4、测量误差基本知识

合集下载

测量误差的基本知识

测量误差的基本知识

名称:测量误差的基本知识一、基本概念1.真值:一个物理量的真实数值称为真值。

真值是难以准确测量的。

2.约写真值:足够接近真值的量,它与真值的差异可以忽略不计,称这个量为约定真值。

3.标称值:测量器具上标注的数值称为标称值。

4.示值:在测量过程中,测量仪器、仪表的指示值简称示值。

5.影响量:影响测量仪器示值的任何量称为影响量。

6.测量误差:表示测量数值与被测量真值之间的差异称为测量误差。

二、误差的来源1.仪器误差由于仪器本身及附件的电气和机械性能不完善而引入的误差2.使用误差由于仪器的安装、布置、调节不当所造成的误差。

3.影响误差由于受外界温度、湿度、电磁场、机械振动等影响超出仪器技术条件而造成的误差。

4.人身误差由于测量者的分辨能力、工作习惯及责任心等原因引起的误差。

5.方法和理论误差由于采用测量方法或仪表选择不当所造成的误差称为方法误差。

测量时,依据的理论不严格或用近似公式、近似值(例如π,√2,√3等)计算等造成的误差称理论误差。

三、测量误差的表示方法1.绝对误差指测量结果与被测量的真值之差,(因通常真值不能确定,实际上用的是约定真值,一般指被测量的算术平均值或标准值)表示为Δx=x-x0x—测量结果,x0—约定真值,Δx —绝对误差(Δx有大小和符号,其单位与测量结果的单位相同)另:与Δx的绝对值相等但符号相反的量称为修正值。

(用C表示)C=–Δx= x0–x通过检定(校准),由上级标准仪器给出受检仪器的修正值。

因此,将测得值与已知的修正值相加,即可算出被测量的约定真值:x0=x+c我厂仪器分内检和外检两种,检定结果若合格(兰色标签),所得修正值都在公司许可的误差内(这样才能判为合格),对使用者测量不会产生影响,故不再给出修正值,使用者可认为所用仪器的测量结果是准确的。

对于“准用”的仪器,请参照“准用证”旁的准用说明,对测量结果予以修正。

2.相对误差指测量结果的绝对误差:Δx与真值x0之比δx=Δx/x0×100%3.引用误差指计量器具的示值的绝对误差与器具的特定值x lim(如计量的上限值,量程)之比即:δx lim=Δx/x lim×100%一般x lim常指满度值,因此,也称满度相对误差,它是指仪器仪表度盘上最大的绝对误差与量程值(满度值)之比的百分数。

测量误差的基本知识

测量误差的基本知识
第五章 测量误差的基本知识
在测量观测过程中,由于受到仪器精度的限制、观测者的生理和 心理因素以及外界条件的影响,测量操作不可能做得尽善尽美, 之间存在偏差,这种偏差称为测量误差(或观测误差)。 真值与观测值之差称为真误差。 准确值与观测值之差称为误差。
合格的测量仪器 合理的测量方法 认真的工作态度 良好的外界条件
误差区间 0~3 负误差 K 45 K/n 0.126 K 46 正误差 K/n 0.128 误差绝对值 K 91 K/n 0.254
3~6
6~9 9~12 12~15
40
33 23 17
0.112
0.092 0.064 0.047ຫໍສະໝຸດ 4133 21 16
0.115
0.092 0.059 0.045
81
偶然误差的特性
例:在某一测区,在相同的观测条件下共观测了358个三角形的全部内角, 由于每个三角形内角之和的真值(180º)为已知,因此,可以计算每个三角 形内角之和的偶然误差(三角形闭合差),将它们分为负误差和正误差,按 误差绝对值由小到大排列次序。以3秒为误差区间进行误差个数k的统计,偶 然误差的统计见表
第一组观测值 观测值 180°00ˊ03" 180°00ˊ02" 179°59ˊ58" 179°59ˊ56" 180°00ˊ01" 180°00ˊ00" 180°00ˊ04" 179°59ˊ57" 真误差Δ" -3 -2 +2 +4 -1 0 -4 +3 Δ2 9 4 4 16 1 0 16 9 观测值 180°00ˊ00" 179°59ˊ59" 180°00ˊ07" 180°00ˊ02" 180°00ˊ01" 179°59ˊ59" 179°59ˊ52" 180°00ˊ00"

测量误差的基本知识

测量误差的基本知识

测量误差的基本知识§5.1 测量误差的概念测量误差按其对测量结果影响的性质,可分为:一.系统误差(system error)1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。

2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。

二.偶然误差(accident error)1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。

但具有一定的统计规律。

2.特点:(1) 具有一定的范围。

(2) 绝对值小的误差出现概率大。

(3) 绝对值相等的正、负误差出现的概率相同。

(4) 数学期限望等于零。

即:0][lim =∆∞→nn 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。

(偶然误差分布频率直方图)此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。

§5.2 衡量精度的指标测量上常见的精度指标有:中误差、相对误差、极限误差。

一. 中误差 方差nD n ][lim ∆∆=∞→ ∆——某量的真误差,[]——求和符号。

规律:标准差σ估值(中误差m )绝对值愈小,观测精度愈高。

在测量中,n 为有限值,计算中误差m 的方法,有:1.用真误差(true error )来确定中误差——适用于观测量真值已知时。

真误差Δ——观测值与其真值之差,有:L L i i ~-=∆ 标准差nn ][lim ∆∆=∞→σ 中误差(标准差估值)n m ][∆∆±= , n 为观测值个数。

(举例题)2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。

1][-±=n VV m V ——最或是值与观测值之差。

一般为算术平均值与观测值之差,即有:i i L L V -=(举例题)二. 相对误差1.相对中误差=XXX D m/1=2.往返测较差率K=XXX D D D D /12/)(=+-返往返往三. 极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。

测量误差的基本知识

测量误差的基本知识


2m 3m
p
0.955

p
0.997
容 2 m
容 3 m
三、误差的传播定律
设函数
Z F ( x1 , x2 ,, xn )
xi 为独立变量
xi li i Z f (l1 1 , l2 2 ,ln n )
按泰罗级数展开:
F F F Z f (l1 , l2 ln ) ( x1 x2 xn ) x1 x2 xn
,所
四、等精度直接观测平差
当观测值的真值未知时: 设对某量观测n次,为: 则该量的算术平均值为: 则该量的改正数:
l1 , l2 , , ln
l1 l2 ln [l ] x n n
i i X
vi li x
v l nx 0
2 2 2
mz
2 2 k1 m1
2 2 k2 m2
2 2 kn mn
函数名称
函数式
中误差传播公式
mz Am mz m1 m2
2 2 2 2 2 2 2
倍数函数 Z AX 和差函数 Z X 1 X 2
Z X1 X 2 X n
mz m1 m2 mn
第五章
测量误差的基本知识
内容介绍

测量误差的概念 衡量精度的标准


误差传播定律及应用
一、测量误差的概念
观测误差:观测值与真值之差
i Li X
误差(error)产生的原因: 1、仪器的原因 2、观测者的原因 3、外界环境的原因
等精度观测:
测量误差按其对测量结果影响的性质,可分为: 粗差、系统误差和偶然误差。 (一)系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列 观测,如误差出现符号和大小均相同或按一定的规 律变化,这种误差称为系统误差 2.特点: 具有积累性,对测量结果的影响大,但可通过一般 的改正或用一定的观测方法加以消除。 例如:钢尺尺长误差、 钢尺温度误差、水准仪 视准轴误差。

误差基本

误差基本

测量误差的基本知识默认分类 2007-06-12 17:19:24 阅读527 评论2 字号:大中小§6-1 测量误差(error)的概念一、几个基本概念1、不符值:在同一个观测量中,观测值和真值之间的差异,或者观测值之间的差异。

2、理论值:即真值,被观测量在一定条件下客观存在的数值。

(X)3、观测值:通过观测所得的数值。

(Li)4、真误差:真误差(△)=观测值(Li)—真值(X)二、研究测量误差的目的1、对含误差的观测值进行处理,减少或消除误差,求未知量的最或是值。

(如调整高差闭合差,取平均值等)2、评定观测值的精度。

3、选最佳方案。

仪器、方法、测回数、量边等。

三、测量误差产生的原因1、仪器误差2、观测误差3、外界条件的影响四、观测的分类1、必要观测和多余观测(依照观测次数分)多余观测的作用:(1)发现错误;(2)提高精度;(3)评定精度。

2、等精度观测和非等精度观测(依照观测条件分)(!)观测条件(2)条件基本相同的观测称等精度观测,一个不同,称非等精度观测。

五、误差的分类(按性质分)(一)、系统误差(system error):1、定义:在相同的观测条件下,对某量作一系列观测,如果测量误差在大小、符号上表现一致性或按一定的规律变化,或保持常数。

2、处理方法:(1)检验与校正仪器;(2)加计算改正;(3)采用适当的观测方法。

(二)偶然误差(accident error)1、定义:在相同的观测条件下,对某量作一系列的观测,如果单个观测误差的大小、符号在表面上看随机排列,没有规律性。

2、说明:偶然误差的产生是多种因素的综合影响,不可避免。

因此,偶然误差是误差理论的主要研究对象。

(三)粗差(gross error)即测量中的错误。

粗差可采用多余观测来发现,并重新观测含粗差的观测值来消除。

一般情况下,系统误差和粗差可消除或减少到最低程度。

因此以后提到的误差通常认为只包含偶然误差或真误差。

§6-2 偶然误差的特性例如:在相同的观测条件下,对一个单三角形的内角进行217次观测,分析其三角形内角和的真误差的规律,发现就大量偶然误差而言,服从统计规律-----正态分布。

测量误差基本知识

测量误差基本知识

第五章测量误差基本知识
1.测量误差按其产生的原因和对观测结果影响性质的不同,可以分为系统误差、偶然误差和粗差三类。

系统误差:在相同的观测条件下,对某一量进行一系列的观测,如果出现的误差在符号和数值上相同,或按一定的规律变化,这种误差称为系统误差。

偶然误差:在相同的观测条件下,对某一量进行一系列的观测,如果误差出现的符号和数值大小都不相同,从表面上看没有任何规律性,这种误差称为偶然误差。

粗差:由于观察者的粗心或受某种干扰造成的特别大的测量误差称为粗差。

2.偶然误差的特性如下:
在一定观测条件下的有限次观测中,偶然误差的绝对值不会超过一定的数值;
绝对值较小的误差出现的频率较大,绝对值较大的误差出现的频率较小;
绝对值相等的正负误差出现的频率大致相等;
当观测次数无限增大时,偶然误差的理论平均值趋近于零,即偶然误差具有抵偿性,公式见p121(5-1-2)
3.按有限次数观测的偶然误差求得的标准差称为中误差(m)。

在统计学上,对于某一量(称为母体)的有限次的观测值,称为子样,因此中误差又称子样标准差,在有关计量的规范中称为不确定度。

4.用观测值的中误差与观测值之比的形式描述距离测量的精度(面积测量也应如此),称为相对中误差(用分子为1的分式表示)
5.以两倍中误差作为允许的误差极限,称为允许误差,或称为限差。

6.在相同的观测条件下,对某个未知量进行n次观测,其观测值分别为L1,L2,L3,L4,~~~Ln。

将这些观测值取算数平均值,作为该量的最可靠的数值,所以也称为最或然值。

7.P130误差传播定律
8.P139加权平均值及其中误差表格。

测量误差的基本知识

测量误差的基本知识

第一章 测量误差的基本知识掌握测量误差的基本概念,并能够熟练对测量数据进行误差处理,是物理实验课教学的基本要求之一。

本章主要介绍测量误差的基本知识,并简要介绍了不确定度的基本知识。

1.1 测量误差与分类一、直接测量和间接测量在物理实验中,不仅要观察物理现象,而且要定量测定物理量的大小。

为此,必须规定一些标准单位,如选定质量的单位为千克,长度的单位为米等。

所谓测量,就是将待测量与被选作标准单位的同类物理量进行比较的过程,其比值就是待测物理量的测量值。

测量一般分为直接测量和间接测量两类。

1.直接测量可以用测量仪器或仪表直接读出测量值的测量叫直接测量,相应的物理量叫直接测量量。

例如用螺旋测微计测量长度,天平测量质量,停表测量时间等。

测量量的结果由两部分组成,一部分是被测量与单位标准量的比值,另一部分是单位的名称。

2.间接测量不直接对被测物理量进行测量,而是直接测量那些与被测量有确切函数关系的物理量,然后通过函数计算而得到被测量的过程叫做间接测量,相应的物理量叫简接测量量。

例如测量某长方体的体积V,已知体积V与长方体的长a、宽b、高c的函数关系为V=a·b·c,则先直接测量a、b、c各量,这些量是直接测量量,然后通过计算得到体积V,V就是间接测量量。

由于直接测量简单、快捷,人们总是想方设法利用间接测量量与直接测量量的函数关系设计制造出可以直接测量的仪器设备,把间接测量转化为直接测量,如欧姆表、密度计、压强计等就是这类仪器。

二、测量误差1.真值与测量误差待测物理量的客观存在值,称为该物理量的真值,记为x0。

测量的目的是要得到真值。

但测量受到测量仪器精度的限制,测量方法、测量环境等因素的影响,实际测量值(记为x)与真值之间存在一定的差异,这种差异叫测量误差。

Δx表示测量误差,则测量误差=测量值-真值即 Δx=x-x0 (1.1.1) 2.算术平均值与测量偏差(1)等精度测量与不等精度测量:为了减小测量误差,往往对同一物理量进行多次重复测量,如果每次的测量条件都相同(同一观测者、同一套仪器、同一种实验原理和方法、同样的环境等),就没有任何根据可以判断某次测量一定比另一次测量更准确,所以,认为每次测量的精度是相同的,这种重复测量称为等精度测量,测得的一组数据称为测量列。

测量误差的基本知识

测量误差的基本知识

小结
• 正确列出函数式; • 检查观测值是否独立; • 求偏微分并代入观测值确定系数; • 套用公式求出中误差。 思考题:一个边长为l的正方形,若测量一边中误差为ml=±1cm,求周长
的中误差?若四边都测量,且测量精度相同,均为ml,则周长中误差是多 少?
§5.4等精度直接观测值
1.算术平均值原理 • 假设对某量X 进行了n次等精度的独立观测,得观测值l1,l2,…ln • 算术平均值为 :L=(l1+l2+…ln )/n=[l]/n • 算术平均值原理:当n→∞时,L=X • 证明:∆i=li-X, [∆]=[l]- nX,
mz
(
f x1
)
2
m12
( f x2
) 2 m22
... ( f xn
) 2 mn2
二、特殊函数的中误差
1、倍数函数:Z=kx
中误差:mz=kmx
2、和差函数 :Z=x1±x2±…±xn
中误差:
3、线形函数 : Z=k1x1±k2x2±…±knxn
中误差:
mz m12 m22 ... mn2
此在测量工作中,我们常常取三倍中误差作为偶然误差的容许值(或限差),如果精 度要求较高时,就可以取两倍中误差作为限差,即:
∆容=士 2|m| 或 ∆容=士3|m |
§5.3 误差传播定律
• 误差传播定律:是指描述观测值中误差与其函数中误差之间关系的定律 一、一般函数的中误差
设Z=f(x1,x2,…,xn),其中x1,x2,…,xn属于独立自变量(如直接观测值),他们的 中误差分别为m1,m2,…,mn则函数Z的中误差为 :
• 所以甲组精度高 关于中误差要注意两点 • 中误差(m)与真误差( ∆ )不同,它只是表示某一组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、测量误差基本知识1、测量误差分哪两类?它们各有什么特点?测量中对它们的主要处理原则是什么?2、产生测量误差的原因有哪些?偶然误差有哪些特性?3、何谓标准差、中误差和极限误差?4、对某个水平角以等精度观测4个测回,观测值列于下表(表4-1)。

计算其算术平均值x、一测回的中误差m及算术平均值的中误差m x。

表4-15、对某一三角形(图4-1)的三个内角重复观测了九次,定义其闭合差∆=α+β+γ-180︒,其结果如下:∆1=+3",∆2=-5",∆3=+6",∆4=+1",∆5=-3",∆6=-4",∆7=+3",∆8=+7",∆9=-8";求此三角形闭合差的中误差m∆以及三角形内角的测角中误差mβ。

图4-16、在一个平面三角形中,观测其中两个水平角(内角)α和β,其测角中误差均为m=±20",根据角α和角β可以计算第三个水平角γ,试计算γ角的中误差mγ。

15167、量得某一圆形地物直径为64.780m ,求其圆周的长S 。

设量测直径的中误差为±5㎜,求其周长的中误差m S 及其相对中误差m S /S 。

8、对某正方形测量了一条边长a =100m ,a m =±25mm ;按S=4a 计算周长和P=a 计算面积,计算周长的中误差s m 和面积的中误差p m 。

9、某正方形测量了四条边长a 1=a 2=a 2=a 4=100m ,m =m =m =m =±25mm ;按S=1a +2a +3a +4a 计算周长和P=(1a ⨯2a +3a ⨯4a )/2计算面积,求周长的中误差s m 和面积的中误差p m 。

10.误差传播定律应用 (1)(1)已知m a =m c =m ,h=a -b ,求h m 。

(2)已知a m =m =±6",β=a -c ,求βm 。

(3)已知a m =b m =m ,S=100(a -b) ,求s m 。

(4)已知D=()h S -,s m =±5mm ,h m =±5mm ,求D m 。

(5)如图4-2,已知x a m =±40 mm ,y a m =±30 mm ;S=30.00m ,β=30︒ 15'10",s m =±5.0mm ,βm =±6"。

求P 点坐标的中误差x p m 、y p m 、M (M=mm+)。

17PA B图 4-2(6)如图4-3,已知x a m =±40 mm ,y a m =±30 mm ;S=130.00m ,β=130︒ 15'10",s m =±5.0mm ,βm =±6"。

求P 点坐标的中误差x p m 、y p m 、M 。

(7)如图4-4,已知x a m =±40 mm ,y a m =±30 mm ;S=30.00m , s m =±5.0mm ,P 点位于AB 的延长线上。

求P 点坐标的中误差x p m 、y p m 、M 。

A B S P图 4-4(8)如图4-5,已知x a m =±40 mm ,y a m =±30 mm ;AP 距离S=30.00m , s m =±5.0mm ,P 点位于AB 的直线上。

求P 点坐标的中误差x p m 、y p m 、M 。

A PB S图 4-5(9)已知h=Ssin α+i -L ,S=100m , α=15︒30';s m =±5.0mm ,αm =±5 ",m =m =±1mm ,计算中误差h m 。

(10)已知边长C=100m ,α=23︒15',β=35︒25';αm =βm =±5 ",c m =±5 mm ,边长a 和b 可由下式求出:)sin(sin ;)sin(sin βααβαα+=+=c b c a ,计算中误差a m 和b m 。

1811、限差讨论(1)已知R L m m ==±8.5 ",β=(L+R )/2,f=L -R 。

求容许误差β∆、∆(∆取3倍中误差)。

(2)已知f=βββββ++++++......-(n -2)⨯180︒;βm =±8.5 ",求∆(∆取2倍中误差)。

(3)已知用J6经纬仪一测回测量角的中误差βm =±8.5 ",采用多次测量取平均值的方法可以提高观测角精度,如需使所测角的中误差达到±6 ",问需要观测几测回?(4)已知三角形三个内角α、β、γ的中误差αm =βm =γm =±8.5 ",定义三角形角度闭合差为:f=α+β+γ-180︒,求m 和∆(∆=3m )。

(5)已知三角形三个内角α、β、γ的中误差αm =βm =γm =±8.5 ",定义三角形角度闭合差为:f=α+β+γ-180︒,α'=α- f/3;求αm 。

12、何谓不等精度观测?何谓权?权有何实用意义?13、某点P 离开水准点A 为1.44㎞(路线1),离开水准点B 为0.81㎞(路线2)。

今用水准测量从A 点到P 点测得其高程为16.848m ,又从B 点至P 点测得其高程为16.834m 。

设水准测量高差观测值的权为路线长度(单位为㎞)的倒数,试用加权平均的方法计算P 点的高程H P及其高程中误差mH(表4-3)。

表4-314、由实验和推算得知:在三、四等水准测量中,每观测一次的中误差(包括气泡居中误差、瞄准误差、读数误差、仪器误差和外界影响等)分别为±0.78mm和±1.04mm. 根据这两个数据, 并取两倍中误差作为容许误差, 推算验证现行规范中对黑红面读数差、黑红面高差之差的限差。

15、DJ6光学经纬仪出厂检验的精度为方向一测回中误差±6″,请推证:(1)半测回中照准单方向的中误差m方=±8.5″;(2)斗测回的测角中误差;(3)一测回的测角中误差等于照准单方向的中误差;(4)测回差的限差为±24″。

16、若三角形的三内角为α、β、γ,已知α及β角之权分别为4、2,α角的中误差为±9″,则(1)根据α、β计算γ角,求γ角之权pγ;(2)计算单位权中误差;(3)求β、γ角的中误差mβ和mγ。

17、已知观测值L1、L2、L3的中误差分别为±2″、±3″、±4″,应用公式p i=μ2/m i2完成以下作用;(1)设L1为单位权观测,求L1、L2、L3的权;(2)设L2为单位权观测,求L1、L2、L3的权;19(3)设单位权中误差u=±1″,求L1、L2、L3的权;(4)根据以上结果,写出一组权的比例关系,并说明它与中误差表示精度的区别。

18、设观测一个方向的中误差(为单位权中误差)m0=±4″,求由两个方向组成角度的权。

19、设10km水准路线的权为单位权,其单位权中误差m0=±16mm,求1km水准测量的中误差及其权。

20、已知三角形三内角α、β、γ观测值的权分别为pα=1/2 、pβ= 1/2、pγ=1/4,求三角形闭合差w的权倒数。

21、在图4-6中,B点的高程由水准点BM0经a、b、c三条水准路线分别测得,设每个测站观测高差的精度相同,若取一测站观测高差的权力为30,问a、b、c三段水准线的权各是多少?两点间高差最或然值的权又是多少?图4-622、已知在角度观测在一测回中误差为±4″,欲使测角精度提高一倍,问应观测几个测回?23、甲、乙、丙三人在A、B两水准点间作水准测量。

甲路线观测,高差为a,单位权中误差为±3mm,(以2公里为单位权)。

乙路线观测高差为b,单位权中说差为±2mm(为1公里为单位权)。

丙路线观测高差为c,单位权中误差为±4mm(以4公里为单位权)。

现欲根据a、b、c三值求A、B之间高差的带权平均值,试求三者的权之比。

24、X角为L1、L2两角之和,L1=32°18′14″,是由20次观测结果平均而得,每次观测20中误差为±5″。

L2=80°16′07″,是由16次观测结果平均而得,每次观测中误差为±8″,如以±5″作为单位权中误差,求X角的权。

25、若要在坚强点间布设一条附含水准路线,已知每公里观测中误差等于±5.0mm,欲使平差后线路中点高程中误差不大于±10mm,问该路线长度最多可达几公里?26、有单一水准路线AB,其距离S AB=40km,已知A、B两点高程的中误差为m a=±4mm,m b=15,问每公里观测高差±2mm。

(相互独立),欲使路线上的最弱点的高程中误差为±mm的中误差应为多少?最弱点在何处?27、设对10km的距离同精度丈量10次,令其平均值的权为5,现以同样等级的精度丈量2.5 km。

问丈量此距离一次的权是多少?在本题计算中是以几公里的丈量中误差作为单位权中误差的?28、已知L1、L2是相互独立的观测值,其中分别是σ1和σ2。

又知W1=3L1-L2,W2=L1+L2,而且有:3X1+X2-W1=0X1-X2-W2=0试求X1和X2的中误差σX1,σX2。

2129、在同精度直接平差中,设被观测量的最或然值为X,第二个观测值及其改正数分别为L2、V2。

已知σX=±4.6cm,σV2=±10.2cm,试求L2的中误差是多少?解:∵L2=X-V2,σV22=±10.2cm,∴σL2=±11.2cm,这样解法对不对?为什么?22。

相关文档
最新文档