典型轴承故障的4个发展阶段及频谱分析
轴承失效的九个阶段

轴承失效的九个阶段轴承失效是指轴承在使用过程中出现了各种故障,导致轴承不能正常工作。
轴承失效的过程可以分为九个阶段。
第一阶段:初始阶段轴承在使用前,就有可能存在一些缺陷,如材料的不均匀性、加工精度不够等。
这些缺陷在使用过程中逐渐显现出来,但是在初始阶段,这些缺陷对轴承的性能影响不大。
第二阶段:塑性变形阶段当轴承开始工作后,由于受到载荷的作用,轴承内部的材料会发生塑性变形。
这个阶段的特点是轴承内部出现微小的变形,但是这些变形并不会对轴承的性能产生明显的影响。
第三阶段:微裂纹阶段当轴承在工作中受到较大的载荷时,轴承内部的材料会出现微裂纹。
这个阶段的特点是轴承内部出现微裂纹,但是这些裂纹并不会对轴承的性能产生明显的影响。
第四阶段:表面疲劳阶段当轴承在工作中受到重复的载荷时,轴承表面会出现疲劳裂纹。
这个阶段的特点是轴承表面出现疲劳裂纹,但是这些裂纹并不会对轴承的性能产生明显的影响。
第五阶段:裂纹扩展阶段当轴承在工作中受到重复的载荷时,轴承表面的疲劳裂纹会逐渐扩展。
这个阶段的特点是轴承表面的疲劳裂纹逐渐扩展,但是这些裂纹并不会对轴承的性能产生明显的影响。
第六阶段:局部破坏阶段当轴承表面的疲劳裂纹扩展到一定程度时,轴承表面会出现局部破坏。
这个阶段的特点是轴承表面出现局部破坏,但是这些破坏并不会对轴承的性能产生明显的影响。
第七阶段:全面破坏阶段当轴承表面的局部破坏逐渐扩展到整个轴承表面时,轴承会出现全面破坏。
这个阶段的特点是轴承全面破坏,轴承失效。
第八阶段:过度磨损阶段当轴承在使用过程中,由于润滑不良或者其他原因,轴承表面会出现过度磨损。
这个阶段的特点是轴承表面出现过度磨损,但是这种磨损并不会对轴承的性能产生明显的影响。
第九阶段:润滑失效阶段当轴承在使用过程中,由于润滑不良或者其他原因,轴承内部的润滑膜破裂,导致轴承失去润滑。
这个阶段的特点是轴承失去润滑,导致轴承失效。
轴承失效的九个阶段

轴承失效的九个阶段
轴承失效的九个阶段如下:
1. 初始化阶段:轴承在使用之前,可能存在一些初始缺陷或损伤。
2. 起始阶段:轴承开始运转后,会出现一些初始磨损和摩擦,但通常不会对性能产生明显影响。
3. 加速阶段:随着运转时间的增加,轴承的磨损和摩擦逐渐加剧,可能导致一些微小的损伤。
4. 持续性阶段:在这个阶段,轴承的磨损和摩擦加剧,可能会导致更明显的损伤,轴承开始出现异常噪音和振动。
5. 进一步磨损阶段:轴承的磨损和摩擦继续加剧,可能导致更严重的损伤,轴承的性能开始下降。
6. 严重磨损阶段:轴承的严重磨损和摩擦可能导致轴承无法正常运转,出现严重的噪音、振动和过热等问题。
7. 失效前期阶段:在这个阶段,轴承的磨损和摩擦已经达到了临界点,可能导致轴承完全失效的风险增加。
8. 失效阶段:轴承无法正常运转,无法承受正常的负载,可能导致设备停机和生产中断。
9. 终末阶段:轴承失效后,可能需要更换轴承或进行修复,以恢复
设备的正常运转。
轴承故障诊断与分析

轴承故障诊断与分析
LOGO
主要内容
1 2 3 4
轴承相关简介 滚动轴承故障诊断与分析 滑动轴承故障诊断与分析
参考文献
LOGO
轴承(Bearing)是机械中的固定机件。当其他机件在轴上彼此产生 相对运动时,用来保持轴的中心位置及控制该运动的机件,就称之为 轴承。轴承是各种机电设备中的重要组成部件,在各个机械部门有着 广泛的应用。
LOGO
小波包分析
小波包分析(Wavelet Packet Analysis) 是一种比小波分析更精细的分析方 法,它将频带进行多层次划分,并对小波变换中没有细分的高频部分做进一步 分解,从而提高时频分辨率。 小波包分解是一种分解更为精细的分解方法,它不仅对低频段部分进行分解, 而且对高频段部分也进行分解,并能根据分析信号的特征,自适应地选择相应 的频带,使之与信号频谱相匹配,从而提高时频分辨率。因此,小波包分析可以 提取振动信号中能量突出的频带,分析其频率特征,找出故障产生的根源。
故 障 诊 断 技 术
时频域分析 光纤诊断分析 油液诊断分析 轴承润滑状态监测诊断法 声学诊断分析(基于声发射)
热诊断(热成像诊断和温度诊断)
LOGO
基于振动信号诊断技术及分析
基于振动信号的诊断技术能够诊断大多数滚动轴 承故障,其优点是可在运动中测得轴承信号。目 前国内外开发生产的各种滚动轴承故障诊断与监 测仪器大都是根据振动法的原理制成的。 步骤:
LOGO
小波变换
小波变换是时间(空间)频率的局部化分析,它通过伸缩平 移运算对信号(函数)逐步进行多尺度细化,最终达到高频 处时间细分,低频处频率细分,能自动适应时频信号分析 的要求,从而可聚焦到信号的任意细节,有人把小波变换 称为“数学显微镜”。 小波分析是调和分析的重大突破。它继承和发展了Gobor 变换的局部化思想,同时又克服了窗口大小不随频率变化、 缺乏离散正交基的缺点,不仅是比较理想的局部频谱分析 工具,而且在时域也具有良好的局域性。通过小波分解能 够把任何信号(平稳或非平稳)映射到由一个小波伸缩、平 移而成的一组基函数上,在通频范围内得到分布在各个不 同频道内的分解序列,其信息量是完整的。
滚动轴承故障诊断的频谱分析

滚动轴承故障诊断的频谱分析滚动轴承在机电设备中的应用非常广泛,滚动轴承状态的好坏直接关系到旋转设备的运行状态,因此在实际生产过程中作好滚动轴承的状态监测与故障诊断是搞好设备维修与管理的重要环节。
滚动轴承在其使用过程中表现出很强的规律性,并且重复性强。
正常优质轴承在开始使用时振动和噪声均比较小,但频谱有些散乱,幅值比较小。
运动一段时间后,振动和噪声保持在一定水平,频谱比较单一,仅出现一,二倍频,极少出现三倍工频以上频谱,轴承状态非常平稳,进入稳定工作期。
持续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化比较缓慢,此时,轴承峭度值开始突然到达一定值。
可以认为此时轴承出现了初期故障。
这时就要对轴承进行严密监测,密切注意其变化。
此后轴承峭度值又开始快速下降,并接近正常值,而振动和噪声开始显著增大,其增大幅度开始加快,其振动超过标准时(ISO2372),其轴承峭度值也开始快速增大,当轴承超过振动标准,峭度值也超过正常值时,可认为轴承已进入晚期故障,需要及时检修设备,更换滚动轴承。
1、滚动轴承故障诊断方式振动分析是对滚动轴承进行状态监测和故障诊断的常用方法。
一般方式为:利用数据采集器在设备现场采集滚动轴承振动信号并储存,传送到计算机,利用振动分析软件进行深入分析,从而得到滚动轴承各种振动参数的准确数值,进而判断这些滚动轴承是否存在故障。
采用恩递替公司的Indus3振动测量分析系统进行大中型电机滚动轴承的状态监测和故障诊断,经过近几年实际使用,其效果令人非常满意。
要想真实准确反映滚动轴承振动状态,必须注意采集信号的准确真实,因此要在离轴承最近的地方安排测点。
2、滚动轴承正常运行特点与诊断技巧滚动轴承的运转状态在其使用过程中有一定的规律性,并且重复性非常好。
例如,正常优质轴承在开始使用时,振动幅值和噪声均比较小,但频谱有些散乱(图1)这可能是由于制造过程中的一些缺陷,如表面毛刺等所致。
滚动轴承故障解释和频率计算-Read

滚动轴承故障四种类型频率
第一种频率:
随机的,超声频率 -- 振动尖峰能量( g SE ),高频加速度( HFD)和 冲击脉冲( SPM );
第二种频率:
轴承零部件的自振频率 -- 在500到2000赫兹频率 范围内,与转速 无关 ;
第三种频率:
旋转的故障频率 --- 轴承的内环故障(BPFI),外环 故障(BPFO), 滚动体故障(BSF)和保持架故障(FTF);
– 如果不对中超过0.001in/in,会产 生轴承和轴承座异常温升,和保 持架球磨损
配合松动
– 配合松动导致配合部件的相对运 动,如果这个相对运动轻微但不 间断,则产生磨损
– 这种磨损产生颗粒,并氧化成特 殊的棕色。这导致研磨和松动加 大。
– 如果松动增大到内圈或外圈的显 著运动,安装表面(孔径,外径 和侧面)将磨损和发热,引起噪 声和胱动。
腐蚀
– 其征兆是在滚道、滚子、保 持架或其他位置出现红棕色 区域
– 原因是轴承接触腐蚀性流体 和气体
– 严重情况下,腐蚀引起轴承 早期疲劳失效
– 除掉腐蚀流体,尽可能使用 整体密封轴承
ZhangHuiMin
轴承故障原因及其解决
不对中
– 不对中的征兆是滚珠在滚道上产 生的磨痕与滚道边缘不平行
,导致振动加大和磨损 – 清洁环境,工具,规范操作。新轴承的储
运。
润滑油失效
– 滚道和滚子的变色(蓝、棕)是润滑失效 的征兆,随之产生滚道、滚子和保持架磨 损,导致过热和严重故障。
– 滚动轴承的正常运行取决于各部件间存在 良好油膜
– 失效常常由润滑不足和过热引起
ZhangHuiMin
轴承故障原因及其解决
滚动轴承故障频谱分析

元件打击内外环跑道上的缺陷的间断的冲击激起它们的自振频
率。但故障扩展到微观大小时,它们开始激起这些轴承零部件
的自振频率,成为“第二个检测症兆”。故障恶化时,可引起更大
的冲击,这些更大的冲击产生更大的自振频率尖峰响应。磨损
严重时,在这些共振附近出现更多频率分量,它们中许多是这
些自振频率的 1X 转速的边带(往往,这些调制尖峰以轴承的故
华电福建湄洲湾火电营运分公司-滚动轴承故障频谱分析
频率、BSF-滚动体故障频率、BPOR-内环故障频率、BPIR外环故障频率。 FTF、BSF、BPOR、BPIR 简易计算公式。 轴承故障频率都是转速频率的非整数倍。 正常情况下滚动轴承故障频率不应存在,当存在轴承故障 频率时,可以说明轴承至少发出初始故障信号。然而,应 该明确一点:这些轴承故障频率的出现未必意味着轴承内 一定是轴承已损坏,由于轴承润滑不佳,发生金属对金属 的接触,轴承承受不适当的负载(过大的压配合-过盈配合 偏大,对不承受轴向推力的轴承施加了轴向推力,推力轴 承反向安装等等),也将出现轴承的故障频率。 内环故障频率+外环故障频率=滚动体通过频率(Nb×X)。 无论是内环还是外环故障,都有 1X 转速的边带,不转的 环边带要比转动的环边带多。如果内环两侧被 1X 转速边 带族环绕时,说明损坏的程度更严重。 解释内、外环故障往往伴有 1X 转速频率的边带? 内环、外环故障频率的相对幅值:外环故障频率的幅值高 于内环故障频率的幅值,只要是传感器靠近外环的原因。 轴承故障频率通常出现的次序:通常轴承故障的顺序轴承 内和外环→滚动体和保持架。此后,保持架故障频率以基 频或以其它频率的边带形式出现。滚动体故障频率有时以 边带形式出现在轴承内环/外环故障频率的左右侧。
常见故障频谱分析

2020年4月
目录
1
典型故障识别
二2、
典型频谱分析
三3、
案例介绍
2
一、典型故障识别
1X频以下:轴承保持架、油膜涡动、紊流、低频响应 1X-10X频:
-不平衡,1X -不对中,1X,2X -轴弯曲,1X,2X -松动,1X-10X -叶片通过频率,叶片数X工频 大于10X频:
动相位差为180度。(此类振动是由于地脚螺栓、胎板或水泥浆松动引起,会产生1倍频的振
6
三、松动
3、轴承座松动
二、典型频谱分析
特征:径向1X、2X和3X波峰。
频谱有上显示1X,2X和3X处有振动分量,但通常没有其它谐波,在严重的情况下还会有0.5X 的的波峰。相位也被用来辅助识别这种故障。轴承和基础间有180度的相位差
结构设计不合理 制造和安装误差 材质不均匀 转子的腐蚀、磨损、结垢 零部件的松动及脱落
不同原因引起的转子不平衡故障规律接近,但各有特点,在分析时 需仔细了解设备运行历史
6
二、不对中
1、平行不对中
二、典型频谱分析
特征:径向2X波峰,径向1X低幅波峰(垂直或水平方向上)。
如果不对中轴的中心线平行但不共线,这样的不对中称为平行不对中(或相离不对中)。平 行不对中在各个轴的联结端产生剪切应力和弯曲变形。联轴器两端的轴承,会在径向(垂直 和水平方向上)上产生高强度的1X和2X振动。在多数情况下,2X处的幅度要高于1X。对于单 纯的平行不对中,轴向上1X和2X处的振幅都很小。沿联轴器检测到的振动在轴向和径向上异 相,并且轴向上的相位差为180度。
6
二、典型频谱分析 四、共振、轴弯曲、偏翘轴承
1、共振
特征:频谱中通常只在一个方向有“峰丘”出现。
轴承故障诊断技术及发展现状和前景

轴承故障诊断技术及发展现状和前景摘要本文分析了轴承故障信号的基本特征,并将共振解调技术的原理和基于振动信号的信号处理方法用于滚动轴承的故障诊断. 在实践中运用该技术手段消减了背景噪声的干扰,提高了轴承的信噪比, 取得了与实际情况完全吻合的诊断结果。
并概述了滚动轴承故障监测和诊断工程与试验应用技术的现状,并预测了滚动轴承故障监测和诊断技术应用新进展和发展方向。
关键词:滚动轴承;共振解调;小波分析;信噪比(SN R );变速箱;故障监测;信号处理;故障诊断;应用技术。
1 轴承故障信号的基木特征机器在正常工作的条件下其转轴总是匀速转动的. 由轴承的结构可知,当轴承某元件的工作而产生缺陷时,由加速度传感器所测取到的轴承信号具有周期性冲击的特征,由信号理论可知, 时域中短暂而尖锐的冲击信号变换到频域中去时必具有宽频带的特性, 而非冲击的干扰信号则不具有上述特性,所以时域中的周期性冲击与频域中的宽频带特性构成了轴承故障信号区别于其它非冲击性干扰信号的基木特征。
2 用共振解调技术提高轴承信号的信噪比我们来考察一下用共振解调技术提高轴承信号信噪比的过程。
传感器拾取到的轴承信号包含两部分内容, 即轴承的故障信号和干扰噪声两部分。
带通滤波器的中心频率与传感器的安装片振圆频率相一致, 它将保存被传感器的共振响应所加强了的冲击性故障信号, 滤除掉频率较低的干扰噪声信号, 这种保留下来的瞬态冲击信号经过包络检波器后就形成了一个与故障冲击重复频率相一致的包络脉冲串, 然后对该脉冲串进行普分析便在低频域内得到一个与冲击币复频率相一致的峰值。
峰值的大小反映了冲击的强弱即故障的严重程度这样我们就借助共振解调技术实现了故障信号与干扰信号的分离, 并在低频域内重新得到了故障冲击的信息。
而在常规的信号分析与处理过程中一开始就使用了抗混频滤波器(低通滤波器这种分析方法没有利用轴承故障信号的特点, 经抗混频滤波器后将被传感器的共振以加强放大了的故障特征信号无情地滤除了, 所剩下的只是强大的背景噪声信号及微弱的故障特征信号, 因此用常规的信号分析方法难以排除干扰信号的影响而采用共振解调技术就可以排除背景噪声的干扰, 提高轴承故障诊断的有效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型轴承故障的4个发展阶段及频谱分析
解调频谱作为一个早期指示故障的测量参数,检查正常频谱和解调频谱:
1.都没有故障频率,状态良好,作为基线继续监测;
2.只在解调频谱存在故障频率,早期故障指示或需要润滑;
3.在两种频谱中存在谱峰值,计划下一次维修时更换轴承;
4.只在正常频谱中存在谱峰值,同时在解调频谱中噪声水平升高,应立即更换。
轴承故障劣化发展不是按线性规律,而是按指数规律变化!
轴承故障发展的四个阶段频谱
I.初始阶段
a.噪声正常
b.温度正常
c.可用超声、振动解调谱、声发射测量出来;
d.轴承外环有缺陷
e.振动总量比较小,无离散的轴承故障频率尖峰
f.轴承剩余寿命大于B-10规定的10%
II.第二阶段
a.噪声略增大
b.温度正常
c.超声、声发射、振动解调频谱明显增大,轴承外环有缺陷
d.振动总量略增大(振动加速度总量和振动速度总量)
e.对数刻度频谱上可清楚看到轴承故障频率,线性刻度频谱上难得看到,噪声地平明显提高
f.轴承剩余寿命大于B-10规定的5%
III.第三阶段
a.可听到噪声
b.温度略升高
c.非常高的超声、声发射,解调频谱通频值,轴承外环有故障
d.振动加速度总量和振动速度总量有大的增加
e.在线性刻度的频谱上清楚地看出轴承故障频率及其谐波和边带
f.振动频谱噪声地平明显提高
g.轴承剩余寿命大于B-10规定的1%
IV.第四阶段
a.噪声的强度改变
b.温度明显升高
c.超声,声发射,振动尖峰能量迅速增大,随后逐渐减小
d.轴承外环处在损坏之前故障状态
e. 振动速度总量和振动位移总量明显增大,振动加速度总量减小
f. 较低的轴承故障频率占优势的振动尖峰,振动频谱中噪声地平非常高
g.轴承剩余寿命大于B-10规定的0.2%
综上所述,通过对影响,缩短股东轴承寿命的分析,得出不同轴承故障的解决、预防措施,根据滚动轴承解调分析原理得到轴承故障频谱曲线,结合滚动轴承故障发展的四个阶段特征,判断轴承工作状态,能很好的监控滚动轴承的运行状况及时准确地判断滚动轴承更换周期,确保设备的正常维修及运行。