and HFCs.Each of these types of GHG molecule is capable of storing and re-radiating a different amount of energy,and therefore makes a different contribution to global warming. The relative ‘strength’ of a GHG compared with carbon dioxide is known as its global warmingpotential (GWP), for example 25 for methane.T able 1 shows the global warming potentials and common sources of some of the most important GHGs covered under PAS 2050.Removals of carbon from the atmosphere (e.g. by plants and trees) must also be included in the assessment,except in the case of the biogenic carbon contained within food or feed products. This can be a tricky aspect of the footprint calculation process (e.g. for paper- and wood-based materials), and is a newStep I: Scoping8Figure 1: An example process map for orange juicePAS 2050 requirement. Further guidance is provided in Step 3.2, heading ‘Biogenic carbon accounting and carbon storage’, and Annex G of this Guide.A cradle-to-gate or cradle-to-grave assessment?PAS 2050 allows for two standard types of assessment (Figure 2), which are often used for different purposes:The Guide to PAS 2050:20119the carbon footprint of the product they supply. In this case, it makes sense to report emissions that occur only up to the point at which the product is transferred to the buyer. It also enables footprints to be incrementally calculated and reported across a supply chain.While useful in this context, cradle-to-gate assessments lack the completeness of a full cradle-to-graveassessment, and may miss a large proportion of the impact for certain products. For example, for energy-using products, the vast majority of the overall carbon footprint will result from the electricity used in the use phase. This impact would only be included in a cradle-to-grave assessment.Source: IPCC (2007), T able 2.14; see Clause 2.7) 100-year time horizon.Note: the GWP actually used in calculations should be the latest available from the Intergovernmental Panel on Climate Change (IPCC), and you should check this periodically.Table 1: Global warming potentials and common sources of some of the most important GHGs1.Cradle to gate – which takes into account all life cycle stages from raw material extraction up to the point at which it leaves the organization undertaking the assessment.2.Cradle to grave – which takes into account all life cycle stages from raw material extraction right up to disposal at end of life.Cradle-to-gate and cradle-to-grave assessmentsCradle-to-gate assessments are commonly used where a buyer has asked a supplier to provide information onStep I: Scoping10It is vital that at least 95 per cent of the total mass and at least 95 per cent of the total anticipated impact of the final product is being assessed. Double check this during data prioritization calculations (see Step 1.4).System boundaries for services Setting system boundaries for services, in particular, can be challenging. Some guidance on doing so is provided in Annex B.The Guide to PAS2050:2011 11Table 2: Examples of high- and low-intensity materials and processesStep I: Scoping12•Emission factors : values that convert activity dataquantities into GHG emissions – based on the ‘embodied’ emissions associated with producing materials/fuels/energy, operating transport carriers,treating wastes, etc. These are usually expressed in units of ‘kg CO 2e’ (e.g. kg CO 2e per kg of orange cultivation, per litre of diesel, per km of transport or per kg of waste to landfill), and are most often from secondary sources.Choosing between primary and secondary dataCollecting primary activity data for specific activities across the supply chain can be time consuming, and so often dictates the amount of resource needed for a footprinting study. But the use of primary data generally increases the accuracy of the carbon footprint calculated, as the numbers used in the calculation relate directly to the real-life production or provision of the product or service assessed.Secondary data are usually less accurate, as they will relate to processes only similar to the one that actually takes place, or an industry average for that process.The choice between primary and secondary data should be guided by the scoping/prioritization activitiesundertaken in Step 1, as well as the underlying PAS 2050principles of:•relevance – selection of appropriate data andmethods for the specific products•completeness – inclusion of all GHG emissions andremovals arising within the system boundary that provide a material contribution13Data collectionStep 2•consistency – applying assumptions, methods anddata in the same way throughout the assessment •accuracy – reducing bias and uncertainty as far as practical•transparency – where communicating externally,provide sufficient information.In accordance with the principles of ‘relevance’ and ‘accuracy’, primary data are generally preferred.Step 2: Data collection14Note that, while the general rule is that primary data are preferred, there are some exceptions to this; for example, the case of commodity goods (see the following box).A key first task in the data collection process is toconsider primary and secondary data needs and drawup a data collection plan.Some example data collection templates, showing both generic and tailored approaches, as well as some useful tips, are provided in Annex D.The data collection template can also be used to ask for information to assess the quality of data provided. This involves a few additional questions for each data point, which will help you to ascertain how much confidence you can have in the accuracy of the data and, consequently, the accuracy of the carbon footprint. SamplingIn some cases, a product will be produced at a large number of sites. Milk in the UK, for example, is typically supplied by a large number of small/medium-sized farms, each providing an identical product (note: as suppliers are known and constant, this is differentThe Guide to PAS2050:2011 15 from a commodity good as earlier described). In thiscase, data collection for each site could be prohibitivelytime consuming, and a sampling approach is required. Annex E provides some guidance on sampling options.As with all footprinting tasks, resources should beallocated in the most efficient manner, while giving consideration to the core PAS2050 principles earlier described.Table 3: An example data collection plan for orange juice (drinks producer collecting data)Step 2: Data collection16contained in technical reports and published studies.This category also includes cradle-to-gate carbon footprint values that your suppliers might give you in response to a data request.•Disaggregated data are most often found in lifecycle inventory (LCI) databases that list all the inputs and outputs for a given process. These detail the consumption of specific raw materials/energy carriers and individual emissions, as opposed to a summary of the total CO 2e emissions.Aggregated data/emission factor sourcesT able 4 provides a list of useful sources of easilyaccessible emission factors. These are a starting point,but are by no means a definitive list of available resources.If you are using aggregated secondary data/emission factors, be careful to check that they are fit forpurpose. For example, is the system boundary used compliant with PAS 2050 boundaries? Some useful things to check are outlined in the box on page 17.Table 4: Useful sources of emission factors – some examplesDisaggregated/inventory data sourcesA list of common life cycle inventory (LCI) databases can be found at: http://lca.jrc.ec.europa.eu/ lcainfohub/databaseList.vm.Some databases are free, whereas some charge a licence fee.•An example of a licensed database is the ecoinvent LCI database found at . This is a useful source of data for over 4,000 materials andprocesses.•Examples of free databases are the European Reference Life Cycle Database (ELCD) found athttp://lca.jrc.ec.europa.eu/lcainfohub/datasetArea.vm, and US Life Cycle Inventory Database found atThe Guide to PAS2050:2011 17 /lci/database/default.asp, bothof which contain LCI datasets for selected materialsand processes.T ypically, when using LCI databases, the inventory dataare modelled in an LCA software programme, to provide emission factors (aggregated data) that can be used ina carbon footprint. However, if needed, the values for individual emissions listed in the LCI database can beused to estimate the global warming potential withoutthe use of LCA software. Tips for using LCI data in thisway are as follows:•Copying the LCI data into a spreadsheet (e.g.Microsoft Excel) might make it easier to view andinterrogate.Step 2: Data collection18retailed in London/England/Wales) can be defined within your functional unit.RetailFor the majority of products, emissions from retail operations will represent a very small part of theoverall carbon footprint. The main source of emissions will be energy use for both lighting and refrigeration.If primary data for energy use by a retail facility are not available, emissions from retail of products stored at ambient temperatures can reasonably be assumed to be comparable to those from a warehouse (see Step 3.2, heading ‘Storage emissions’, of this Guide).Refrigerated or frozen storage at retail may represent a significant source of emissions, and so should be considered in more detail. See further information on refrigeration in Step 3.2, heading ‘Refrigeration’, of this Guide.You will typically need to consider the volume of space occupied by a product, and how long it is typically stored for at the point of sale (e.g. slow-moving items must be stored for longer, and so incur greater emissions).UseA ‘use profile’ is a description of the typical way in which a product is consumed, or of the average user requirements. For example:•a use profile for product that requires cooking willrefer to the proportion of users that will typically bake, boil or microwave the product and the amount of time required in each case•a use profile for an electrical item will refer to atypical length of time the product is used for, or a typical setting (e.g. the proportion of washing machine cycles at 30/40/60 degrees).For some products, the choices made at this stage can make a significant contribution to the footprint, and introduce considerable variability, and so require careful consideration.•Identify emissions of key GHGs. As a minimum,emissions of fossil/biogenic carbon dioxide, methane and nitrous oxide should be identified, which are the predominant GHGs in the majority of instances.However , other key GHGs, such as CFCs and HCFCs,might also be included in the inventory data.•The identified GHG emissions values can thenbe multiplied by their respective global warming potential, and the results summed to derive a ‘kg CO 2e’ emission factor that can be used in your product carbon footprint calculations.•Ideally, the quantity of all key GHGs will be identified.In practice, this can be a laborious task that might only involve very minor emissions. In this case, it should be recognized that the resulting emission factor might be an underestimate, and should be clearly labelled as such in the product carbon footprint calculations.2.4. Collecting data for ‘downstream’ activitiesDistributionIn many instances you will need to collect primary data for product distribution, if under your operational control.Distribution typically comprises transportation to a retail market and a period of storage in a distribution centre or warehouse. Specific data needs and emissions calculations for these activities are discussed in Step 3.2,headings ‘Refrigeration’ and ‘Storage emissions’, of this Guide.Whether this distribution step represents an average geography (e.g. products retailed in the UK, orEurope – taking a weighted average based on sales in different locations) or specific region (e.g. productsThe Guide to PAS2050:2011 19be assessed against the principles of PAS 2050 is presented in Annex F . Note that this example outlines only one of the ways in which you could undertake a semi-quantitative assessment to flag areas of uncertainty (and potential need for data improvement).The best-quality data should always be sought in an assessment, but is of particular importance where external communication is an ultimate goal of the study. In this case, a full data quality assessment,Step 2: Data collection20along with any accompanying assumptions or calculations, should be recorded with the product carbon footprint calculations.For internal assessments (e.g. to identify hotspots in the value chain), formal assessment/recording may not be needed, but you should ensure that differences in data quality are not unduly influencing the findings of your study (see Step 4 of this Guide for further discussionon this).Consider the examples for orange juice (Figure 3 and T able 5, and Figure 4 and T able 6), which show calculations for the first two life cycle stages.Activity data are often collected in many different formats and relating to different units (e.g. inputs and outputs for a tonne of raw material produced, or a year’s worth of production, or a hectare’s worth of production). An important next step is to balance the flows shown in21Footprint calculationsStep 3Step 3: Footprint calculations22HGV , heavy goods vehicle.aThe emissions from fertilizers and pesticides are dictated by their content of minerals or active ingredients (e.g. the proportion of fertilizer that is nitrogen or the proportion of pesticide that is anthraquinone) not the total weight.However, transport of the fertilizer or pesticide to use should be calculated based on the total weight.Figure 3: Mapping activity data – cultivation of oranges for the production of orange juiceTable 5: Example – 1hectare of orange cultivationThe Guide to PAS 2050:2011 23Table 6: Example – to produce 1tonne of concentrateFigure 4: Mapping activity data – processing of oranges for the production of orange juicethe process map so that all inputs and outputs reflect the provision of the functional unit/reference flow defined in Step 1. This can be either done within the process map itself, or in an Excel spreadsheet or other software tool.This can be the most difficult part of the calculation process. Golden rules are to:•always consider waste in the process•make calculations as transparent as possible, sothey can be traced backwards•record all assumptions and data concerns.Once the flows are balanced to reflect the functional unit, the calculation process is simple.Remember that some flows might be negative, where there are biogenic carbon removals (see Step 3.2,Step 3: Footprint calculations24heading ‘Biogenic carbon accounting and carbon storage’, and Annex H of this Guide).A simplified example for orange juice is shown inT able 7. Specific calculation aspects, such as transport,refrigerant or waste management are also discussed later in this section.The Guide to PAS2050:2011 25 Table 7: Footprint calculations for the production of a 1litre carton of orange juice (example data only)(Continued)(Continued)Table 7: Footprint calculations for the production of a 1litre carton of orange juice (example data only) (continued)Making simplifying assumptionsIt is often possible to use simplifications or estimations to streamline the carbon footprinting process. For example:•grouping all cleaning chemicals and using a generic ‘chemicals’ emission factor, estimating the quantities used•assigning a set of general assumptions for transport– e.g. 50km to waste treatment, 200km for inputs from the UK and 1,000km from central Europe.When making any simplifying assumptions it is important to make them conservative/worst case, and make sure that you record them and are able to change them if needed.In the calculation step of the footprint, it is a good idea to check and confirm that these simplified inputs or activities are not significant contributors to the footprint (e.g. >5 per cent of the footprint). If they are, you may need to go back and collect more specific information.As discussed in Step 2.5 of this Guide, the best quality (and specific) data should always be sought in anassessment, but is of particular importance whereexternal communication is an ultimate goal of the study.For both external and internal assessments, it is most important to ensure that differences in data quality are not unduly influencing the findings of your study (discussed further in Step 4 of this Guide).Co-product allocationSome processes in the life cycle of a product may yield more than one useful output (‘co-products’). For example, in the life cycle of orange juice above,the juicing of oranges yields not only orange juice but also a large volume of pulp (a low-value co-product that can be used as an animal feed) and a small amount of peel oil (a high-value essential oil that can be used as a fragrance in perfumes or household cleaners).In these cases, the input and output flows, or emissions,of the process (juicing) must be split, or ‘allocated’between the product being studied (the juice) and any co-products (the pulp and peel oil).aThis is the global warming potential (GWP) of N 2O gas – not an emission factor. The gas is released directly, and so does not need multiplying by an emission factor. It does, however need to be multiplied by its GWP of 298 to translate into CO 2equivalents (CO 2e).bLand-spreading – this is put to useful purpose, and so is a co-product, albeit with minimal value. A simple approach is to allocate this co-product zero emissions, as its relative value is very small (see Step 3.1, heading ‘Co-product allocation’, of this Guide).cThese values include removals and emissions of biogenic carbon within the packaging material. See Step 3.2,heading ‘Biogenic carbon accounting and carbon storage’, of this Guide.Table 7: Footprint calculations for the production of a 1litre carton of orange juice (example data only)(continued)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FEATURES AND SPECIFICATIONS2.00 by 2.25mm (.079 by .089") Pitch 5-Row, 6-Row and 8-Row VHDM-HSD ™Module-to-BackplaneConnector SystemFeatures and Benefitss Up to 5.0 Gbps bandwidth per signal pair enables state-of-the-art system design and performance s2.00 by 2.25mm (.079 by .089”) pitch provides real signal density of 10 differential pairs for 5-row and 6-row and 15 differential pairs for 8-row per centimeter (25 and 38 pairs respectively per inch) sMinimum distance between daughtercards:– 5-row system offers 15.00mm (.591")– 6-row system offers 18.00mm (.709")– 8-row system offers 22.00mm (.866")sGround planes between signal columns provide tightly controlled impedance for rise times down to 50 picoseconds (10-90%). This ensures very low cross talk between signals within and between columnssGround pins are in the same grid as signal pins, allowing wider channels for PCB routing and traces up to 0.25mm (.010”) wides6-row or 8-row VHDM-HSD wafers can be applied to the same stiffener as standard VHDM ® 6-row or 8-row wafers. The combination of VHDM and VHDM-HSD wafers, grouped together in the same stiffener, provides cost effective solutions to different performance parametersThe Very High Density Metric High Speed Differential (VHDM-HSD) connector system has been expanded to include 5-row, 6-row and 8-row daughtercard and backplane modules. VHDM-HSD is designed for differential-pair architecture applications that require very high interconnect density and signal integrity in a single-ended configuration.The same great modularity features and components ofVHDM are provided in the VHDM-HSD. The 5-row and 6-row systems feature 2 signal pairs per column and the8-row system features 3 signal pairs per column inincrements of 10 and 25 columns. All circuits areutilized as signal circuits without the need to use some asground circuits.The daughtercard connector consists of a metal stiffener just as with the VHDM system. The system combines the signal wafers, power modules and guidance modules into one continuous connector that can be ordered as a single specific part number. The card pitch of the VHDM-HSD 8-row system is the same as the standard VHDM 8-row system, allowing both signal wafer types for single ended and differential pair to be used together. Thismodularity and design flexibility allow engineers toincorporate both connector systems on the sameplatforms. The system is based on a 2.00mm (.079")pitch and includes vertical and right angle products thatcan be configured up to 2000 circuits. The maximumlength of a daughtercard connector on a single stiffeneris 300mm (12").The backplane connectors feature headers with open ends for continuous side-to-side stacking and headers with guide pins and polarizing keys on either end to aid in proper alignment of the mating daughtercard. The power modules occupy just a small width and hold sequentially matable pins that each manage 10.0 amps of current.Molex offers application tooling for pressing VHDM-HSD connectors into PCBs as separate modules or as complete assemblies. VHDM-HSD cable assemblies are also available for connecting backplane headers to high-performance cables.Note: VHDM and VHDM-HSD are trademarks or registered trademarks of Teradyne,Inc.元器件交易网FEATURES AND SPECIFICATIONS2.00 by 2.25mm (.079 by .089") Pitch 5-Row, 6-Row and 8-Row VHDM-HSD ™Module-to-Backplane Connector SystemPress Fit Right Angle ReceptacleApplicationsThe VHDM-HSD products are used in very high speed, short rise-time, high circuit count applications connecting daughtercards to the backplane:s Network Switches s Routerss Computer Serverss Telecommunication Equipment sInternetworking DevicesORDERING INFORMATIONDaughtercard AssemblyConfiguration 5-Row 6-Row 8-Row Signal wafers, power modules and guide modules sequentiallyassigned by application VHDM-HSD wafers74670-XXXX 74880-XXXX 74680-XXXX Combination of VHDM and VHDM-HSD wafers74686-XXXX 74886-XXXX74686-XXXXBackplane Header Signal Module Standard Loaded Pin Height 0.76µm (30µ”) Gold5-Row6-Row8-Row10-Column 25-Column 10-Column 25-Column 10-Column 25-Column Open Ended4.25mm (.167”)74695-100374695-250374979-100374979-250374649-100374649-25034.75mm (.187”)74695-100174695-250174979-100174979-250174649-100174649-25015.15mm (.203”)74695-100474695-250474979-100474979-250474649-100474649-25046.25mm (.266”)74695-100274695-250274979-100274979-250274649-100274649-2502Left Guide PinNo Polarizing Key 4.25mm (.167”)74696-100374696-2503––74650-100374650-25034.75mm (.187”)74696-100174696-2501––74650-100174650-25015.15mm (.203”)74696-100474696-2504––74650-100474650-25046.25mm (.266”)74696-100274696-2502––74650-100274650-2502Left Guide Pin“A” Polarizing Key 4.25mm (.167”)74696-101374696-2513––74650-101374650-25134.75mm (.187”)74696-101174696-2511––74650-101174650-25115.15mm (.203”)74696-101474696-2514––74650-101474650-25146.25mm (.266”)74696-101274696-2512––74650-101274650-2512Right Guide PinNo Polarizing Key 4.25mm (.167”)74697-100374697-2503––74651-100374651-25034.75mm (.187”)74697-100174697-2501––74651-100174651-25015.15mm (.203”)74697-100474697-2504––74651-100474651-25046.25mm (.266”)74697-100274697-2502––74651-100274651-2502Right Guide Pin“A” Polarizing Key 4.25mm (.167”)74697-101374697-2513––74651-101374651-25134.75mm (.187”)74697-101174697-2511––74651-101174651-25115.15mm (.203”)74697-101474697-2514––74651-101474651-25146.25mm (.266”)74697-101274697-2512––74651-101274651-2512Backplane Power and Guide Components5-Row and 6-Row 8-Row Power Module 74029-600074029-8000Keying Post 74069-001074069-0010Guide Pin74076-0001/000274076-0001/0002Americas Headquarters Lisle, Illinois 60532 U.S.A.1-800-78MOLEX amerinfo@ Far East North Headquarters Yamato, Kanagawa, Japan 81-462-65-2324feninfo@ Far East South Headquarters Jurong, Singapore 65-6-268-6868fesinfo@ European Headquarters Munich, Germany 49-89-413092-0eurinfo@ Corporate Headquarters 2222 Wellington Ct.Lisle, IL 60532 U.S.A.630-969-4550Visit our Web site at /product/backplan/hsd.htmlOrder No. USA-158 Rev. 2Printed in USA/2.5K/JI/JI/2003.03©2003, MolexNote: VHDM and VHDM-HSD are trademarks or registered trademarks of Teradyne,Inc.元器件交易网。