Disturbance rejection control for Raymond mill grinding system based on disturbance observer
无人机非线性自抗扰控制方法研究

无人机非线性自抗扰控制方法研究
RESEARCH OF NONLINEAR ACTIVE DISTURBANCE REJECTION CONTROL WITH APPLICATIONS TO UNMANNED AERIAL VEHICLE
曹宇
哈尔滨工业大学 2013 年 7 月
国内图书分类号: V249 国际图书分类号: 08115
哈尔滨工业大学工学硕士学位论文
Abstract
UAV is a special air force aircraft, characterized by the major feature “no pilot”. Due to such feature; UAV is known as " wing of the crack troops " in the military field of the 21th century, In the local wars of modern times, the optimal choice of reducing the cost of war is to reduce or even avoid casualties; UAV is gradually rising in the competation of weapons of the present time due to its outstanding advantages. In order to meet better the requirement of war under the condition of informaliztion; it is extremely urgent to improve the performance of flight control for UAV. Considering the fact that UAV conduct autonomous flight through aerodynamic force to overcome its own weight; UAV is inevitably to suffer from all kinds of disturbance. Obviously, the tradition control method of linearization; often used for the elimination of interference errors, no longer apply here. Starting from the principles of ADRC, this study mainly concentrate on UAV flight Control strategy using ADRC, and try to solve the problem of declining in stability and maneuverability when using nonllinear ADRC to deal with CONTROL PROBLEMS OF UAV with all kinds of disturbances. Firstly, nonlinear mathematical model of UAV flight control system with six degrees of freedom was built on the base of understanding of motion characteristics of UAV, and the nolinear model is simplified to a linear one based om small disturbance assumption. Based on this analysis of kinematics characteristics of longitudinal direction and Lateral longitudinal direction of UAV; the kinematics model of longitudinal and Lateral longitudinal are built and the key point of the paper is establised:A reasonable math model of UAV with ideal performance and effective suppression of interference is bult, and the foundation for further study is laid. Secondly, an in-depth study of the ADRC method is made, and the structure, the function and the working priciple of the controller is clearified. Stability of the second order extended state observer (ESO) is demonstrated through method of Lyapunov and the necessary and sufficient condition of the maintainance of the stability is clearified. The evaluation criteria of error convergence of ESO is given by error anlysis. Design mehtod of ESO and principles for parameter selection is given based on filter of feed back structure of fal funcion. Thirdly, aiming at the climb / decline phase of UAV; the reference movement is taken as the non- tilting and non-sliding flight of UAV , the attitude angle tracking loop is designed and a simulation platform is built. Through the design of control loop and the seeking of reasonable control parameters, the pitch attitude control problem under the disturbances of air current and gas stream and a is completed and combination control strategy of ADRC and PI is proposed. Through the analysis
航空永磁电驱动系统比例谐振型自抗扰速度控制器设计

航空永磁电驱动系统比例谐振型自抗扰速度控制器设计作者:陈哲陈沛阳滕国飞李金程骆光照来源:《航空科学技术》2023年第12期摘要:襟缝翼机电作动器是飞机高升力系统中的关键运动部件,其速度控制对襟缝翼的姿态调节十分重要。
然而,襟缝翼机电作动器易受到翼面周期性或非周期性气动载荷干扰,传统的比例积分型速度控制器性能实现受限。
为此,本文提出一种基于比例谐振自抗扰控制器(ADRC),在抑制非周期性干扰基础上还可抑制特定次周期性干扰。
周期性干扰通过采用比例谐振控制的扩展状态观测器来估计。
通过试验,比较了比例积分型控制器、传统线性自抗扰控制器和比例谐振型自抗扰控制器的控制性能,验证了本文所提出的方法可以显著抑制干扰、提高机电作动器的速度控制精度,为飞机平稳起降提供技术支撑。
关键词:机电作动器;永磁同步电机;速度控制器;周期性干扰;比例谐振中图分类号:TM34 文献标识码:A DOI:10.19452/j.issn1007-5453.2023.12.008基金项目:航空科学基金(201919053002)随着全电/多电飞机的快速发展,高功率密度机电作动器(EMA)在飞机飞行控制系统中得到了极大的推广,其大多采用具有高功率密度和高效率的永磁同步电机(PMSM)[1-3]。
在飞机高升系统的襟缝翼EMA中,需要加、减速度快和速度控制精度高[4]。
襟缝翼翼面在飞行中的气弹性载荷表现为周期性扭矩载荷[5],对PMSM驱动器的速度控制精度产生很大影响。
根据文献[6]、文献[7]中的分析,气动载荷或颤振的频率范围为25~250rad/s,并高度依赖其翼型的几何设计和材料特性。
因此,设计出一种抗干扰能力强的速度控制器对提升航空EMA性能具有重要意义。
现有的比例积分微分(PID)速度控制器在周期性负载扰动存在时控制性能受限。
为了设计一种更具抗周期干扰能力的速度控制器,许多学者尝试采用基于模型的控制策略,如模型预测控制[8]和内部模式控制[9],以及无模型速度控制策略,如重复控制(RC)[10]和迭代学习控制(ILC)[11]。
基于LQR控制的现代客车自适应空气悬架

10.16638/ki.1671-7988.2021.06.031基于LQR控制的现代客车自适应空气悬架王旭(扬州亚星客车股份有限公司,江苏扬州225116)摘要:长期在不良工况的道路上驾驶会降低驾驶员的乘坐舒适性。
随着人们对乘坐舒适性需求不断提升,空气弹簧的优势尤为明显。
文章提出了一种基于LQR控制策略的自适应空气悬架系统的创新设计方案,提出的LQR控制器采用粒子群算法进行优化。
以客车空气悬架为研究对象,采用MATLAB软件对空气悬架系统的被动和自适应动力学模型进行了设计和仿真。
仿真结果表明,自适应空气悬架系统在保证车辆稳定性的同时,降低了车辆在随机道路上的最大位移幅值,从而提高了车辆的平顺性。
关键词:空气悬架;PID;PSO;自适应悬架;乘坐舒适性中图分类号:U461.4 文献标识码:A 文章编号:1671-7988(2021)06-101-04Modern passenger car adaptive air suspension based on LQR controlWang Xu( Yangzhou Yaxing Bus Co., Ltd., Jiangsu Yangzhou 225116 )Abstract: Driving on the road under bad working conditions for a long time will reduce the driver's riding comfort. With the increasing demand for ride comfort, the advantage of air spring is especially obvious. This paper presents an innovative design scheme of adaptive air suspension system based on LQR control strategy. The proposed LQR controller is optimized by particle swarm optimization. The passive and adaptive dynamic models of the air suspension system of passenger cars were designed and simulated by MATLAB software. The simulation results show that the adaptive air suspension system can not only ensure the stability of the vehicle, but also reduce the maximum displacement amplitude of the vehicle on the random road, thus improving the ride comfort of the vehicle.Keywords: Air suspension; PID; PSO; Adaptive suspension; Ride comfortCLC NO.: U461.4 Document Code: A Article ID: 1671-7988(2021)06-101-041 引言对驾驶舒适性需求的增加要求在汽车上使用主动悬架系统。
参数不确定史密斯预估器的自适应控制

参数不确定史密斯预估器的自适应控制丁晓迪;崔宝同【摘要】The adaptive control for Smith predictor with uncertain parameters was studied.Since model mismatch is caused by uncertain parameters,the plant can no longer track the original referencemodel.Traditional Smith predictor combined with the algorithm of model reference adaptive control (MRAC)was adopted to regulate the plant.The uncertainty of gain and time con-stant were adjusted using the control algorithm,the uncertain structural perturbations were regulated through choosing better adaptive law.The adaptive law was obtained using Lyapunov function.The effectiveness of the proposed method was verified by simulation using MATLAB.%研究参数不确定史密斯预估器的自适应控制问题。
不确定性参数引起系统的模型失配,控制对象无法追踪原始的参考模型,采用模型参考自适应控制算法对控制对象进行调节;增益和时间常数的不确定性可通过模型失配时的控制算法进行补偿,结构扰动的不确定性采用合适的自适应率进行自调节;选取李雅普诺夫函数,求出自适应律。
纪念韩京清先生逝世五周年 - 中国科学院系统控制重点实验室

第五届控制科学与工程前沿论坛自抗扰控制技术的理念、方法与应用纪念韩京清先生逝世五周年高志强二零三年四月十九日二零一三年四月十九日Center for Advanced Control Technologies概要引言自抗扰控制的渊源自抗扰控制的应用自抗扰控制的论证抗扰技术研究小结引言“君子务本,本立而道生”韩京清:1937-2008六十年代:最优控制,留苏(不变性原理)七十年代:制导理论,反馈系统的标准型八十年代:线性系统理论,计算机辅助设计1989 -2008:自抗扰控制ADRC in U.S.: Milestones ¾1997: Prof. Han visited CSU; made the 1st successful ADRC hardware test on a servo mechanism¾2001: ADRC papers presented at CDC¾2003: linear,paramerized ADRC, patent app.¾2008: $1M venture capital, grew by $5M in 2012.2010t f t i l t ti10P k t i li¾2010: 1st factory implementation, 10 Parker extrusion lines (cpk: from 2.3 to >8; avg. energy saving 57% ).¾2011: Texas Instrument adopts ADRC; 3 patents granted.¾2013: Texas Instrument New Motion Control Chips6gBreaking News from TI自抗扰控制的渊源中国古代的指南车指南车的抗扰控制J.V. Poncelet (庞雪莱)(1788-1869)French Mathematicianprojective geometryNapoleon Soldier Napoleon Soldier1813-14, prisoner in MoscowE i Engineer“Introduction to IndustrialMechanics”,1829Analyzed steam enginey gIsochronous Governor:a BIG idea:measure dist.a BIG idea: measure dist.Grigoriy Shipanov (1903-1953)Problem of automatic control: making outputSoviet Engineer, Professor“i i ”i h f di b1938, dissertation, not understood by the “invariant” in the presence of disturbance.university committee members: 6 voted The same committee awarded Shipanov y “No,” 4 voted “Yes,” 20 didn’t vote.the title of Professor1938, hired by Kulebyakin, head of the Institute of Automatics and Telemechanics, finished his research there 1939, a short publication of his completed finished his research thereresearch provoked heated debate on the ideological basis 1941, publicly accused of creating a ideological basis“fantastic” controller by mathematical speculations instead of meeting demands of speculations instead of meeting demands of a growing Soviet economyMoscow -Beijing -Cleveland jg1979, Han, Lecture series on linear system theory; J. Han, Ph.D. Student, 1963-66, Moscow State Univ.Oversaw China’s first massive CAD project in 1980s1995-1998, Han, Extended State Observer and the 1989, Han, “Control theory: Model or Control?”conception of ADRC1995, Z. Gao, met with Han, first heard of ADRC; David (Xuejun) Wang, introduce Han’s research to Gao’s group at Cleveland State University1997Han visited CSU conducted first successful 1997, Han visited CSU, conducted first successful 2001, Gao, Huang, Han, 1ADRC motion control hardware testst ADRC paper, CDC2003Han visited CSU again;ADRC was greatly 2003, Han visited CSU again; ADRC was greatly simplified by Gao via bandwidth parameterization, making it a viable technology; patent application2008, Han passed away2008, A venture capital firm invest $1M into the CSU spinoff to commercialize ADRC technology2009, Han’s last paper: IEEE TIE.2012, 22011, Licensing Agreement with Texas Instrumentsnd round venture funding, USVP自抗扰控制技术的应用例1:运动控制,CSU,19971997年韩京清先生访问美国克里夫兰州立大学高志强实验室,并在那里成功实现了ADRC运动控制实验图为韩京清、高志强、蒋方军在实验台前合影。
伞翼无人机线性自抗扰高度控制

伞翼无人机线性自抗扰高度控制陶金;孙青林;陈增强;贺应平【摘要】In order to reduce the effects of parameter variations and complex environment disturbances on the altitude control of parawing UAVs (unmanned aerial vehicles),an altitude control strategy based on LADRC (linear active disturbance rejection control) was studied.An eight degree of freedom model of a parawing UAV was built,and the wind and rain models were introduced for the accurate simulation of real flight environments.Based on the features of LADRC,the whole control structure was determined.As a result,the internal and external disturbances were estimated by using linear extended state observer and compensated real-timely by the feedback control law.Flight simulation experiments under various disturbance conditions were conducted.Simulation results show that the altitude control method based on LADRC can not only accurately estimate and compensate the internal/external disturbances but also implement precise altitude pared with standard PID controller,the LADRC controller has better robustness and disturbance rejection ability.%针对伞翼无人机参数不确定性和复杂环境干扰敏感的问题,提出一种伞翼无人机线性自抗扰(Linear Active Disturbance RejectionControl,LADRC)高度控制方法.建立伞翼无人机8自由度飞行动力学模型,并引入风场和降雨模型以更加准确地模拟真实飞行环境.基于LADRC确定总体控制架构,设计线性扩张状态观测器对所有扰动进行估计,并引入误差反馈率在控制中实时补偿.使用该控制方法在多种扰动工况下进行伞翼无人机高度控制仿真实验.仿真结果表明,基于LADRC的高度控制方法能够有效克服内扰和外扰的影响,实现高精度高度控制;与传统PID控制效果相比,LADRC控制器具有更好的抗扰能力和鲁棒性.【期刊名称】《国防科技大学学报》【年(卷),期】2017(039)006【总页数】8页(P103-110)【关键词】伞翼无人机;线性自抗扰控制;高度控制;风雨环境;内扰与外扰【作者】陶金;孙青林;陈增强;贺应平【作者单位】南开大学计算机与控制工程学院,天津 300350;阿尔托大学电子工程与自动化学院,芬兰埃斯波 02150;南开大学计算机与控制工程学院,天津 300350;南开大学计算机与控制工程学院,天津 300350;中航工业集团航宇救生装备有限公司,湖北襄阳 441003【正文语种】中文【中图分类】TP24伞翼无人机(Unmanned Aerial Vehicle, UAV),又称无人动力翼伞,是借助翼伞提供的升力和螺旋桨产生的推力飞行的一种无人驾驶飞行器,一般是由冲压式翼伞和动力装置组成。
永磁同步电机电流的无差拍自抗扰控

第21卷第10期2022年10月Vol.21No.10Oct.2022软件导刊Software Guide永磁同步电机电流的无差拍自抗扰控制张本翔,左月飞,全力,朱孝勇(江苏大学电气信息工程学院,江苏镇江212013)摘要:在永磁同步电机(PMSM)调速系统中,电流环作为内环对伺服系统起着决定性作用。
针对传统无差拍电流预测控制(C-DPCC)参数鲁棒性较差的问题,提出基于自抗扰控制的无差拍电流预测控制(DPCC-ADRC)。
首先分析传统无差拍电流预测控制的参数敏感性,其次提出利用扩张状态观测器(ESO)对电机参数变化引起的扰动进行观测与实时补偿,同时对电流和扰动进行预测,并分析观测器带宽与噪声之间的关系,实现了永磁同步电机电流环的噪声抑制与快速响应能力。
实验结果表明,该方法与传统无差拍电流预测控制相比具有较强的参数鲁棒性。
关键词:永磁同步电机;无差拍控制;自抗扰控制;参数鲁棒性;扩张状态观测器DOI:10.11907/rjdk.221264开放科学(资源服务)标识码(OSID):中图分类号:TP273文献标识码:A文章编号:1672-7800(2022)010-0186-07Deadbeat Adaptive Disturbance Rejection Controller for the CurrentControl of Permanent Magnetic Synchronous Motor Drive SystemZHANG Ben-xiang,ZUO Yue-fei,QUAN Li,ZHU Xiao-yong(School of Electrical and Information Engineering,Jiangsu University,Zhenjiang212013,China)Abstract:In the speed control system of permanent magnet synchronous motor(PMSM),the current loop,as the inner loop,plays a decisive role in the servo system.Due to the problem of poor parameter robustness of conventional deadbeat predictive current control(C-DPCC),a deadbeat predictive current control based on active disturbance rejection control(DPCC-ADRC)was proposed.Firstly,the parameter sensitiv‐ity of the conventional deadbeat predictive current control was analyzed.Secondly,an extended state observer(ESO)was proposed to observe and compensate the disturbance caused by motor parameter mismatch,predict the current and disturbance,and analyze the relationship be‐tween observer bandwidth and noise.The noise suppression and fast response ability of current loop were realized.The experimental results show that it has strong parameter robustness compared with the conventional deadbeat predictive current control.Key Words:permanent magnetic synchronous motor;active disturbance rejection control;deadbeat control;parameter robustness;extend‐ed state observer0引言永磁同步电机以其高功率、高密度和高效率等特点被广泛应用于工业伺服系统中,例如机器人机械臂、数控机床、纺织机械、煤矿生产等领域。
ActiveDisturbanceRejectionControl-中国科学院系统控制重点室

调谐陀螺力平衡回路结构框图
双自由度调谐陀螺闭环传递函数方块图
x , y: 输入角速度变化量 H*: 陀螺仪角动量 1/(Hs+λ ): 陀螺数学模型 Ku: 传感器系数 Km: 力矩器系数 σx ,σy : 转子偏角 Yx ,Yy : 量测输出 Ux,Uy: 控制量
当陀螺壳体连同驱动轴相对理想的自转轴发生偏转 x,y 时,转子就会产生偏 角σx, σy ,控制器就是要让 陀螺转子偏角尽快趋近于零。
实验研究
陀螺 双自由度调谐陀螺工作条件I
实验结果I:ADRC(红色),经典控制方法(蓝色)
双自由度调谐陀螺工作条件II
实验结果II:ADRC(红色),经典控制方法(蓝色)
双自由度调谐陀螺工作条件III
实验结果III:ADRC(红色),经典控制方法(蓝色)
陀螺在不同工作条件下(模拟不同扰动)的实验结果
动力调谐陀螺力平衡回路的自抗扰控制研究
陈忻彦 黄一 韩京请 中国科学院 数学与系统科学研究院 系统科学研究所
The Active Disturbance Rejection Control Technique Based Force Equilibrium Circuits for Dynamically Tuned Gyro
Xinya
Institute of Systems Sciences, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences
陀螺仪是敏感运动壳体相对于惯性空间角运动的测量装置,在航空、航天、航海 以及其他一些领域中,有着十分广泛和重要的应用。高性能陀螺仪要求具有高精 度的良好特性,不受飞行的大角运动与大角速率的限制,且必须保证在载体恶劣 动态环境下正常工作。自抗扰控制技术是一种不依赖于系统模型的新型非线性控 制器,它具有低超调、收敛速度快、精度高、抗干扰能力强等特点。本工作提出了 动力调谐陀螺力平衡回路的自抗扰控制(ADRC)方法,并通过实验验证了在对象 模型和外部扰动未知的情况下ADRC控制系统能保证较好的速度和精度。