小学六年级数学奥林匹克竞赛题(含答案)
小学六年级数学奥林匹克竞赛题(含答案)

小学六年级数学奥林匹克竞赛题(含答案)某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=392电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)} 如此计算后得到总收入,使方程左右相等甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
小学六年级数学奥数竞赛试卷及答案图文百度文库

一、拓展提优试题1.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.2.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?3.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.4.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.5.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.6.若一个十位数是99的倍数,则a+b=.7.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?8.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.9.若质数a,b满足5a+b=2027,则a+b=.10.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.11.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)12.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.13.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.14.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.15.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.16.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.17.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.18.2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.19.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.20.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.21.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.22.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.23.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.24.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.25.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).26.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.27.分子与分母的和是2013的最简真分数有个.28.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.29.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.30.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a相乘)31.如图是根据鸡蛋的三个组成部分的质量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的%,一枚重60克的鸡蛋中,最接近32克的组成部分是.32.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)33.如图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是.(填序号)34.对任意两个数x,y,定义新的运算*为:(其中m是一个确定的数).如果,那么m=,2*6=.35.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.36.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.37.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.38.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.39.如图所示的“鱼”形图案中共有个三角形.40.宏富超市购进一批食盐,第一个月售出这批盐的40%,第二个月又售出这批盐的420袋,这时已售出的和剩下食盐的数量比是3:1,则宏富超市购进的这批食盐有袋.【参考答案】一、拓展提优试题1.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.2.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.3.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.4.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.5.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.6.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.7.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.8.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.11.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.12.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.13.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.14.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.15.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.16.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.17.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.18.解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.19.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.20.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.21.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.22.解:根据分析可得,,=,=2;故答案为:2.23.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.24.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.25.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.26.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.27.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.28.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.29.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.30.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.31.解:(1)1﹣32%﹣53%,=1﹣85%,=15%;答:蛋壳重量占鸡蛋重量的15%.(2)蛋黄重量:60×32%=19.2(克),蛋白重量:60×53%=31.8(克),蛋壳重量:60×15%=9(克),所以最接近32克的组成部分是蛋白.答:最接近32克的组成部分是蛋白.故答案为:15,蛋白.32.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.33.解:如图.图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是图2①;故答案为:①34.解:(1)1*2==,即2m+8=10,2m=10﹣8,2m=2,m=1,(2)2*6,=,=,故答案为:1,.35.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.36.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.37.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.38.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.39.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.40.解:420÷(1﹣40%﹣)=420÷0.35=1200(袋)答:宏富超市购进的这批食盐有1200袋.故答案为:1200.。
六年级上册数学奥林匹克竞赛题

六年级上册数学奥林匹克竞赛题六年级上册数学奥林匹克竞赛题有很多,以下是其中一些题目:1. 下列式子中,不成立的是()A. 1 + 2 + 3 + ... + n = n × (n + 1) ÷ 2B. (n × n + n) ÷ 2 = 1 + 2 + 3 + ... + nC. n × (n + 1) = (n + 1) × nD. (n + 1) × (n - 1) = n × n - 12. 如果两个数的最大公约数是4,那么这两个数的公约数有()A. 1、2、4B. 1、2、4、8C. 1、2、4、8、16D. 1、2、4、8、323. 一个两位数,十位数字是个位数字的3倍,如果把这个两位数的个位数字与十位数字对调,所得到的新的两位数与原来的两位数的和是88,原来的两位数是多少?4. 把一张长10厘米,宽8厘米的长方形纸板,剪下一个最大的正方形,这个正方形周长是多少厘米.5. 用0至9这10个数字组成一个一位数、一个两位数、一个三位数,使它们都是3的倍数,一共有多少种不同的组成方式?6. 把3千克苹果平均装在10个筐里,每筐装这些苹果的( ),每筐装( )千克.7. 下列算式中,乘积最小的是()A. 36 × 45B. 54 × 24C. 92 × 19D. 87 × 658. 下列各式中,积最大的是()A. (45 × 54) × (92 × 68)B. (45 × 92) × (54 × 68)C. (54 × 92) × (45 ×68) D. (45 × 68) × (54 × 92)以上只是部分题目,如需更多信息,可以查阅奥数教材或请教专业教师。
小学六年级数学奥赛竞赛题附答案

学习奥数的重要性小学六年级数学奥赛竞赛题1. 学习奥数是一种很好的思维训练。
奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。
通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。
2. 学习奥数能提高逻辑思维能力。
奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。
所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。
等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。
如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。
小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。
4. 学习奥数对孩子的意志品质是一种锻炼。
大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。
我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。
小学六年级数学奥赛竞赛题一、计算1.×+÷+×.2.×+×.3.1999+999×999.4.8+98+998+9998+99998.5.(﹣×25十75%×)÷15×1997.二、填空题6.六(1)班男、女生人数的比是8:7.(1)女生人数是男生人数的_________ (2)男生人数占全班人数的_________(3)女生人数占全班人数的_________ (4)全班有45人,男生有_________ 人.7.甲数和乙数的比是2:5,乙数和丙数的比是4:7,已知甲数是16,求甲、乙、丙三个数的和是_________ .8.甲数和乙数的比7:3,乙数和丙数的比是6:5,丙数是甲数的_________ ,甲数和丙数的比是_________ :_________ .9.的倒数是_________ ,的倒数是_________ .10.一根铁丝长3米,剪去1/3 后还剩_________ 米;一根铁丝长3米,剪去 1/3米后还剩_________ 米.11.甲、乙合做一件工作,甲做的部分占乙的,乙做的占全部工作的_________ .12.周长相等的正方形和圆形,_________ 的面积大.13._________ ÷40=15:_________ ═=_________ %14.把、、37%、按从大到小的顺序排列是_________ .15.4米是5米的_________ %,5米比4米多_________ %,4米比5米少_________ % 16.用一张长5厘米,宽4厘米的长方形纸剪一个最大的圆,这个圆的面积占这张纸面积的_________ %.17.甲、乙、丙三种糖果每千克的价格分别是9元,元,7元.现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买_________ 千克这种混合糖果.18.一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有_________ 个月.19.奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是星期_________ .20.(1)广场上的大钟5时敲响5下,8秒敲完,12时敲响12下,需要_________ 秒.(2)甲、乙两数的比5:8,甲数比乙数少_________ %,乙数比甲数多_________ %.三、图形计算21.电视塔的圆形塔底半径为15米,现在要在它的周围种上5米宽的环形草坪.(1)需要多少平方米的草坪?(2)如果每平方米的草坪需500元,那么植这块草坪至少需要多少钱?22.已知图中正方形的面积是20平方厘米,求阴影部分的面积.23.图中正方形的面积是8平方厘米,求圆的面积是多少?四、解答题(共16小题,满分0分)24.球从高处自由下落,每次接触地面后弹起的高度是前一次下落高度的.如果球从25米高处落下,那么第三次弹起的高度是多少米?25.在一块20公顷的土地上,用它的1/5种小麦,其余的种大豆和玉米,种大豆和玉米的公顷数比是3:5.种大豆和玉米各多少公顷?26.水结成冰后,体积增加 1/10.现有一块冰,体积是2立方分米,融化后的体积是多少?27.为民中药店计划收购中草药1500千克,上半年完成了计划的55%,下半年完成了计划的65%.为民中药店超额收购中草药多少千克?28.公园的一个圆形花坛的直径是60米,这个花坛的面积是多少如果一盆花占地面积大约是1/10平方米,这个花坛大约要摆多少万盆花(得数保留整万数)29.一部手机降价后只卖1800元,售价只有原来的9/10,比原来降价了多少元?30.一台挂钟的分针长8厘米,在5小时里分针的针尖共走了多少厘米?31.生物小组同学要测量一棵百年大榕树的横截面积,他们量得树干的周长是米,这棵树的横截面积是多少平方米?32.张老师有一套住房价值40万,由于急需现金,他以九折优惠卖给老李.过了一段时间后,房价上涨10%,张老师又想从老李处把房子买回来.想一想,如果老张买回房子,总共损失多少万元?33.同学们参加野营活动.一个同学到负责后勤的教师那是去领碗.教师问他领多少,他说领55个,又问:“多少人吃饭”他说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗.”算一算这个同学给多少人领碗34.某校五、六年级共有学生200人.“六一”儿童节五年级有11人,六年级有25%的同学去市里参加庆祝活动,这时两个年级余下的人数相等.求六年级有学生多少人?35.修一条路,第一天修了全路的,第二天修了余下的,两天共修路135米,这条路全长多少米?36.幼儿园买来红气、蓝、黑气球共180个,其中红气球的个数是蓝气球的3倍,黑气球的个数是蓝气球的2倍,求红、蓝、黑气球各多少个?37.小强买了一本书,第一天看了全书的2/5,第二天可能看了剩下的5/8,还有36页没看,这本书一共有多少页?38.小东的存钱罐里存有1元的硬币若干,他每天取出一部分买零食,第一天取出1/9,以后7天分别取出当时硬币的1/8、1/7、1/6、1/5、1/4、1/3、1/2,8天后剩下5个硬币,原来罐内共有多少个硬币?39.一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?小学六年级数学奥赛竞赛题参考答案与试题解析一、计算1.×+÷+×.考点:乘除法中的巧算。
奥数小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)二、填空题(共40分,每小题5分)1.在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么,这个等腰梯形的周长是_ _厘米。
3.一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有_ _人已经就座。
4.用某自然数a去除1992,得到商是46,余数是r。
a=_ _,r=_ _。
5.“重阳节”那天,延龄茶社来了25位老人品茶。
他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年_ ___岁。
6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。
那么,至少__ __个学生中一定有两人所借的图书属于同一种。
7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。
那么得分最少的选手至少得__ __分,至多得__ __分。
(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。
那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少。
三、解答下面的应用题(要写出列式解答过程。
列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。
现由甲工程队先修3天。
余下的路段由甲、乙两队合修,正好花6天时间修完。
问:甲、乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂。
wmo世界奥林匹克数学竞赛试题六年级

wmo世界奥林匹克数学竞赛试题六年级WMO世界奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发学生对数学的兴趣,培养他们的数学思维和解决问题的能力。
以下是一些适合六年级学生的WMO数学竞赛试题:1. 数字填空题:- 题目:在数列 2, 4, 6, 8, __ 中,下一个数字是什么?- 解答:这是一个简单的等差数列,公差为2。
下一个数字是 8 +2 = 10。
2. 图形推理题:- 题目:观察下列图形序列,找出规律并填写缺失的图形。
图形序列:△, □, ○, △, □, __- 解答:这是一个交替出现的图形序列,缺失的图形是圆形(○)。
3. 逻辑推理题:- 题目:如果所有的猫都怕水,而小明的宠物是一只猫,那么小明的宠物怕水吗?- 解答:根据题目中的条件,小明的宠物是一只猫,而所有的猫都怕水,所以小明的宠物也怕水。
4. 数学应用题:- 题目:小明有3个苹果,他给了小华2个苹果,然后又买了4个苹果,现在小明有多少个苹果?- 解答:小明原本有3个苹果,给了小华2个,剩下3 - 2 = 1个。
然后他又买了4个,所以现在他有 1 + 4 = 5个苹果。
5. 几何题:- 题目:一个正方形的边长是5厘米,它的周长是多少?- 解答:正方形的周长是边长的四倍,所以周长是 5 × 4 = 20厘米。
6. 概率题:- 题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,是红球的概率是多少?- 解答:总共有8个球,其中5个是红球。
所以取出红球的概率是5/8。
7. 计算题:- 题目:计算下列表达式的值:(12 + 8) × (15 - 9)- 解答:首先计算括号内的值,12 + 8 = 20,15 - 9 = 6。
然后计算乘积,20 × 6 = 120。
8. 组合问题:- 题目:一个班级有20名学生,如果老师需要从这20名学生中选出5名代表,有多少种不同的选择方式?- 解答:这是一个组合问题,计算公式为C(n, k) = n! / [k! × (n - k)!],其中 n = 20,k = 5。
2023年世界少年奥林匹克数学竞赛决赛试卷(六年级)

2023年世界少年奥林匹克数学竞赛决赛试卷(六年级)一、填空题。
1.(3分)使得以下不等式成立的自然数有很多,所有满足题目要求的自然数之和是。
÷>2.(3分)计算:=.3.(3分)某种计算机病毒会“吃掉”硬盘空间。
第一天吃掉硬盘空间的二分之一,第二天吃掉剩下的三分之一,第三天吃掉剩下的四分之一,第四天吃掉剩下的五分之一,第五天吃掉剩下的六分之一。
此时,硬盘还剩下160G(G是硬盘大小的单位)。
这个硬盘本来一共有G。
4.(3分)=。
5.(3分)两圆公共部分的面积是大圆面积的九分之一,是小圆面积的十五分之四。
大圆面积比小圆面积大56平方厘米。
大圆面积是平方厘米?6.(3分)一个长方形的长与宽之比为13:8,在这个长方形中剪掉一个最大的正方形。
剩下的长方形长与宽的比值是。
7.(3分)今年是2021年,健康、幸福、爱情、和睦、勤奋、逐梦、富贵、崛起,这八个词每个词刚好是21划。
那么8个2021相乘的积有个因数。
8.(3分)如图,在正方形ABCD中,红色、绿色正方形的面积分别是125平方厘米和20平方厘米,且红、绿两个正方形有一个公共顶点。
黄色正方形的一个顶点位于红色正方形的中心,一个顶点位于绿色正方形的中心。
那么黄色正方形的面积是平方厘米。
9.(3分)在如图中,正方形ABCD的面积是196平方厘米,E、F分别是AB、AD的中点,2FG=5CG。
则阴影部分面积是平方厘米。
10.(3分)有一辆自行车,前轮和后轮都是新的,并且可以互换。
1个新轮胎在前轮位置可以行驶4000千米,在后轮位置可以行驶2400千米。
使用2个新轮胎,这辆自行车最多可行驶千米。
11.(3分)一个自然数分别除以3、4、6、7,所得余数分别为2、1、5、6,并且四个商的和为859。
这个自然数是。
12.(3分)如图,用一个斜边长43厘米的红色直角三角形,一个斜边长94厘米的蓝色直角三角形与一个黄色正方形正好拼成一个大的直角三角形。
红色三角形与蓝色三角形的面积之和是平方厘米?13.(3分)在如图中,正方形ABCD的面积是36平方米,AE=3EB,BF=4FC,CG:GD=4:11,DH:HA=1:5,阴影部分面积是平方分米。
小学六年级数学奥赛竞赛题附参考答案

小学六年级数学奥赛竞赛题一、计算1.1.25×17.6+36.1÷0.8+2.63×12.5.2.7.5×2.3+1.9×2.5.3.1999+999×999.4.8+98+998+9998+99998.5.(78.6﹣0.786×25十75%×21.4)÷15×1997.二、填空题6.六(1)班男、女生人数的比是8:7.(1)女生人数是男生人数的_________(2)男生人数占全班人数的_________(3)女生人数占全班人数的_________(4)全班有45人,男生有_________人.7.甲数和乙数的比是2:5,乙数和丙数的比是4:7,已知甲数是16,求甲、乙、丙三个数的和是_________.8.甲数和乙数的比7:3,乙数和丙数的比是6:5,丙数是甲数的_________,甲数和丙数的比是_________:_________.9.0.08的倒数是_________,2.25的倒数是_________.10.一根铁丝长3米,剪去1/3后还剩_________米;一根铁丝长3米,剪去1/3米后还剩_________米.11.甲、乙合做一件工作,甲做的部分占乙的,乙做的占全部工作的_________.12.周长相等的正方形和圆形,_________的面积大.13._________÷40=15:_________═0.625=_________%14.把0.38、、37%、0.373按从大到小的顺序排列是_________.15.4米是5米的_________%,5米比4米多_________%,4米比5米少_________% 16.用一张长5厘米,宽4厘米的长方形纸剪一个最大的圆,这个圆的面积占这张纸面积的_________%.17.甲、乙、丙三种糖果每千克的价格分别是9元,7.5元,7元.现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买_________千克这种混合糖果.18.一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有_________个月.19.奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是星期_________.20.(1)广场上的大钟5时敲响5下,8秒敲完,12时敲响12下,需要_________秒.(2)甲、乙两数的比5:8,甲数比乙数少_________%,乙数比甲数多_________%.三、图形计算21.电视塔的圆形塔底半径为15米,现在要在它的周围种上5米宽的环形草坪.(1)需要多少平方米的草坪?(2)如果每平方米的草坪需500元,那么植这块草坪至少需要多少钱?22.已知图中正方形的面积是20平方厘米,求阴影部分的面积.23.图中正方形的面积是8平方厘米,求圆的面积是多少?四、解答题(共16小题,满分0分)24.球从高处自由下落,每次接触地面后弹起的高度是前一次下落高度的.如果球从25米高处落下,那么第三次弹起的高度是多少米?25.在一块20公顷的土地上,用它的1/5种小麦,其余的种大豆和玉米,种大豆和玉米的公顷数比是3:5.种大豆和玉米各多少公顷?26.水结成冰后,体积增加1/10.现有一块冰,体积是2立方分米,融化后的体积是多少?27.为民中药店计划收购中草药1500千克,上半年完成了计划的55%,下半年完成了计划的65%.为民中药店超额收购中草药多少千克?精品doc28.公园的一个圆形花坛的直径是60米,这个花坛的面积是多少?如果一盆花占地面积大约是1/10平方米,这个花坛大约要摆多少万盆花?(得数保留整万数)29.一部手机降价后只卖1800元,售价只有原来的9/10,比原来降价了多少元?30.一台挂钟的分针长8厘米,在5小时里分针的针尖共走了多少厘米?31.生物小组同学要测量一棵百年大榕树的横截面积,他们量得树干的周长是6.28米,这棵树的横截面积是多少平方米?32.张老师有一套住房价值40万,由于急需现金,他以九折优惠卖给老李.过了一段时间后,房价上涨10%,张老师又想从老李处把房子买回来.想一想,如果老张买回房子,总共损失多少万元?33.同学们参加野营活动.一个同学到负责后勤的教师那是去领碗.教师问他领多少,他说领55个,又问:“多少人吃饭?”他说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗.”算一算这个同学给多少人领碗?34.某校五、六年级共有学生200人.“六一”儿童节五年级有11人,六年级有25%的同学去市里参加庆祝活动,这时两个年级余下的人数相等.求六年级有学生多少人?35.修一条路,第一天修了全路的,第二天修了余下的,两天共修路135米,这条路全长多少米?36.幼儿园买来红气、蓝、黑气球共180个,其中红气球的个数是蓝气球的3倍,黑气球的个数是蓝气球的2倍,求红、蓝、黑气球各多少个?37.小强买了一本书,第一天看了全书的2/5,第二天可能看了剩下的5/8,还有36页没看,这本书一共有多少页?38.小东的存钱罐里存有1元的硬币若干,他每天取出一部分买零食,第一天取出1/9,以后7天分别取出当时硬币的1/8、1/7、1/6、1/5、1/4、1/3、1/2,8天后剩下5个硬币,原来罐内共有多少个硬币?39.一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?小学六年级数学奥赛竞赛题参考答案与试题解析一、计算1.1.25×17.6+36.1÷0.8+2.63×12.5.考点:乘除法中的巧算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学奥林匹克竞赛题(含答案)某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=392电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是 1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成 :5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做 :1/3-1/4=1/12那么乙一天做 :[1/12-1/72×3]/2=1/48则丙一天做 :1/16-1/72-1/48=1/36则余下的由丙做要 :[1-5/6]÷1/36=6天答:还需要6天股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?答案10.65*1%=0.1065(元) 10.65*2%=0.213(元)10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)13.86*1%=0.1386(元) 13.86*2%=0.2772(元)0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元)答:老王卖出这种股票一共赚了3.3063元.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少答案(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本48*2.8+2.8*50*12-150=1.2 盈利1.2元对我有帮助一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人解: 设需要增加x人(40+x)(15-3)=40*15x=10所以需要增加10人仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。
仓库原有货物多少吨?解:第1次运走:2/(2+7)=2/9.64/(1-2/9-3/5)=360吨。
答:原仓库有360吨货物。
育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?答案设小王做了a道,小李做了b道,小张做了c道由题意1/2a=1/3b=1/8cc-a=72解得a=24 b=36 c=96甲乙二人共同完成242个机器零件。
甲做一个零件要6分钟,乙做一个零件要5分钟。
完成这批零件时,两人各做了多少个零件?答案设甲做了X个,则乙做了(242-X)个6X=5(242-X)X=110242-110=132(个)答:甲做了110个,乙做了132个某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。
求丙组男女人数之比答案设男会员是3N,则女会员是2N,总人是:5N甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2 乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N丙级有:5N*7/25=7/5N丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N那么丙组中男女之比是:N/2:9/10N=5:9甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40)÷20=5人甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人丙村需要的人数:5×5=25人或 20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54×20=1080元乙村应得的工钱:54×5=270元p16619题李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x则0.1X=2aX a=0.05.哈利.波特参加数学竞赛,他一共得了68分。
评分的标准是:每做对一道得20分,每做错一道倒扣6分。
已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?解:设哈利波特答对2X题,答错X题20×2X-6X=6840X-6X=6834X=68X=2答对:2×2=4题共有:4+2=6题爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。
答案设可免费携带的重量为x kg,则:(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;解方程:x=30一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?答案解法一:设船数为X,则(15X+9)/18=X-115X+9=18X-1827=3XX=9答:有9只船。
解法二:(15+9)÷(18-15)=8只船 --每船坐18人时坐了8只船8+1=9只船建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?答案设2堆为X吨,则一堆为X+85吨X+85-30=2(X-30)x=115(2堆)x+85=115+85=200(1堆)自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几答案六个数分别是46 47 48 96 97 98甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?答案两段路所用时间共8小时。