AGC电路AD603应用

合集下载

ad603手册

ad603手册

ad603手册1. 简介AD603是ADI(Analog Devices Inc.)推出的一款低噪声,宽带可变增益放大器。

该芯片内部集成了一个控制电压输入端,可通过调节该输入电压实现增益的控制。

本手册将为您介绍AD603的主要特性,电路连接,使用方法和一些应用示例。

2. 主要特性2.1 低噪声:AD603采用了高性能放大器核心,能够在低噪声环境下提供出色的信号放大效果。

2.2 宽带性能:该芯片的带宽范围从DC到40MHz,可以满足多种应用场景的需求。

2.3 可变增益:AD603的增益范围为-14dB到20dB,通过控制电压输入端的电压,可以轻松地调节增益。

2.4 供电电压范围:AD603可以在单电源供电下工作,供电电压范围为5V到15V,非常适合嵌入式系统等低功耗应用。

2.5 稳定性:该芯片具有良好的温度稳定性和电源稳定性,保证了信号放大的一致性和可靠性。

3. 电路连接AD603的电路连接非常简单,下面是一种常见的连接方式:3.1 高频输入端(INHI和INLO):将要放大的信号输入到INHI和INLO引脚,可以通过串联电容和电阻来完成信号的直流分离和控制输入阻抗。

3.2 控制电压输入端(VGAIN):通过改变VGAIN引脚的电压,可以实现对增益的控制,增益和控制电压之间存在线性关系。

3.3 电源端(VD+和VD-):将正负电源连接到VD+和VD-引脚,供芯片工作所需的电能。

3.4 输出端(OUTHI和OUTLO):从OUTHI和OUTLO引脚输出放大后的信号,可以通过串联电阻和电容来滤除直流分量和控制输出阻抗。

4. 使用方法AD603的使用方法非常简单,下面是一般的步骤:4.1 电路连接:按照上述的电路连接方式,将AD603与其他电路元件连接好。

4.2 供电:将适当的电源电压接入VD+和VD-引脚,确保芯片正常工作。

4.3 增益控制:通过控制电压输入端(VGAIN)的电压,调节增益到合适的值。

ad603中文资料

ad603中文资料

aAD603*FEATURESLinear in dB Gain ControlPin Programmable Gain Ranges–11 dB to +31 dB with 90 MHz Bandwidth 9 dB to 51 dB with 9 MHz BandwidthAny Intermediate Range, e.g., –1 dB to +41 dB with 30 MHz BandwidthBandwidth Independent of Variable Gain 1.3 nV/√Hz Input Noise Spectral Density ؎0.5 dB Typical Gain AccuracyMIL-STD-883 Compliant and DESC Versions Available APPLICATIONSRF/IF AGC Amplifier Video Gain Control A/D Range Extension Signal Measurement Low Noise, 90MHz Variable Gain AmplifierPRODUCT DESCRIPTIONThe AD603 is a low noise, voltage-controlled amplifier for use in RF and IF AGC systems. It provides accurate, pin selectable gains of –11dB to +31dB with a bandwidth of 90 MHz or 9dB to 51 dB with a bandwidth of 9 MHz. Any intermediate gain range may be arranged using one external resistor. The input referred noise spectral density is only 1.3nV/√Hz and power con-sumption is 125 mW at the recommended ±5 V supplies.The decibel gain is linear in dB, accurately calibrated, and stable over temperature and supply. The gain is controlled at a high impedance (50 M Ω), low bias (200 nA) differential input; theFUNCTIONAL BLOCK DIAGRAMOUTscaling is 25 mV/dB, requiring a gain-control voltage of only 1 V to span the central 40 dB of the gain range. An overrange andunderrange of 1 dB is provided whatever the selected range. The gain-control response time is less than 1µs for a 40 dB change.The differential gain-control interface allows the use of either differential or single-ended positive or negative control voltages.Several of these amplifiers may be cascaded and their gain-control gains offset to optimize the system S/N ratio.The AD603 can drive a load impedance as low as 100 Ω with low distortion. For a 500 Ω load in shunt with 5 pF, the total harmonic distortion for a ±1V sinusoidal output at 10 MHz is typically –60 dBc. The peak specified output is ±2.5 V mini-mum into a 500Ω load, or ±1 V into a 100 Ω load.The AD603 uses a proprietary circuit topology—the X-AMP ®.The X-AMP comprises a variable attenuator of 0 dB to –42.14dB followed by a fixed-gain amplifier. Because of the attenuator,the amplifier never has to cope with large inputs and can use negative feedback to define its (fixed) gain and dynamic perfor-mance. The attenuator has an input resistance of 100 Ω, laser trimmed to ±3%, and comprises a seven-stage R-2R ladder net-work, resulting in an attenuation between tap points of 6.021dB.A proprietary interpolation technique provides a continuous gain-control function which is linear in dB.The AD603A is specified for operation from –40°C to +85°C and is available in both 8-lead SOIC (R) and 8-lead ceramic CERDIP (Q). The AD603S is specified for operation from –55°C to +125°C and is available in an 8-lead ceramic CERDIP (Q).The AD603 is also available under DESC SMD 5962-94572.*Patented.REV.FInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781/329-4700 Fax: 781/326-8703© 2004 Analog Devices, Inc. All rights reserved.AD603–SPECIFICATIONSREV. F–2–ModelAD603ParameterConditions Min Typ Max Unit INPUT CHARACTERISTICS Input Resistance Pins 3 to 497100103ΩInput Capacitance2pFInput Noise Spectral Density 1Input Short Circuited1.3nV/√Hz Noise Figuref = 10 MHz, Gain = max, R S = 10 Ω8.8dB 1 dB Compression Point f = 10 MHz, Gain = max, R S = 10 Ω–11dBm Peak Input Voltage±1.4±2V OUTPUT CHARACTERISTICS –3 dB Bandwidth V OUT = 100 mV rms 90MHz Slew Rate R L ≥ 500 Ω275V/µs Peak Output 2R L ≥ 500 Ω±2.5±3.0V Output Impedancef ≤ 10 MHz2ΩOutput Short-Circuit Current 50mA Group Delay Change vs. Gainf = 3 MHz; Full Gain Range ±2ns Group Delay Change vs. Frequency V G = 0 V; f = 1 MHz to 10 MHz ±2ns Differential Gain 0.2%Differential Phase0.2Degree Total Harmonic Distortion f = 10 MHz, V OUT = 1V rms–60dBc Third Order Intercept f = 40 MHz, Gain = max, R S = 50 Ω15dBm ACCURACY f = 10.7 MHzGain Accuracy –500 mV ≤ V G ≤ +500 mV –1±0.5؉1dB T MIN to T MAX–1.5ϩ1.5dB Output Offset Voltage 3V G = 0V–20؉20mV T MIN to T MAX–30ϩ30mV Output Offset Variation vs. V G –500 mV ≤ V G ≤ +500 mV–20؉20mV T MIN to T MAX –30ϩ30mV GAIN CONTROL INTERFACE Gain Scaling Factor 39.44040.6dB/V T MIN to T MAX3842dB/V GNEG, GPOS Voltage Range 4–1.2+2.0V Input Bias Current 200nA Input Offset Current10nA Differential Input Resistance Pins 1 to 250M ΩResponse RateFull 40 dB Gain Change40dB/µs POWER SUPPLYSpecified Operating Range ±4.75±6.3V Quiescent Current 12.517mA T MIN to T MAX20mANOTES 1Typical open or short-circuited input; noise is lower when system is set to maximum gain and input is short-circuited. This figure includes the effects of both voltage and current noise sources.2Using resistive loads of 500Ω or greater, or with the addition of a 1 k Ω pull-down resistor when driving lower loads.3The dc gain of the main amplifier in the AD603 is ×35.7; thus, an input offset of 100 µV becomes a 3.57 mV output offset.4GNEG and GPOS, gain control, and voltage range are guaranteed to be within the range of –V S + 4.2 V to +V S – 3.4 V over the full temperature range of –40°C to +85°C.Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.Specifications subject to change without notice.(@ T A = 25؇C, V S = ؎5 V, –500 mV ≤ V G ≤ +500 mV, GNEG = 0 V, –10 dB to +30dB Gain Range, R L = 500⍀, and C L = 5 pF, unless otherwise noted.)AD603–3–REV.FABSOLUTE MAXIMUM RATINGS 1Supply Voltage ±V S . . . . . . . . . . . . . . . . . . . . . . . . . . . .±7.5V Internal Voltage VINP (Pin 3) . . . . . . . . . . . ±2 V Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V S for 10 ms GPOS, GNEG (Pins 1, 2) . . . . . . . . . . . . . . . . . . . . . . . ±V S Internal Power Dissipation 2 . . . . . . . . . . . . . . . . . . . . 400mW Operating Temperature RangeAD603A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C AD603S . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C Lead Temperature Range (Soldering 60sec) . . . . . . . . .300°CNOTES 1Stresses above those listed under Absolute Maximum Ratings may cause perma-nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.2Thermal Characteristics:8-Lead SOIC Package: θJA = 155°C/W, θJC = 33°C/W 8-Lead CERDIP Package: θJA = 140°C/W, θJC = 15°C/WPIN FUNCTION DESCRIPTIONSPin No.Mnemonic Description1GPOS Gain-Control Input High(Positive Voltage Increases Gain)2GNEG Gain-Control Input Low(Negative Voltage Increases Gain)3VINP Amplifier Input 4COMM Amplifier Ground5FDBK Connection to Feedback Network 6VNEG Negative Supply Input 7VOUT Amplifier Output 8VPOSPositive Supply InputCONNECTION DIAGRAM 8-Lead Plastic SOIC (R) Package 8-Lead Ceramic CERDIP (Q) PackageVPOSVOUT VNEGFDBKCAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD603 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recom-mended to avoid performance degradation or loss of functionality.ORDERING GUIDETemperature Package Package Part Number RangeDescriptionOption AD603AR–40°C to +85°C 8-Lead SOICR-8AD603AR-REEL –40°C to +85°C 8-Lead SOIC, 13" Reel R-8AD603AR-REEL7–40°C to +85°C 8-Lead SOIC, 7" Reel R-8AD603ARZ 1–40°C to +85°C 8-Lead SOICR-8AD603ARZ-REEL 1–40°C to +85°C 8-Lead SOIC, 13" Reel R-8AD603ARZ-REEL71–40°C to +85°C 8-Lead SOIC, 7" Reel R-8AD603AQ–40°C to +85°C 8-Lead CERDIP Q-8AD603SQ/883B 2–55°C to +125°C8-Lead CERDIP Q-8AD603-EBEvaluation Board AD603ACHIPSDIENOTES 1Z = Pb-free part.2Refer to AD603 Military data sheet. Also available as 5962-9457203MPA.REV. F–4–AD603GAIN VOLTAGE (Volts)G A I N E R R O R (d B )2.50–0.52.001.501.000.500.00–0.50–1.00–1.50–0.4–0.3–0.2–0.10.00.20.30.40.50.6TPC 1.Gain Error vs. Gain Control Voltage at 455 kHz, 10.7 MHz, 45MHz, 70 MHzFREQUENCY (Hz)REF LEVEL /DIV MARKER 505 156.739Hz–31.550dB 1.000dB MAG (UDF)–35.509dB 0.0deg 45.000deg MARKER 505 156.739HzG A I N (d B )P H A S E (D E G )TPC 4.Frequency and PhaseResponse vs. Gain (Gain = +30dB,P IN = –30 dBm, Pin 5 Connectedto Pin 7)TPC 7.Third Order Intermodula-tion Distortion at 455kHz (10ϫ Probe Used to HP3585A Spectrum Ana-lyzer, Gain = 0dB, P IN = 0dBm, Pin 5Connected to Pin 7)100k1M 10M 100MREF LEVEL /DIV MARKER 505 156.739Hz8.100dB 1.000dB MAG (UDF) 4.127dB 0.0deg 45.000degMARKER 505 156.739Hz –1–2–3–4–5–622518013590450–45–90–135–180–225G A I N (dB )P H A S E (D E G )FREQUENCY (Hz)TPC 2.Frequency and PhaseResponse vs. Gain (Gain = –10dB,P IN = –30dBm, Pin 5 Connected to Pin 7)GAIN CONTROL VOLTAGE (V)G R O U P D E L A Y (n s )7.60–0.67.407.207.006.806.606.40–0.4–0.200.20.40.6TPC 5.Group Delay vs. Gain Control Voltage TPC 8.Third Order Intermodulation Distortion at 10.7MHz (10ϫ Probe Used to HP3585A Spectrum Ana-lyzer, Gain = 0dB, P IN = 0dBm, Pin 5Connected to Pin 7)FREQUENCY (Hz)100k1M 10M 100MREF LEVEL /DIV MARKER 505 156.739Hz–11.850dB 1.000dB MAG (UDF) –15.859dB 0.0deg 45.000deg MARKER 505 156.739Hz G A I N (d B )22518013590450–45–90–135–180–225TPC 3.Frequency and Phase Response vs. Gain (Gain = +10dB, P IN = –30dBm,Pin 5 Connected to Pin 7)TPC 6.Third Order Intermodulation Distortion Test SetupLOAD RESISTANCE (⍀)N E G A T I V E O U T P U T V O L T A G E L I M I T (V )–1.0–1.2–1.4–1.6–1.8–2.0–2.2–2.4–2.6–2.8–3.05010020050010002000–3.2–3.4TPC 9.Typical Output Voltage Swing vs. Load Resistance (Negative Output Swing Limits First)–Typical Performance CharacteristicsAD603–5–REV.FFREQUENCY (Hz)I N P U T I M P E D A N C E (⍀)100k10210098961M 10M100M94 TPC 10.Input Impedance vs.Frequency (Gain = –10dB)TPC 13.Gain-Control Channel Response Time3.5V 500mV–1.5VGNDGNDTPC 16.Transient Response,G = 0dB, Pin 5 Connected to Pin 7(Input Is 500ns Period, 50% Duty-Cycle Square Wave, Output Is Captured Using Tektronix 11402Digitizing Oscilloscope)FREQUENCY (Hz)I N P U T I M P E D A NC E (⍀)100k10210098961M 10M 100M94 TPC 11.Input Impedance vs.Frequency (Gain = +10dB)4.5V 500mV –500mVTPC 14.Input Stage OverloadRecovery Time, Pin 5 Connected to Pin 7 (Input Is 500ns Period, 50% Duty-Cycle Square Wave, Output Is Captured Using Tektronix 11402 Digitizing Oscilloscope)3.5V500mV–1.5VTPC 17.Transient Response,G = +20dB, Pin 5 Connected to Pin 7 (Input Is 500 ns Period, 50% Duty- Cycle Square Wave, Output Is Captured Using Tektronix 11402 Digitizing Oscilloscope)FREQUENCY (Hz)I N P U T I M P E D A N C E (⍀)100k10210098961M 10M 100M94 TPC 12.Input Impedance vs. Frequency (Gain = +30dB)8V1V–2V TPC 15.Output Stage Overload Recovery Time, Pin 5 Connected to Pin 7 (Input Is 500 ns Period, 50% Duty-Cycle Square Wave, Output Is Captured Using Tektronix 11402 Digitizing Oscilloscope)FREQUENCY (Hz)P S R R (d B )100k0–20–40–601M 10M 100M–10–30–50TPC 18.PSRR vs. Frequency (Worst Case Is Negative Supply PSRR,Shown Here)REV. F–6–AD603TPC 19.Test Setup Used for: Noise Figure, Third Order Intercept and 1 dB Compression Point MeasurementsINPUT FREQUENCY (MHz)I N P U T L E V E L (d B m )10–5–10–25–15–20305070TPC 22.1 dB Compression Point,–10 dB/+30 dB Mode, Gain = +30 dB GAIN (dB)N O I S E F I G U R E (d B )232021191715135119721222324252627282930TPC 20.Noise Figure in –10 dB/+30 dB Mode INPUT LEVEL (dBm)O U T P U T L E V E L (d B m )–2020181681412–1010TPC 23.Third Order Intercept –10 dB/+30 dB Mode, Gain = +10 dB GAIN (dB)N O I S E F I G U R E (dB )3021191715135119731323334353637383940TPC 21.Noise Figure in 0 dB/40 dB ModeINPUT LEVEL (dBm)O UT P U T L E V E L (d B m )–4020181681412–30–2010TPC 24.Third Order Intercept,–10 dB/+30 dB Mode, Gain = +30 dBAD603–7–REV.FTHEORY OF OPERATIONThe AD603 comprises a fixed-gain amplifier, preceded by a broadband passive attenuator of 0dB to 42.14 dB, having a gain-control scaling factor of 40 dB per volt. The fixed gain is laser-trimmed in two ranges, to either 31.07 dB (×35.8) or 50dB (×358), or may be set to any range in between using one external resistor between Pins 5 and 7. Somewhat higher gain can be obtained by connecting the resistor from Pin 5 to common,but the increase in output offset voltage limits the maximum gain to about 60 dB. For any given range, the bandwidth is independent of the voltage-controlled gain. This system provides an underrange and overrange of 1.07 dB in all cases; for example, the overall gain is –11.07 dB to +31.07 dB in the maximum-bandwidth mode (Pin 5 and Pin 7 strapped).This X-AMP structure has many advantages over former methods of gain-control based on nonlinear elements. Most importantly,the fixed-gain amplifier can use negative feedback to increase its accuracy. Since large inputs are first attenuated, the amplifier input is always small. For example, to deliver a ±1 V output in the –1 dB/+41 dB mode (that is, using a fixed amplifier gain of 41.07 dB) its input is only 8.84 mV; thus the distortion can be very low. Equally important, the small-signal gain and phase response, and thus the pulse response, are essentially indepen-dent of gain.Figure 1 is a simplified schematic. The input attenuator is a seven-section R-2R ladder network, using untrimmed resistors of nominally R = 62.5 Ω, which results in a characteristic resis-tance of 125 Ω ± 20%. A shunt resistor is included at the input and laser trimmed to establish a more exact input resistance of 100 Ω ± 3%, which ensures accurate operation (gain and HP corner frequency) when used in conjunction with external resistors or capacitors.The nominal maximum signal at input VINP is 1 V rms (±1.4 V peak) when using the recommended ±5 V supplies, although operation to ±2 V peak is permissible with some increase in HF distortion and feedthrough. Pin 4 (SIGNAL COMMON) must be connected directly to the input ground; significant impedance in this connection will reduce the gain accuracy.The signal applied at the input of the ladder network is attenu-ated by 6.02 dB by each section; thus, the attenuation to each of the taps is progressively 0 dB, 6.02 dB, 12.04 dB, 18.06 dB,24.08 dB, 30.1 dB, 36.12 dB, and 42.14 dB. A unique circuittechnique is employed to interpolate between these tap points,indicated by the slider in Figure 1, thus providing continuous attenuation from 0 dB to 42.14 dB. It will help in understanding the AD603 to think in terms of a mechanical means for moving this slider from left to right; in fact, its position is controlled by the voltage between Pins 1 and 2. The details of the gain-control interface are discussed later.The gain is at all times very exactly determined, and a linear-in-dB relationship is automatically guaranteed by the exponential nature of the attenuation in the ladder network (the X-AMP principle). In practice, the gain deviates slightly from the ideal law, by about ±0.2 dB peak (see, for example, TPC 1).Noise PerformanceAn important advantage of the X-AMP is its superior noise per-formance. The nominal resistance seen at inner tap points is 41.7 Ω (one third of 125 Ω), which exhibits a Johnson noise-spectral density (NSD) of 0.83 nV/√Hz (that is, √4kTR ) at 27°C,which is a large fraction of the total input noise. The first stage of the amplifier contributes a further 1nV/√Hz , for a total input noise of 1.3 nV/√Hz . It will be apparent that it is essential to use a low resistance in the ladder network to achieve the very low specified noise level. The signal’s source impedance forms a voltage divider with the AD603’s 100 Ω input resistance. In some applications, the resulting attenuation may be unaccept-able, requiring the use of an external buffer or preamplifier to match a high impedance source to the low impedance AD603.The noise at maximum gain (that is, at the 0 dB tap) depends on whether the input is short-circuited or open-circuited: when shorted, the minimum NSD of slightly over 1 nV/√Hz is achieved;when open, the resistance of 100 Ω looking into the first tap generates 1.29 nV/√Hz , so the noise increases to a total of 1.63 nV/√Hz . (This last calculation would be important if the AD603 were preceded by, for example, a 900 Ω resistor to allow operation from inputs up to 10 V rms.) As the selected tap moves away from the input, the dependence of the noise on source impedance quickly diminishes.Apart from the small variations just discussed, the signal-to-noise (S/N) ratio at the output is essentially independent of the attenuator setting. For example, on the –11 dB/+31 dB range,the fixed gain of ×35.8 raises the output NSD to 46.5 nV/√Hz .Thus, for the maximum undistorted output of 1V rms and a 1MHz bandwidth, the output S/N ratio would be 86.6 dB, that is, 20 log (1 V/46.5 µV).OUTFigure 1.Simplified Block DiagramAD603The Gain-Control InterfaceThe attenuation is controlled through a differential, high impedance (50 MΩ) input, with a scaling factor which is laser-trimmed to 40 dB per volt, that is, 25 mV/dB. An internal band gap reference ensures stability of the scaling with respect to supply and temperature variations.When the differential input voltage V G = 0 V, the attenuator slider is centered, providing an attenuation of 21.07 dB. For the maximum bandwidth range, this results in an overall gain of10 dB (= –21.07 dB + 31.07 dB). When the control input is –500mV, the gain is lowered by 20 dB (= 0.500 V × 40dB/V), to –10 dB; when set to +500 mV, the gain is increased by 20dB, to 30 dB. When this interface is overdriven in either direction, the gain approaches either –11.07 dB (= –42.14 dB + 31.07 dB) or 31.07 dB (= 0 + 31.07 dB), respectively. The only constraint on the gain-control voltage is that it be kept within the common-mode range (–1.2 V to +2.0 V assuming +5 V supplies) of the gain control interface.The basic gain of the AD603 can thus be calculated using the following simple expression:Gain (dB) = 40 V G + 10(1) where V G is in volts. When Pins 5 and 7 are strapped (see next section), the gain becomesGain (dB) = 40 V G + 20 for 0 to +40 dBandGain (dB) = 40 V G + 30 for +10 to +50dB(2) The high impedance gain-control input ensures minimal loading when driving many amplifiers in multiple channel or cascaded applications. The differential capability provides flexibility in choosing the appropriate signal levels and polarities for various control schemes.For example, if the gain is to be controlled by a DAC providing a positive only ground-referenced output, the Gain Control Low (GNEG) pin should be biased to a fixed offset of 500mV, to set the gain to –10 dB when Gain Control High (GPOS) is at zero, and to 30 dB when at 1.00 V.It is a simple matter to include a voltage divider to achieve other scaling factors. When using an 8-bit DAC having an FS output of 2.55 V (10 mV/bit), a divider ratio of 2 (generating 5 mV/bit) would result in a gain-setting resolution of 0.2 dB/bit. The use of such offsets is valuable when two AD603s are cascaded, when various options exist for optimizing the S/N profile, as will be shown later.Programming the Fixed-Gain Amplifier Using Pin Strapping Access to the feedback network is provided at Pin 5 (FDBK). The user may program the gain of the AD603’s output amplifier using this pin, as shown in Figure 2. There are three modes: in the default mode, FDBK is unconnected, providing the range+9 dB/+51 dB; when V OUT and FDBK are shorted, the gain is lowered to –11 dB/+31 dB; when an external resistor is placed between V OUT and FDBK any intermediate gain can be achieved, for example, –1 dB/+41 dB. Figure 3 shows the nominal maxi-mum gain versus external resistor for this mode.V INOUTa.–10 dB to +30 dB; 90 MHz BandwidthV INOUTb.0 dB to 40 dB; 30 MHz BandwidthV INOUTc.10 dB to 50 dB; 9 MHz BandwidthFigure 2.Pin Strapping to Set GainR EXT (⍀)52101M DECIBELS1001k10k100k5048464442403836343230Figure 3.Gain vs. R EXT, Showing Worst-Case LimitsAssuming Internal Resistors Have a Maximum Tolerance of 20%REV. F –8–AD603–9–REV.FOptionally, when a resistor is placed from FDBK to COMM,higher gains can be achieved. This fourth mode is of limited value because of the low bandwidth and the elevated output off-sets; it is thus not included in Figure 2.The gain of this amplifier in the first two modes is set by the ratio of on-chip laser-trimmed resistors. While the ratio of these resistors is very accurate, the absolute value of these resistors can vary by as much as ±20%. Thus, when an external resistor is connected in parallel with the nominal 6.44 k Ω ± 20% inter-nal resistor, the overall gain accuracy is somewhat poorer. The worst-case error occurs at about 2 k Ω (see Figure 4).R EXT (⍀)1.2101MD E C I B E L S1001k10k100k1.00.80.60.40.20.0–0.2–0.4–0.6–0.8–1.0Figure 4.Worst-Case Gain Error, Assuming Internal Resistors Have a Maximum Tolerance of –20%(Top Curve) or +20% (Bottom Curve)While the gain-bandwidth product of the fixed-gain amplifier is about 4 GHz, the actual bandwidth is not exactly related to the maximum gain. This is because there is a slight enhancing of the ac response magnitude on the maximum bandwidth range, due to higher order poles in the open-loop gain function; this mild peaking is not present on the higher gain ranges. Figure 2 shows how optional capacitors may be added to extend the frequency response in high gain modes.CASCADING TWO AD603STwo or more AD603s can be connected in series to achieve higher gain. Invariably, ac coupling must be used to prevent the dc offset voltage at the output of each amplifier from overloading the following amplifier at maximum gain. The required high-pass coupling network will usually be just a capacitor, chosen to set the desired corner frequency in conjunction with the well defined 100 Ω input resistance of the following amplifier.For two AD603s, the total gain-control range becomes 84 dB (2 ϫ 42.14 dB); the overall –3 dB bandwidth of cascaded stages will be somewhat reduced. Depending on the pin strapping, the gain and bandwidth for two cascaded amplifiers can range from –22 dB to +62 dB (with a bandwidth of about 70 MHz) to +22 dB to +102 dB (with a bandwidth of about 6 MHz).There are several ways of connecting the gain-control inputs in cascaded operation. The choice depends on whether it is impor-tant to achieve the highest possible Instantaneous Signal-to-Noise Ratio (ISNR), or, alternatively, to minimize the ripple in the gain error. The following examples feature the AD603 programmed for maximum bandwidth; the explanations apply to other gain/bandwidth combinations with appropriate changes to the arrange-ments for setting the maximum gain.Sequential Mode (Optimal S/N Ratio)In the sequential mode of operation, the ISNR is maintained at its highest level for as much of the gain control range possible.Figure 5 shows the SNR over a gain range of –22 dB to +62 dB,assuming an output of 1 V rms and a 1 MHz bandwidth;Figure 6 shows the general connections to accomplish this.Here, both the positive gain-control inputs (GPOS) are driven in parallel by a positive-only, ground-referenced source with a range of 0 V to +2 V, while the negative gain-control inputs (GNEG) are biased by stable voltages to provide the needed gain offsets. These voltages may be provided by resistive divid-ers operating from a common voltage reference.V C (V)90S /N R A T I O (d B )–0.22.20.20.61.0 1.4 1.88580757065605550Figure 5.SNR vs. Control Voltage—Sequential Control (1 MHz Bandwidth)The gains are offset (Figure 7) such that A2’s gain is increased only after A1’s gain has reached its maximum value. Note that for a differential input of –600 mV or less, the gain of a single amplifier (A1 or A2) will be at its minimum value of –11.07 dB;for a differential input of +600 mV or more, the gain will be at its maximum value of 31.07 dB. Control inputs beyond these limits will not affect the gain and can be tolerated without dam-age or foldover in the response. This is an important aspect of the AD603’s gain-control response. (See the Specifications sec-tion of this data sheet for more details on the allowable voltage range.) The gain is nowGain (dB) = 40V G + G O(3)where V G is the applied control voltage and G O is determined by the gain range chosen. In the explanatory notes that follow,it is assumed the maximum bandwidth connections are used,for which G O is –20 dB.REV. F–10–AD603V C OUTPUT –20dBa.V C OUTPUT 20dBb.V C OUTPUT 60dBc.Figure 6.AD603 Gain Control Input Calculations for Sequential Control OperationC –2020406062.14–22.14GAIN(dB)*GAIN OFFSET OF 1.07dB, OR 26.75mVFigure 7.Explanation of Offset Calibration for Sequential ControlWith reference to Figure 6, note that V G1 refers to the differen-tial gain-control input to A1, and V G2 refers to the differential gain-control input to A2. When V G is 0, V G1 = –473 mV and thus the gain of A1 is –8.93 dB (recall that the gain of each indi-vidual amplifier in the maximum bandwidth mode is –10 dB for V G = –500 mV and 10 dB for V G = 0 V); meanwhile,V G2 = –1.908 V so the gain of A2 is pinned at –11.07 dB. The overall gain is thus –20 dB. This situation is shown in Figure 6a.When V G = +1.00 V, V G1 = 1.00 V – 0.473 V = +0.526 V,which sets the gain of A1 to at nearly its maximum value of 31.07 dB, while V G2 = 1.00 V – 1.526 V = 0.526 V, which sets A2’s gain at nearly its minimum value –11.07 dB. Close analysis shows that the degree to which neither AD603 is completely pushed to its maximum or minimum gain exactly cancels in the overall gain, which is now +20 dB. This is depicted in Figure 6b.When V G = 2.0 V, the gain of A1 is pinned at 31.07 dB and that of A2 is near its maximum value of 28.93 dB, resulting in an overall gain of 60 dB (see Figure 6c). This mode of operation is further clarified by Figure 8, which is a plot of the separate gains of A1 and A2 and the overall gain versus the control voltage.Figure 9 is a plot of the SNR of the cascaded amplifiers versus the control voltage. Figure 10 is a plot of the gain error of the cas-caded stages versus the control voltages.V C–0.22.20.2O V E R A L L G A I N (d B )0.61.0 1.41.8Figure 8. Plot of Separate and Overall Gains in Sequential Control。

自动增益控制(AGC)放大器

自动增益控制(AGC)放大器

自动增益控制放大器(AGC)设计摘要:本设计以程控增益调整放大器AD603为核心,通过单片机MSP430控制各模块,实现电压增益连续可调,输出电压基本恒定。

系统由5个模块组成:前级缓冲模块,电压增益调整模块,峰值检测模块,后级输出缓冲模块,控制与显示模块。

将输入信号经前级缓冲电路输入给程控增益调整放大器AD603,将信号放大输出,通过峰值检测电路检测输出信号,并送给单片机AD采样,与理想输出信号数值进行比较,若有多偏差,则通过调整对AD603的增益控制电压,来调整放大倍数,从而实现输出信号的稳定。

整个设计使用负反馈原理,实现了自动增益的控制。

关键字:AD603 MSP430 峰值检测自动增益控制一、方案设计与论证1.1整体方案方案一:采用纯硬件电路实现,由AD603和运放构成的电压比较器和减法电路实现。

把实际电压与理论电压的差值通过适当幅值和极性的处理,作为AD603的控制信号,从而实现放大倍数的自动调整,实现输出电压恒定。

优点:该方案理论简单,制作起来也相对容易,只有硬件电路。

缺点:理论低端,精度不够,没有创新,通用性不好。

方案二:采用AD603和单片机结合,通过单片机对输出信号AD采样并转化为数字量,与理论输出电压值进行比较,得到差值转换为控制电压,通过DA转化,对程控增益放大器AD603的放大倍数惊醒调整,从而实现输出电压的恒定。

优点:该方案控制精确,自动控制速度快,系统可移植性强,功能改变和增加容易,对后期改善和提升电路性能有益。

缺点:需要软硬件配合,系统稍复杂。

通过对两个方案的综合对比,我们选用方案二。

1.2控制模块方案一:采用MCS-51。

Intel公司的MCS-51的发展已经有比较长的时间,以其典型的结构、完善的总线、SFR的集中管理模式、位操作系统和面向控制功能的丰富的指令系统,为单片机的发展奠定了良好的基础,应用比较广泛,各种技术都比较成熟。

MCS-51优点是控制简单,二缺点也明显因为资源有限,功能实现有困难,而且需要大量外扩单元。

ad603中文资料

ad603中文资料

AD603: 低噪声、90 MHz可变增益放大器Product DescriptionAD603是一款低噪声、电压控制型放大器,用于射频(RF)和中频(IF)自动增益控制(AGC)系统。

它提供精确的引脚可选增益,90 MHz带宽时增益范围为−11 dB至+31 dB,9 MHz带宽时增益范围为+9 dB 至+51 dB。

用一个外部电阻便可获得任何中间增益范围。

折合到输入的噪声谱密度仅为1.3 nV/√Hz,采用推荐的±5 V电源时功耗为125mW。

增益以dB为线性,经过精密校准,而且不随温度和电源电压而变化。

增益由高阻抗(50 MΩ)、低偏置(200 nA)差分输入控制;比例因子为25 mV/dB,仅需1 V增益控制电压便可获得中间40 dB的增益范围。

无论选择何种范围,均提供1 dB的超量程和欠量程。

对于40 dB变化,增益控制响应时间不到1 μs。

差分增益控制接口允许使用差分或单端正或单端负控制电压。

可将数个这种放大器级联起来,由其增益控制增益偏置以优化系统信噪比(SNR)。

AD603可以驱动低至100 Ω的负载阻抗,且失真较低。

对于采用5 pF 分流的500 Ω负载,10 MHz、±1 V正弦输出的总谐波失真典型值为-60 dBc。

进入500 Ω负载的额定峰值输出最小值为±2.5 V。

AD603采用专有的专利电路结构X-AMP®。

X-AMP含有0 dB至-42.14 dB可变衰减器,后接固定增益放大器。

由于存在衰减器,放大器永远不必处理较大输入,并且可以用负反馈来定义其(固定)增益和动态性能。

衰减器具有经激光调整至±3%的100 Ω输入阻抗,并且包括一个7级R-2R梯形网络,由此获得6.021 dB的触点间衰减。

利用专有插值技术,可提供以dB为单位的线性连续增益控制功能。

AD603的工作温度范围为−40°C至+85°C。

AD603构成AGC变增益放大电路

AD603构成AGC变增益放大电路
1.
AGC 电路设计 为保证 AD9851 输出的信号经滤波网络后带内平坦,则需要增加一级 AGC 电路。AGC 电路
的其特点为:当输入信号较强时,自动将增益降低;当信号较弱时,又使其增益自动增高, 从而保证输出信号幅值的相对稳定。 本系统采用 AD603 构成 AGC 电路。AD603 为超低噪声、精密控制的可变增益放大器,最 大增益误差为 0.5dB,增益范围为-1.07dB 到+41.07dB(记为 0dB 到 40dB) ,其增益(dB)与 控制电压成线性关系。 因此可以通过控制电压来控制放大器的增益。 难点就是尽量滤出控制 电压的纹波及干扰, 因为芯片 AD603 对控制电压非常敏感, 微小的电压波动就能造成输出波 形上下起伏。所以采用这种方案屏蔽和抗干扰措施很重要。 AD603 内部利用负反馈技术来提高增益的准确度,而且内部的固定增益放大器不用处理 幅度大的信号,这样能减小失真。 AD603 的基本增益为:
Gain(dB) 32*VG 20
其中, VG 为差分输入电压(V) , VG 的范围为-625Mv~+625mV。利用该芯片的特点,设计 AGC 电路如图 14 所示。
图 14 AD603 构成 AGC 电路
电压控制增益的原理
图4 AD603内部结构图
AD603的基本增益可以用下式算出: Gain (dB) = 40 VG + 10 其中,VG是差分输入电压,单位是V,Gain是AD603的基本增益,单位是dB。 从此式可以 看出,以dB作单位的对数增益和电压之间是线性的关系。由此可以得出,只要单片机 进行简单的线性计算就可以控制对数增益,增益步进可以很准确的实现。但若要用放 大倍数来表示增益的话,则需将放大倍数经过复杂的对数运算转化为以 db为单位后再 去控制AD603的增益,这样在计算过程中就引入了较大的运算误差。

AD600与AD603的应用简介

AD600与AD603的应用简介

AD600与AD603的应用简介崔振威摘要:压控放大芯片具有增益与外加控制电压成比例关系的特点,很适合用于需要对信号的幅度进行程控的场合,并可以根据芯片的特点制作出性能优异的AGC电路,广泛用于信号的的动态压缩处理,信号的提取,稳幅等场合。

ADI公司出品有几款性能优异的VCA芯片,如AD600,602,603等,这里主要讨论AD600和AD603的一些典型使用方法。

AD600简介AD600引脚图如图1图1AD600内置两路放大单元,其增益(dB)与外加控制电压成线性关系,增益范围为0~+40dB(AD602为-10~+30dB),具有低噪声、低失真、高增益精度、宽频带的特点,广泛用于视频增益控制、高性能音频电路、RF/IF系统中的AGC电路以及信号测量等电路。

AD600的内部结构AD600的内部框图如图2所示:图2AD600内部有一固定增益放大器、0~—42.14dB的宽带压控无源精密衰减器和32dB/V的线性增益控制电路。

AD600采用了X-AMP结构,该结构组成部分为一0~—42.14dB的可变衰减器和一固定增益放大器。

其中可变衰减器由一7级R-2R梯形网络构成,每级的衰减梁为6.02dB,可对输入信号进行0~—42.14dB的衰减。

该结构最组要的的特点是噪声小,在1MHz带宽,最大不失真输出为1Vrms时,信噪比优于76dB(AD602、AD603为86dB)。

另外,AD600在100KHz~10MHz的通频带内增益起伏不大于0.5dB,具有控制精度高的特点。

外加信号从精密无源衰减网络的输入端输入,其衰减量由高阻低偏流差分输入的增益控制电路的控制电压VG(VGPOS—VGNEG)决定AD603简介AD603引脚图如图3图3AD603是ADI公司继AD600、AD602之后推出的新品,它的结构与AD600类似,同时使用更灵活。

它内部只有一路放大单元,区别于AD600、AD602的双路放大单元,它的的增益范围可通过改变外部电路来设定,具有三种工作模式,此外,它的增益与控制电压的关系也略有不同。

程控放大器(ad603)

程控放大器(ad603)

程控放大器(ad603)本设计由三个模块电路构成:前级放大电路(带AGC部分)、后级放大电路和单片机显示与控制模块。

在前级放大电路中,用宽带运算放大器AD603两级级联放大输入信号,输出放大一定倍数的电压,经过后级放大电路达到大于8V的有效值输出。

ADUC812的单片机显示、控制和数据处理模块除可以程控调节放大器的增益外,还可以实时显示输出电压有效值。

本设计采用高级压控增益器件,进行合理的级联和阻抗匹配,加入后级负反馈互补输出级,全面提高了增益带宽积和输出电压幅度。

应用单片机和数字信号处理技术对增益进行预置和控制,AGC稳定性好,可控范围大,完成了题目的所有基本和发挥要求。

方案论证与比较1.可控增益放大器部分方案一简单的放大电路可以由三极管搭接的放大电路实现,图1为分立元件放大器电路图。

为了满足增益60dB的要求,可以采用多级放大电路实现。

对电路输出用二极管检波产生反馈电压调节前级电路实现自动增益的调节。

本方案由于大量采用分立元件,如三极管等,电路比较复杂,工作点难于调整,尤其增益的定量调节非常困难。

此外,由于采用多级放大,电路稳定性差,容易产生自激现象。

方案二为了易于实现最大60dB增益的调节,可以采用D/A芯片AD7520的电阻权网络改变反馈电压进而控制电路增益。

又考虑到AD7520是一种廉价型的10位D/A转换芯片,其输出Vout=Dn×Vref/210,其中Dn为10位数字量输入的二进制值,可满足210=1024挡增益调节,满足题目的精度要求。

它由CMOS电流开关和梯形电阻网络构成,具有结构简单、精确度高、体积小、控制方便、外围布线简化等特点,故可以采用AD7520来实现信号的程控衰减。

但由于AD7520对输入参考电压Vref有一定幅度要求,为使输入信号在mV~V每一数量级都有较精确的增益,最好使信号在到达AD7520前经过一个适应性的幅度放大调整,再通过AD7520衰减后进行相应的后级放大,并使前后级增益积为1024,与AD7520的衰减分母抵消,即可实现程控放大。

AD603应用说明

AD603应用说明

一、极限参数
最大输入电压V rms=1V,V P=1.4V 最大输入电压峰值不可以超过2V
二、基本连接方法
本电路采用5脚和7脚短接的高通频带接法(-11dB~31dB,90MHz带宽)
三、增益控制方法
当VG=0时,衰减器处于中央位置,提供一个21.07dB的衰减,对于最大频带范围模式,输出增益为10dB(=-21.07dB+31.07dB)
增益转换比为:25mV/dB
当控制输入端为-500mV时,增益被减小了20dB(=0.5*40dB/V),变为-10dB
当控制输入端为500mV 时,增益增加了20dB 变为30dB
增益的输出范围-11.07dB (=-42.14dB+31.07dB )~31.07dB (=0+31.07dB )连续变化 基本增益计算公式:1040)(+=G V dB Gain
具体操作方法
首先将Veng 调整为2.5V (6脚)
然后调整TLV5618输出2.5V 电压至Vp (8脚)将VG 变为0,使当前增益为10dB 下表为增益对照表:
步进5dB ,因此VG 步进0.125V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档