七年级数学下册(人教版)配套教学学案:6.3 第1课时 实数
人教七年级下数学_《第1课时_实数》教学设计

人教版七下6.3实数(第1课时)教学设计教学内容解析教学流程图地位与作用本节课在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围.本节的内容在中学数学中很重要,它不仅是后续学习二次根式、一元二次方程以及锐角三角函数等知识的基础,也是学习高中数学中函数、不等式等知识的基础.实数的产生使得开方运算的封闭性得以保证,几何图形特别是线的连续性有了逻辑基础.概念解析实数理论的核心问题是对无理数的认识,将所有的数都化为小数之后,有一类小数是学生不熟悉的,那就是无限不循环小数,定义为无理数.类比有理数在数轴上的表示,借助半径为0.5的圆的周长是和边长为1的正方形的对角线长是引出无理数也是可以在数轴上表示出来的,教学中往往需要借助几何图形的构造来实现.思想方法利用转化的思想将所有的数化成小数之后可对实数数进行分类,其中无限不循环小数就是无理数;利用类比的思想得出无理数也可以在数轴上表示.知识类型无理数和实数属于概念性知识.在实数学习中,将所有的数转化成小数后对数进行了分类,可以清楚的区分出无理数与有理数,进而通过归纳认识实数,这符合初中生的认知特点.有理数都可以在数轴上表示出来是学生已有的认识,通过具体实例让学生发现有理数并不能填满整个数轴,数轴上的点除了有理数还有无理数的事实,进而自然接受实数与数轴上的点一一对应关系.教学重点基于以上分析,本节课的教学重点是:实数的概念.教学目标解析教学目标1.了解无理数和实数的概念.2.知道实数与数轴上的点具有一一对应关系.目标解析达成目标1的标志是:给出一些实数,学生会辨析哪些是有理数,哪些是无理数,并能自己举例说明.达成目标2的标志是:学生能在数轴上找到表示,这样的无理数的点.知道给定一个实数,数轴上就有唯一确定的点与之对应;反之,数轴上给定一个点,就有唯一的实数与之对应,初步体会“数形结合”的数学思想.教学问题诊断分析具备的基础学生在七年级上已经掌握了整数、分数统称为有理数的知识结构,认识了所有的有理数均可以转化为有限小数和无限循环小数,并且已经知道有理数可以在数轴上表示出来.与本课目标的差距分析无理数不同于有理数是建立在学生已经熟悉的整数、分数上提出来的,它是一个由运算的需要所产生的全新的数的概念,也是一个相对抽象的概念,尤其能将无理数在数轴上准确的表示对学生来说更是认知上的困难.存在的问题无理数是从现实世界中抽象出来的一种数,其严格的数学定义非常高深,再加上初中生对无理数几乎没有任何感性认识,甚至对无理数是否真正存在还有质疑,因此认识无理数并意识到其在生活中的存在就成了学生认知中的一个难点.应对策略为了突破对无理数的认识这一难点,应从学生熟悉的有理数入手,本节先将有理数与有限小数和无限循环小数统一起来,再采用与有理数对照的方法引入无理数,揭示出有理数和无理数的联系与区别,有助于学生理解实数定义.接着类比用数轴上的点表示有理数,指出实数与数轴上的点的一一对应关系.教学难点基于以上分析,本节课的教学难点是对无理数的发现,知道实数与数轴上的点的一一对应关系.教学支持条件分析由于无理数的概念的抽象性,为了帮助学生理解实数与数轴上的点一一对应,可运用动态几何软件,形象地展示,等无理数在数轴上的表示.教学过程设计课前检测1.将下列各数填入相应的集合内:…,整数集合{…},分数集合{…}.2.比较大小:(1)-2与5;(2)-0.5与;(3)与0;(4)与.设计意图:检查学生对有理数运算的掌握情况,如果学生对于第一题及第二个问题中前两个问题回答不好,则需要在课前增加有理数概念及大小比较的复习.第二个问题中的后两个问题是引发学生思考,数域被扩充后实数的大小关系是怎样的,如何进行无理数的大小比较.探究新知问题1:观察下列各数,请确定分类的标准,将下列数分成两类:3,,,-5,-,预案:学生按有理数的定义或符号出现两种分法问题2:如果将问题1中的分数写成小数的形式,你有什么发现?预案:如果学生不能正确得到结论,教师追问:你能否从这些小数的形式特点上加以分类?如果学生能正确得到结论,教师追问:任意写一个分数,一定都能写成有限小数或是无限循环小数的形式吗?请举例说明.师生活动:学生举例,可能会出现循环节是多位的循环小数,教师要充分引导,以进一步加强学生的认识.教师引导学生观察,得到结论:如果把整数看成小数点后是0的小数,任何一个有理数都可以写成有限小数或是无限循环小数的形式;反过来,任何有限小数和无限循环小数也都是有理数.设计意图:让学生从探究活动开始,体会有理数都可以写成有限小数和无限循环小数的形式.问题3 你认为小数除了上述类型外,还会有什么类型?师生活动预案1:通过对数的归纳辨析,与有理数对照,师生共同归纳出前两节学过的一些平方根和立方根都是无限不循环小数,它们不同于有限小数和无限循环小数,是一类不同于有理数的数,由此教师给出无理数的概念:无限不循环小数叫无理数,并指出=3.14159265…也是无理数.师生活动预案2:通过对数的归纳辨析,与有理数对照,师生共同归纳出前两节学过的一些平方根和立方根都是无限不循环小数,如,它们不同于有限小数和无限循环小数,是一类不同于有理数的数,那么你能证明不是有理数吗?引导学生采用反证法:如果是有理数,则可以将表示成最简分数(m、n互质)的形式,师生共同完成证明过程如下:证明:假设是有理数,则可以写成一个最简分数.设=(m、n互质),两边平方得( *)左边是偶数,所以右边是偶数,则m是偶数,设m=2p,则代入(*)这个等式的右边,整理得,这样则n也是偶数,这和m和n互质矛盾.所以假设错误,所以不是有理数.师生活动:像有理数一样,无理数也有正负之分,例如,,是正无理数,,,是负无理数.进而给出实数的概念及实数的如下分类.设计意图:让学生回忆曾经学过的无限不循环小数是不同于有理数的数,为教师引出无理数概念作准备,设置了两个预案,采用分层教育,预案1是得出无理数概念的需要,预案2是意在提升优生的认知水平和思维能力,如面对的学生基础较好则学习了预案1后展开预案2的探究,如面对的学生基础一般则预案2跳过.问题4:你能类比有理数的分类方法,对实数分类吗?师生活动:教师在参与讨论时,启发学生类比有理数的分类,明确分类的基本原则:按照某个标准,不重不漏.学生独立思考后,小组讨论得到如下分类.设计意图:通过学生互相的讨论和交流,可以加深对无理数和实数的理解,同时让学生明确数的分类可以有什么不同的方法,初步形成对实数整体性的认识.例1下列实数中,哪些是有理数?哪些是无理数?5,3.14,0,,,,,,0.1010010001…(相邻两个1之间0的个数逐次加1)师生活动:学生根据有关概念进行判断.设计意图:对有关概念进行辨析.目标1检测把下列各数填入相应的集合内:…,有理数集合{…},无理数集合{…}.设计意图:检测学生对实数分类的掌握情况.如果学生能正确回答,则进行下面追问1与追问2的教学.如果大部分学生不能对有理数与无理数进行准确辨认,则需要继续进行分析讲解.追问1:你觉得无理数有哪些表示形式师生共同归纳无理数的表示形式:(1)与π有关的数(2)类似于0.3737737773 …有规律但不循环的数(3)开不尽方的数追问2:你能写出两个大于3小于4的无理数吗?设计意图:对本节课的有关概念进行检测.问题5 无理数能在数轴上表示出来吗?(1)无理数π可以在数轴上表示出来吗?师生活动:教师参与并指导实际操作,指出无理数可以用数轴上的点表示出来.直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达,点对应的数就是π.设计意图:通过直径为1个单位长度的圆在数轴上的滚动,让学生知道无理数π可以用数轴上的点表示.(2)你能在数轴上表示吗?师生活动:学生独立思考后小组讨论交流,借助第6.1节的得出和手中的学具进行操作.(3)你知道实数,,π,﹣π的大小关系吗?师生归纳:与规定有理数的大小关系一样,数轴上的任意两个点,右边的点所表示的实数总是比左边的实数大.设计意图:通过具体操作,让学生知道无理数也可以在数轴上表示.由于学生知识水平的限制,他们不可能也没有必要知道如何将任意一个无理数用数轴上的点表示出来.解决了问题5后,教师直接给出实数与数轴上的点是一一对应的结论.应用新知课堂小结例2判断正误,并说明理由.(1)无理数都是无限小数;(2)实数包括正实数、0、负实数;(3)不带根号的数都是有理数;(4)所有有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示有理数.师生活动:学生根据本节课的有关概念进行判断.设计意图:对无理数概念及其相关知识进行判析.目标2检测如图,在数轴上表示实数的点可能是()A.P点B.Q点C.M点D.N点设计意图:如果学生能正确解答,则进行后续教学,如果有少数学生不能正确解答,需在课后进行个别辅导.课堂小结教师和学生一起回顾本节课所学内容,并请学生回答以下问题后对知识点进行梳理:(1)实数的研究内容是什么?(2)举例说明有理数和无理数的特点分别是什么?(3)实数是由哪些数组成的?(4)实数与数轴上的点有什么关系?设计意图:让学生对本节课知识进行梳理,进一步落实实数的有关概念.目标检测设计1.下列实数是无理数的是()A.0.2 B.-5 C.D.2.下列说法正确的是()A.无理数是开方开不尽的数;B.无理数包括正无理数、零、负无理数;C.带根号的数都是无理数;D.无理数是无限不循环小数.3.下面实数比较大小正确的是()A.3>7 B.0<-2 C.D.4.数轴上,点A,B表示的数分别是和5.1,则A,B两点之间的整数有几个()A.6个B.5个C.4个D.3个5.到原点的距离为的点表示的数是___________.6.把下列各实数分别填入到相应的大括号中:,,0.333 3…,,,,-π,,3.14,-23,1.212 112 111 2…(两个“2”之间依次多一个“1”).整数{ …}分数{ …}有理数{ …}无理数{ …}。
(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。
本节内容主要包括实数的定义、实数的分类和实数的性质。
通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。
但是,对于实数的定义和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。
三. 教学目标1.理解实数的概念,掌握实数的分类和性质。
2.能够运用实数的概念和性质解决一些简单的实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数的分类。
五. 教学方法采用讲授法、引导法、讨论法等教学方法。
通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。
六. 教学准备1.教师准备教案、PPT等教学资料。
2.学生准备笔记本、文具等学习用品。
七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。
2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。
引导学生理解和记忆实数的概念和性质,掌握实数的分类。
3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。
通过练习,巩固学生对实数的理解和掌握。
4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。
5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。
6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。
7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。
人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。
本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。
通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。
二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。
但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。
此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。
三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。
2.掌握实数的运算规则,能够进行实数的加减乘除运算。
3.能够运用实数的概念和运算规则解决实际问题。
四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。
2.实数的运算规则:实数的加减乘除运算规则。
五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。
六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。
2.练习题:针对实数的分类和运算的练习题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。
2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。
3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。
4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。
5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。
6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。
七年级数学(人教版下册)教案:6.3第1课时 实数

6.3 实数第1课时 实数1.了解无理数和实数的概念.2.知道实数与数轴上的点一一对应.自学指导:阅读教材第53至54页,了解无理数、实数的定义以及实数的分类,独立完成下列问题. 知识探究(1)有理数和无理数统称为实数.(2)实数按正负分可分为正实数、0、负实数.自学反馈(1)π2103(2)下列说法:①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数;④两个无理数的和还是无理数,其中错误的是①③.带根号的数不一定都是无理数;所有的无限循环小数都可以化成分数.阅读教材P54“探究”,知道实数与数轴上的点是一一对应的关系,独立完成下列问题.自学反馈(1)与数轴上的点建立一一对应关系的是实数.(2)有没有最大的实数?有没有最小的实数?有没有绝对值最小的实数?解:没有,没有,0.(3)下列命题中正确的是(D)A.有限小数不是有理数B.无限小数是无理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应数轴上的点与实数一一对应的意思就是每个实数都可以在数轴上找到唯一的点与之对应,数轴上的每个点都表示一个实数.活动1 独立完成后小组内交流例1 若无理数a 满足1<a <4,、π.例2大于的所有整数的和是-4.先确定两个数的取值范围,找出所有满足条件的整数再解.例3判断下列说法是否正确,错误的请简述理由.(1)数轴上任意一个点都表示一个实数;(2)任何一个实数总可以在数轴上找到一个相应的点;(3)所有的有理数都可以在数轴上找到对应的点;(4)数轴上任意一个点都表示唯一的一个有理数;(5)所有的无理数都可以在数轴上找到对应的点;(6)数轴上任意一个点都表示唯一的一个无理数.解:略.错误的举出一个反例即可.例4比较大小:16;3.可利用数轴进行比较,也可以取近似值进行比较,还可以把数放到根号里再比较被开方数. 活动2 跟踪训练1.把下列各数分别填在相应的集合中.-11120、4π、0.23、3.142.如果一个实数的平方根与它的立方根相等,则这个数是0.3.设a是最小的自然数,b是最大的负整数,c是绝对值最小的实数,求a+b+c的值.解:-1.活动3 课堂小结⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数。
人教版七年级数学下册(教案):6.3实数

人教版七年级数学下册(教案):6.3实数
一、教学内容
人教版七年级数学下册(教案):6.3实数
1.实数的定义与分类
-有理数与无理数的概念
-实数的性质与分类
2.无理数的理解
-无理数的概念及特点
-常见无理数(如π、e等)的认识
3.实数的运算
-实数的加减乘除
-实数的乘方与开方
4.实数与数轴的关系
-实数在数轴上的表示
1.理论介绍:首先,我们要了解实数的基本概念。实数包括有理数和无理数,是数学中ห้องสมุดไป่ตู้一种重要数集。它在解决生活中的实际问题中起着关键作用。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算圆的周长时,我们需要使用π这个无理数,这就是实数在实际中的应用。
3.重点难点解析:在讲授过程中,我会特别强调实数的分类和实数的运算这两个重点。对于难点部分,比如无理数的运算,我会通过举例和比较来帮助大家理解。
在总结回顾环节,我强调了实数知识在日常生活中的应用,希望学生们能够学以致用。但从教学反思来看,我还需要在以下几个方面进行改进:
1.加强对无理数运算的教学,通过更多实例和练习,让学生熟练掌握运算规律。
2.在实践活动中,增加学生对实数运算的实际操作,提高他们的动手能力。
3.针对学生在讨论中暴露出的问题,有针对性地进行教学指导,帮助他们消除误区。
(1)无理数的理解:无理数的概念较为抽象,学生难以理解。
-无理数的表示:如根号2、π等,学生需要理解无理数是无限不循环小数。
-无理数的性质:如无理数的乘方和开方运算,举例说明。
(2)实数的运算:尤其是涉及无理数的运算,学生容易出错。
人教版七年级下册 6.3 实数第1课时 学案

32711 ,, 549
问题4:我们将有理数和无理数统称为实数,仿照有理数的分类吗?据此你能给实数分类吗?
探究点2:实数与数轴上的点
问题1:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点到达A 点,则数轴上表示点A 的数是多少?
问题2:你能在数轴上找到表示2,3,5这样的无理数对应的点吗?怎么找?
探究点3:实数的大小比较
问题1:在数轴上表示下列各点,比较它们的大小,并用“<”连接它们.
:1,5,7,2(2)-,3-
的实数.
(三)实数的大小比较
6.比较37与6的大小.
四.目标检测
1. 无限不循环小数叫做 数。
2. 和 统称实数.
3. 若实数x 与实数y 互为相反数则x y +等于 .
4. 若33a a -=-,则a 的取值范围是 .
5. 把下列各数填在相应的集合里:
3.14,.512.0,π,32-,42-,0,283
-,99
100,2)5(-,196169,3343-,304.0--. 负实数集合{ …};
无理数集合{ …};
非负有理数集合{ …}.。
七年级数学下册(人教版)配套教学教案:6.3 第1课时 实数 1

全新修订版教学设计
(教案)
七年级数学下册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
6.3 实 数
第1课时 实 数
1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;(重点)
2.进一步理解有理数和无理数的概念,会把实数进行分类;(重点)
3.理解实数与数轴的关系,并进行相关运用.(难点)
一、情境导入
为了美化校园,学校打算建一个面积为225平方米的正方形植物园,这个正方形的边长应取多少?你能计算出来吗?如果把“225”改为其他数字,如“200”,这时怎样确定边长?
二、合作探究
探究点一:实数的相关概念及分类
【类型一】 无理数的识别 在下列实数中:157,3.14,0,9,π,5,0.1010010001…,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个
解析:根据无理数的定义可以知道,上述实数中是无理数的有:π,5,0.1010010001….故选C.
方法总结:常见无理数有三种形式:第一类是开方开不尽的数;第二类是化简后含有π的数;第三类是无限不循环的小数.
变式训练:见《学练优》本课时练习“课后巩固提升”第3题
【类型二】 实数的分类
把下列各数分别填到相应的集合内:
-3.6,27,4,5,
3-7,0,π2,-3125,227,3.14,0.10100….。
七年级人教版数学下册教案:6.3.1 实数(第一课时)

武陟县实验中学群体智慧教学活动案学 科数 学 年级 七年 级设计者个性备课时 间课题6.3实数(第一课时)计划学时2课时重 点1.了解无理数和实数的概念;2.对实数进行分类。
课 标 要 求 1.了解无理数和实数的概念以及实数的分类; 2.知道实数与数轴上的点具有一一对应的关系。
课 时 目 标 在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类引 桥 突 破 把无理数在数轴上表示出来,得到实数与数轴上的点是一一对应的关系。
教 法 自学引导 巩固练习 学 法 自主探究 小组合作教学内容 及过程群体智慧设计个性化批注一、复习引入无理数:把下列有理数95,119,847,53,3-写成小数的形式,它们有什么特征?发现上面的有理数都可以写成有限小数或无限循环小数的形式即:5.095,18.0119,875.5847,6.053,0.33 ===-=-=归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。
通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,把无限不循环小数叫做无理数。
比如33,5,2-等都是无理数。
14159265.3=π…也是无理数。
二、实数及其分类:1、实数的概念:有理数和无理数统称为实数。
2、实数的分类:按照定义分类如下:实数⎪⎩⎪⎨⎧⎩⎨⎧数)无理数(无限不循环小小数)(有限小数或无限循环分数整数有理数 按照正负分类如下:实数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零负无理数正有理数正实数 3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点表示出来吗?活动:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就是2-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全新修订版教学设计
(学案)
七年级数学下册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
第1课时实数
【学习目标】
1、了解立方根的概念,初步学会用根号表示一个数的立方根;
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;
3、体会一个数的立方根的惟一性,分清一个数的立方根与平方根的区别。
【学习重点和难点】
1.学习重点:立方根的概念和求法。
2.学习难点:立方根与平方根的区别。
【学习过程】
一、自主探究
1、填空:(有理数的两种分类)
有理数有理数
2、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3 ,
3
5
-,
47
8
,
9
11
,
11
9
,
5
9
二、探究新知
1、归纳:任何一个有理数都可以写成_______小数或________小数的形式。
反过来,任何______小数或____________小数也都是有理数
观察通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数, ____________小数又叫无理数, 3.14159265
π= 也是无理数
结论: _______和_______统称为实数
你能举出一些无理数吗?
2、试一试把实数分类
像有理数一样,无理数也有正负之分。
π是____无理数,
π-是____无理数。
由于非0有理数和无理数都有正负之分,
所以实数也可以这样分类:实数
3、我们知道,每个有理数都可以用数轴上的点来表示。
无理。