(完整版)武汉理工大学《电路分析(上)》课后简答题
《电路分析》试题和答案解析

试题库一、填空题(建议较易填空每空0.5分,较难填空每空1分)1、电流所经过的路径叫做电路,通常由电源、负载和中间环节三部分组成。
2、实际电路按功能可分为电力系统的电路和电子技术的电路两大类,其中电力系统的电路其主要功能是对发电厂发出的电能进行传输、分配和转换;电子技术的电路主要功能则是对电信号进行传递、变换、存储和处理。
3、实际电路元件的电特性单一而确切,理想电路元件的电特性则多元和复杂。
无源二端理想电路元件包括电阻元件、电感元件和电容元件。
4、由理想电路元件构成的、与实际电路相对应的电路称为电路模型,这类电路只适用集总参数元件构成的低、中频电路的分析。
5、大小和方向均不随时间变化的电压和电流称为稳恒直流电,大小和方向均随时间变化的电压和电流称为交流电,大小和方向均随时间按照正弦规律变化的电压和电流被称为正弦交流电。
6、电压是电路中产生电流的根本原因,数值上等于电路中两点电位的差值。
7、电位具有相对性,其大小正负相对于电路参考点而言。
8、衡量电源力作功本领的物理量称为电动势,它只存在于电源内部,其参考方向规定由电源正极高电位指向电源负极低电位,与电源端电压的参考方向相反。
9、电流所做的功称为电功,其单位有焦耳和度;单位时间内电流所做的功称为电功率,其单位有瓦特和千瓦。
10、通常我们把负载上的电压、电流方向称作关联方向;而把电源上的电压和电流方向称为非关联方向。
11、欧姆定律体现了线性电路元件上电压、电流的约束关系,与电路的连接方式无关;基尔霍夫定律则是反映了电路的整体规律,其中KCL定律体现了电路中任意结点上汇集的所有支路电流的约束关系,KVL定律体现了电路中任意回路上所有元件上电压的约束关系,具有普遍性。
12、理想电压源输出的电压值恒定,输出的电流值由它本身和外电路共同决定;理想电流源输出的电流值恒定,输出的电压由它本身和外电路共同决定。
13、电阻均为9Ω的Δ形电阻网络,若等效为Y形网络,各电阻的阻值应为3Ω。
电路分析典型习题与解答

中南民族大学电子信息工程学院电路分析典型习题与解答目录第一章:集总参数电路中电压、电流的约束关系 (1)1.1、本章主要内容: (1)1.2、注意: (1)1.3、典型例题: (2)第二章网孔分析与节点分析 (3)2.1、本章主要内容: (3)2.2、注意: (3)2.3、典型例题: (4)第三章叠加方法与网络函数 (7)3.1、本章主要内容: (7)3.2、注意: (7)3.3、典型例题: (7)第四章分解方法与单口网络 (9)4.1、本章主要内容: (9)4.2、注意: (10)4.3、典型例题: (10)第五章电容元件与电感元件 (12)5.1、本章主要内容: (12)5.2、注意: (12)5.3、典型例题: (12)第六章一阶电路 (14)6.1、本章主要内容: (14)6.2、注意: (14)6.3、典型例题: (15)第七章二阶电路 (19)7.1、本章主要内容: (19)7.2、注意: (19)7.3、典型例题: (20)第八章阻抗与导纳 (21)8.1、本章主要内容: (21)8.2、注意: (21)8.3、典型例题: (21)附录:常系数微分方程的求解方法 (24)说明 (25)第一章:集总参数电路中电压、电流的约束关系1.1、本章主要内容:本章主要讲解电路集总假设的条件,描述电路的变量及其参考方向,基尔霍夫定律、电路元件的性质以及支路电流法。
1.2、注意:1、复杂电路中,电压和电流的真实方向往往很难确定,电路中只标出参考方向,KCL,KVL均是对参考方向列方程,根据求解方程的结果的正负与参考方向比较来确定实际方向.2、若元件的电压参考方向和电流参考方向一致,为关联的参考方向,此时元件的吸收功率P吸=UI,或P发=-UI若元件的电压参考方向和电流参考方向不一致,为非关联的参考方向,此时元件的吸收功率P吸=-UI,或P发=UI3、独立电压源的端电压是给定的函数,端电流由外电路确定(一般不为0)独立电流源的端电流是给定的函数,端电压由外电路确定(一般不为0)4、受控源本质上不是电源,往往是一个元件或者一个电路的抽象化模型,不关心如何控制,只关心控制关系,在求解电路时,把受控源当成独立源去列方程,带入控制关系即可.5、支路电流法是以电路中b条支路电流为变量,对n-1个独立节点列KCL方程,由元件的VCR,用支路电流表示支路电压再对m(b-n+1)个网孔列KVL方程的分析方法.(特点:b个方程,变量多,解方程麻烦)1.3、典型例题:例1:电路如图1所示,求解R 3 两端的电压U 以及独立电压源Us 的发出功率?-IR 2U S +R 11I 1α+-U =?R 3分析:本题考查KCL,KVL,元件的吸收功率以及受控源。
电路分析答案课后习题答案

电路分析答案课后习题答案电路分析是电子工程学科中的重要基础课程,通过对电路的分析和计算,我们可以了解电流、电压和功率等基本概念,并能够解决一些实际问题。
在学习过程中,课后习题是巩固知识和提高能力的重要途径。
下面我将为大家提供一些电路分析课后习题的答案,希望对大家的学习有所帮助。
1. 串联电路中,两个电阻的阻值分别为R1和R2,电源电压为V,求电流I的大小。
答案:根据欧姆定律,电流I等于电压V除以总阻值R,总阻值等于两个电阻的阻值之和,即R = R1 + R2。
所以I = V / (R1 + R2)。
2. 并联电路中,两个电阻的阻值分别为R1和R2,电源电压为V,求电流I的大小。
答案:根据欧姆定律,电流I等于电压V除以总阻值R,总阻值等于两个电阻的倒数之和的倒数,即1/R = 1/R1 + 1/R2。
所以I = V / R。
3. 电路中有一个电阻R和一个电感L,电源电压为V,求电流I的大小。
答案:根据欧姆定律和电感的特性,电流I等于电压V除以总阻抗Z,总阻抗等于电阻R和电感L的复数和,即Z = R + jωL,其中j是虚数单位,ω是角频率。
所以I = V / Z。
4. 电路中有一个电容C和一个电阻R,电源电压为V,求电流I的大小。
答案:根据欧姆定律和电容的特性,电流I等于电压V除以总阻抗Z,总阻抗等于电阻R和电容C的复数和的倒数,即1/Z = 1/R + j/ωC。
所以I = V / Z。
5. 电路中有一个电感L和一个电容C,电源电压为V,求电流I的大小。
答案:根据欧姆定律和电感、电容的特性,电流I等于电压V除以总阻抗Z,总阻抗等于电感L和电容C的复数和的倒数,即1/Z = 1/jωL + j/ωC。
所以I = V / Z。
通过以上几个例子,我们可以看到,电路分析中的关键是确定电流和电压之间的关系,以及计算总阻抗。
根据不同的电路结构和元件特性,我们可以利用欧姆定律、基尔霍夫定律、复数运算等方法进行分析和计算。
武汉理工大学《电路分析(上)》课后简答题

1-1 实际电路器件与理想电路元件之间的联系和差异是什么?答:〔1〕联系:理想电路元件是对实际电路器件进行理想化处理、忽略次要性质、只表征其主要电磁性质的所得出的模型。
〔2〕差异:理想电路元件是一种模型,不是一个实际存在的东西;一种理想电路元件可作为多种实际电路器件的模型,如电炉、白炽灯的模型都是“电阻”。
1-2 〔1〕电流和电压的实际方向是怎样规定的?〔2〕有了实际方向这个概念,为什么还要引入电流和电压的参考方向的概念?〔3〕参考方向的意思是什么?〔4〕对于任何一个具体电路,是否可以任意指定电流和电压的参考方向?答:〔1〕电流的实际方向就是正电荷移动的方向;电压的实际方向〔极性〕就是电位降低的方向。
〔2〕对于一个复杂电路,电流、电压的实际方向事先难以确定,而交流电路中电流、电压的实际方向随时间变化,这两种情况下都无法准确标识电流、电压的实际方向,因此需要引入参考方向的概念。
〔3〕电流〔或电压〕参考方向是人为任意假定的。
按电流〔或电压〕参考方向列有关方程,可解出电流〔或电压〕结果。
假设电流〔或电压〕结果数值为正,则说明电流〔或电压〕的实际方向与参考方向相同;假设电流〔或电压〕结果数值为负,则说明电流〔或电压〕的实际方向与参考方向相反。
〔4〕可以任意指定电流和电压的参考方向。
1-3 〔1〕功率的定义是什么?〔2〕元件在什么情况下是吸收功率的?在什么情况下是发出功率的?〔3〕元件实际是吸收功率还是发出功率与电流和电压的参考方向有何关系?答:〔1〕功率定义为单位时间内消耗〔或产生〕的能量,即()dWp t dt=由此可推得,某二端电路的功率为该二端电路电压、电流的乘积,即()()()p t u t i t =〔2〕某二端电路的实际是吸收功率还是发出功率,需根据电压、电流的参考方向以及由()()()p t u t i t =所得结果的正负来综合判断,见下表〔3〕元件实际是吸收功率还是发出功率与电流和电压的参考方向无关。
电路分析课后习题答案

电路分析课后习题答案电路分析课后习题答案电路分析是电子工程专业的一门重要课程,它涵盖了电路基本理论和分析方法。
通过学习电路分析,我们可以了解电路中电流、电压和功率的分布情况,以及不同元件之间的相互作用关系。
为了帮助同学们更好地掌握电路分析的知识,下面将给出一些典型习题的详细解答。
1. 简化下面电路中的电阻R等效为一个电阻。
电路图:```+----R1----+| |+---R2-----+| |+---R3-----+| |+---R4-----+| |+---R5-----+```解答:根据电阻并联的性质,将电路中的电阻R1、R2、R3、R4和R5并联后,可以得到一个等效电阻Req。
并联电阻的计算公式为:```1/Req = 1/R1 + 1/R2 + 1/R3 + 1/R4 + 1/R5```将具体数值代入公式计算,即可得到等效电阻Req的值。
2. 计算下面电路中电阻R1和R2之间的等效电阻。
电路图:```+---R1---+| |+---R2---+| |+---R3---+```解答:根据电阻串联的性质,将电路中的电阻R1、R2和R3串联后,可以得到一个等效电阻Req。
串联电阻的计算公式为:```Req = R1 + R2 + R3```将具体数值代入公式计算,即可得到等效电阻Req的值。
3. 计算下面电路中电流I1和I2的值。
电路图:```+---R1---+---R2---+---R3---+| | | |+--------+--------+--------+```解答:根据电流分流定律,电流在分支中的分布与电阻成反比。
根据电流合流定律,电流在合流点上的总和等于零。
根据这两个定律,可以列出方程组并解得电流I1和I2的值。
4. 计算下面电路中电压V1和V2的值。
电路图:```+---R1---+---R2---+---R3---+| | | |+--------+--------+--------+| | | |+---R4---+---R5---+---R6---+```解答:根据电压分压定律,电压在分压点上的分布与电阻成正比。
电路分析答案解析.doc

第4章一阶电路的时域分析基础与提高题P4-1 2uF电容器的端电压是10V时,存储电荷是多少?解:= Ct/= 2x 10 6 x 10 = 20uCP4-2充电到150V的20uF电容器,通过一个3MQ电阻器放电,需要多长时间?何时的放电电流最大?最大值多少?解:T = J RC = 3xl06 x20xl0-6 = 60s,放电完毕约等于5T = 300s刚开始放电时电流最大,最大电流为1'° « = 50uA3xl06P4-3当2uF电容器电压如图P4-3所示时,画出流过此电容器的电流波形图。
假设电压与电流为关联参考方向。
图P4-3 图1解:关联参考方向,则电容电流分段求解如下:(1)t < , u c(t) = OK , i c(t) = 0A(2)0<Z<li/5 , u c(t) =(20txl06)y , i c(0 = 2x 10"6x20x 106 = 40^(3)l<t< 4us ,叫(f)=207 , i c(/) = OA(4)4<t<6us ,叫(r)= (-20/x 1()6+100)7 , . t (r) = 2xIO-6 x(-20x 106) = -40^(5)6<t<8us , «c(O = (10^xl06 -80)r , /. i c(0 = 2x 10"6 x 10x 106 = 20^(6)t > 8us , u c(t) = OK , i c(t) = OA电容的电流如图1所合上开关后经过约5T = 9s 电流达到最大, 最大电流为一 =10A 2-P4-4 0. 32tA 电流流过150mH 电感器,求t = 4s 时,电感器存储的能量。
解:电感器存储的能量^ = -£z 2 =-X 150X 10-3X (0.32/)2 2 2当t = 4s 时,电感器存储的能量为0. 123WP4-5由20V 电源与错误!不能通过编辑域代码创建对象。
武汉理工大学《电路分析(上)》课后简答题

武汉理工大学《电路分析(上)》课后简答题1-1实际电路器件与理想电路元件之间的联系和差别是什么?答:(1)联系:理想电路元件是对实际电路器件进行理想化处理、忽略次要性质、只表征其主要电磁性质的所得出的模型。
(2)差别:理想电路元件是一种模型,不是一个实际存在的东西;一种理想电路元件可作为多种实际电路器件的模型,如电炉、白炽灯的模型都是“电阻”。
1-2(1)电流和电压的实际方向是怎样规定的?(2)有了实际方向这个概念,为什么还要引入电流和电压的参考方向的概念?(3)参考方向的意思是什么?(4)对于任何一个具体电路,是否可以任意指定电流和电压的参考方向?答:(1)电流的实际方向就是正电荷移动的方向;电压的实际方向(极性)就是电位降低的方向。
(2)对于一个复杂电路,电流、电压的实际方向事先难以确定,而交流电路中电流、电压的实际方向随时间变化,这两种情况下都无法准确标识电流、电压的实际方向,因此需要引入参考方向的概念。
(3)电流(或电压)参考方向是人为任意假定的。
按电流(或电压)参考方向列有关方程,可解出电流(或电压)结果。
若电流(或电压)结果数值为正,则说明电流(或电压)的实际方向与参考方向相同;若电流(或电压)结果数值为负,则说明电流(或电压)的实际方向与参考方向相反。
(4)可以任意指定电流和电压的参考方向。
1-3(1)功率的定义是什么?(2)元件在什么情况下是吸收功率的?在什么情况下是发出功率的?(3)元件实际是吸收功率还是发出功率与电流和电压的参考方向有何关系?答:(1)功率定义为单位时间内消耗(或产生)的能量,即()dWp tdt由此可推得,某二端电路的功率为该二端电路电压、电流的乘积,即()()()p t u t i t=(2)某二端电路的实际是吸收功率还是发出功率,需根据电压、电流的参考方向以及由()()()p t u t i t=所得结果的正负来综合判断,见下表电压、电流参考方向功率计算值(电压与电流的乘积)正负实际吸收功率或发出功率关联参考方向正实际吸收功率负实际发出功率关联参考方向正实际发出功率负实际吸收功率(3)元件实际是吸收功率还是发出功率与电流和电压的参考方向无关。
(完整版)高频电子线路简答题—武汉理工大学

1.试画出超外差式接收机方框图,并简要说明各部分的功能。
答:从天线收到的微弱高频信号经高频小信号放大器放大,然后送至混频器与本地振荡器所产生的等幅振荡电压相混合,得到中频电压。
中频电压经中频放大器放大后送入检波器,解调出低频信号。
最后再经低频放大器放大后送扬声器,转变为声音信号。
2.高频功率放大器欠压、临界、过压状态是如何区分的?当Vcc(集电极电源电压),Vbb(基极电源电压),Vbm(输入电压振幅)和负载电阻R L只变化其中一个时,放大器的工作状态将如何变化?答:当高频谐振功率放大器的集电极电流都在临界线的右方时,称为欠压工作状态;当集电极电流的最大值正好落在临界线上时,称为临界工作状态;当集电极电流的最大值穿过了临界线到达左方饱和区时,称为过压工作状态;随着谐振电阻R L的增大,高频谐振功率放大器的工作状态由欠压到临界再到过压。
随着V cc的增大,高频谐振功率放大器的工作状态由过压到临界再到欠压。
随着V bb增大,高频谐振功率放大器的工作状态由欠压到临界再到过压。
随着V bm增大,高频谐振功率放大器的工作状态由欠压到临界再到过压。
3.为什么基极调幅电路必须工作于欠压状态?答:基极调幅是利用调制信号电压来改变高频功率放大器的基极偏压,以实现调幅的(3分)。
在欠压状态下,集电极电流的基波分量随基极电压成正比变化。
因此,集电极回路的输出高频电压的振幅将随调制信号的波形而变化,得到调幅波。
地振荡器所产生的等幅振荡电压相混合,得到中频电压。
中频电压经中频放大器放大后送入检波器,解调出低频信号。
最后再经低频放大器放大后送扬声器,转变为声音信号。
4. 无线电通信为什么要进行调制?常用的模拟调制方式有哪些?答: 1) 信号不调制进行发射天线太长,无法架设。
2) 信号不调制进行传播会相互干扰,无法接收。
常用的模拟调制方式有调幅、调频及调相5. 谐振功率放大器效率高的原因是什么?其输出波形不失真的原因是什么?答:谐振功放效率高是因为它的工作频率很高 ,高频谐振功放实质是将直流功率转变为高频功率,为了输出功率足够大,常选在丙类状态下工作,而丙类状态的转换率大于甲,乙类,所以其效率高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-1 实际电路器件与理想电路元件之间的联系和差别是什么?答:(1)联系:理想电路元件是对实际电路器件进行理想化处理、忽略次要性质、只表征其主要电磁性质的所得出的模型。
(2)差别:理想电路元件是一种模型,不是一个实际存在的东西;一种理想电路元件可作为多种实际电路器件的模型,如电炉、白炽灯的模型都是“电阻”。
1-2 (1)电流和电压的实际方向是怎样规定的?(2)有了实际方向这个概念,为什么还要引入电流和电压的参考方向的概念?(3)参考方向的意思是什么?(4)对于任何一个具体电路,是否可以任意指定电流和电压的参考方向?答:(1)电流的实际方向就是正电荷移动的方向;电压的实际方向(极性)就是电位降低的方向。
(2)对于一个复杂电路,电流、电压的实际方向事先难以确定,而交流电路中电流、电压的实际方向随时间变化,这两种情况下都无法准确标识电流、电压的实际方向,因此需要引入参考方向的概念。
(3)电流(或电压)参考方向是人为任意假定的。
按电流(或电压)参考方向列有关方程,可解出电流(或电压)结果。
若电流(或电压)结果数值为正,则说明电流(或电压)的实际方向与参考方向相同;若电流(或电压)结果数值为负,则说明电流(或电压)的实际方向与参考方向相反。
(4)可以任意指定电流和电压的参考方向。
1-3 (1)功率的定义是什么?(2)元件在什么情况下是吸收功率的?在什么情况下是发出功率的?(3)元件实际是吸收功率还是发出功率与电流和电压的参考方向有何关系?答:(1)功率定义为单位时间内消耗(或产生)的能量,即()dWp t dt=由此可推得,某二端电路的功率为该二端电路电压、电流的乘积,即()()()p t u t i t =(2)某二端电路的实际是吸收功率还是发出功率,需根据电压、电流的参考方向以及由()()()p t u t i t =所得结果的正负来综合判断,见下表(3)元件实际是吸收功率还是发出功率与电流和电压的参考方向无关。
1-4 电压源与电流源各有什么特点? 答:(理想)电压源特点:(1)理想电压源两端的电压保持定值或一定的时间函数; (2)理想电压源两端的电压与流过它的电流 i 无关;(3)流经理想电压源的电流由自身电压和外接电路两者共同决定。
(理想)电流源特点:(1)理想电流源输出的电流保持定值或一定的时间函数; (2)理想电流源输出的电流与与其两端的电压u 无关;(3)理想电流源两端的电压由自身输出的电流和外接电路两者共同决定。
1-5 (1)受控源能否作为电路的激励?(2)如果电路中无独立电源,电路中还会有电流、电压响应吗? 答:(1)受控源不能作为电路的激励。
(2)无。
1-6 应用基尔霍夫电流定律列写某节点电流方程时,与该节点相连的各支路上的元件性质对方程有何影响? 答:无影响。
1-7 应用基尔霍夫电压定律列写某回路电压方程时,构成该回路的各支路上的元件性质对方程有何影响? 答:无影响。
注:KCL 、KVL 与电路元件的性质无关。
1-8 基尔霍夫电流定律是描述电路中与节点相连的各支路电流间相互关系的定律,应用此定律可写出节点电流方程。
对于一个具有n 个节点的电路,可写出多少个独立的节点电流方程? 答:1n -个1-9 基尔霍夫电压定律是描述电路中与回路相关的各支路电压间相互关系的定律,应用此定律可写出回路电压方程。
对于一个具有n 个节点、b 条支路的电路,可写出多少个独立的回路电压方程? 答:1b n -+个2-1 (1)什么是单口网络?(2)单口网络的外特性表示什么意义?(2)如何求出外特性? 答:(1)单口网络即二端网络,其对外只有两个联接端子。
(2)单口网络的外特性表示该网络端口电压、电流之间的关系。
(3)假定在端口加一电压,求与之对应的端口电流,即得端口电压与电流关系(端口外特性)。
假定加端口电流,求与之对应的端口电压,也一样。
2-2 单口网络的外特性与外电路有关吗?答:无关。
2-3 (1)等效变换的概念是什么?(2)等效变换的概念是根据什么引出来的?答:(1)若两个单口网络的端口伏安特性相同,则对外电路而言,这两个单口网络相互等效。
(2)等效变换的概念是根据对外电路的作用或影响完全相同相同这一点引出来的。
如果两个单口网络的端口伏安特性相同,则意味着这两个网络对外电路的作用或影响是完全相同的,在求外电路的电压、电流以及功率时,这两个单口网络可相互替换,以达到分析或计算简化的目的。
2-4 两个单口网络N1和N2的伏安特性处处重合,这时两个单口网络N1和N2是否等效?答:是等效的。
??2-5 两个单口网络N1和N2各接100Ω负载时,流经负载的电流以及负载两端电压均相等,两个网络N1 和N2是否等效?答:不一定等效。
不等效情况举例,N1是100V电压源,N2是1A电流源,二者分别接100Ω电阻时,两种情况下电阻的电压、电流均为100V、1A,是相同的;若N1和N2分别接50Ω电阻,这时电阻上的电压、电流就不同了,因此,N1和N2不等效。
2-6 一个含有受控源及电阻的单口网络,总可以等效化简为一个什么元件?答:电阻2-7 当无源单口网络内含有受控源时,必须用外施电源法求输入电阻,这时电路中受控源的控制支路应如何考虑?答:????(注:不知所指)2-8 利用等效变换计算出外电路的电流、电压后,如何计算被变换的这一部分电路的电流、电压?答:将外电路等效(如何等效?学生要心中有数),同时将被变换部分恢复成原样,由此计算被变换的这一部分电路的电流、电压。
3-1 (1)什么是独立节点?(2)如何确定独立节点?答:(1)对任何节点都能列写KCL方程,只有独立的KCL方程才对求解结果有用。
若电路有nn 个KCL方程是相互独立个节点,则与之对应的就可列出n个KCL方程,但其中只有1的,与这1n -个KCL 方程对应的节点称为独立节点。
(2)若电路有n 个节点,从中任选1n -都是独立节点。
注:孤立地谈某个节点是否是独立节点是没意义的,独立节点具有相对性和任意性,学者须过细领会。
3-2 (1)什么是独立回路?(2)如何确定独立回路? 答:(1)对任意回路都能列写KVL 方程,只有独立的KVL 方程才对求解结果有用。
对具体电路,能列出的独立KVL 方程数通常远少于电路的回路数,与这些独立KVL 方程对应的回路称为独立回路。
(2)若电路有n 个节点和b 条支路,则其独立KVL 方程数目是固定的,为1l b n =-+个。
要确定独立回路,问题较复杂,须借助网络拓扑的相关知识,选择单连支回路即为独立回路。
对于平面电路,确定独立回路问题变得比较简单,网孔即为独立回路。
注:与独立节点概念一样,孤立地谈某个回路是否是独立回路是没意义的,独立回路也具有相对性和任意性,学者须过细领会。
3-3 (1)网孔电流的概念是怎样引出来的?(2)为什么说网孔电流是一组独立、完备的电流变量?3-4 (1)列写网孔电流方程的依据是什么?(2)网孔电流方程的实质又是什么?3-5 (2)回路电流的概念是怎样引出来的?(3)为什么说回路电流是一组独立、完备的电流变量?3-6 (1)回路电流方程中各项的物理含义是什么?(2)为什么说自阻总是正的,而互阻可能为正也可能为负或零?3-7 节点电压的概念是怎样引出来的?为什么说节点电压是一组独立、完备的电压变量?3-8 列写节点电压方程的依据是什么?节点电压方程的实质又是什么?3-9 节点电压方程中各项的物理含义是什么?为什么说自导总是正的,而互导总是负的?3-10 如果电路中出现受控电压源、单一电流源支路或单一受控电流源支路,应该如何列写回路电流方程? 答:(1)有受控电压源情形先将受控电压源视为普通电压源列写回路电流方程,此时方程中会多出一个变量,即受控电压源的控制量,再增补一个方程,将受控电压源的控制量用回路电流表示出来。
(参见例3-3)。
(2)有单一电流源支路情形设该单一电流源的端电压为k u ,将其视为电压为k u 的电压源来列写回路电流方程,这相当于增补了一个变量k u ,于是必须增补一个方程,由该单一电流源的电流与回路电流之间的关系即可得增补方程。
(参见例3-4处理方法一) (3)有单一受控电流源支路情形先将单一受控电流源视为普通电流源,按“有单一电流源支路情形”列写回路电流方程,此时增补了一个变量k u ,由该单一受控电流源的电流与回路电流之间的关系可得一个增补方程,但增补方程中又出现新变量,即受控电流源控制量,再根据受控电流源控制量与回路电流之间的关系增补一个方程即可。
注:(1)选独立回路时,可避开单一电流源(受控或非受控)支路,此时按普通方法列写回路电流方程即可。
(参见例3-4处理方法二)(2)选独立回路时,可让单一电流源(受控或非受控)支路只流过一个回路电流,此时会简化回路电流方程。
(参见例3-5)3-11 如果电路中出现受控电流源、单一电压源支路或单一受控电压源支路,应该如何列写节点电压方程? 答:(1)有受控电流源情形先将受控电流源视为普通电流源列写回路电流方程,此时方程中会多出一个变量,即受控电流源的控制量,再增补一个方程,将受控电流源的控制量用节点电压表示出来。
(参见例3-7)。
(2)有单一电压源支路情形 两种方法:方法一:设该单一电压源的电流为k i ,将其视为电流为k i 的电流源来列写节点电压方程,这相当于增补了一个变量k i ,于是必须增补一个方程,由该单一电压源的电压与节点电压之间的关系即可得增补方程。
(参见例3-8处理方法1)方法二:选单一电压源负端为参考节点,则单一电压源正端节点电压即为此电压源电压,可省去一个节点方程;(参见例3-8处理方法2)(3)有单一受控电压源支路情形先将单一受控电压源视为普通电压源,按“有单一电压源支路情形”列写节点电压方程(上面两种方法),再根据受控电压源控制量与节点电压之间的关系增补一个方程即可。
(参见例3-9)4-1 (1)对含受控源的线性电阻电路,在应用叠加定理求解时,受控源应进行什么处理?(2)受控源能否像独立电源一样分别单独作用计算其分响应?答:(1)对含受控源的线性电阻电路应用叠加原理求解时,需用分电路求分响应,在各分电路中都要保留受控源。
(参见例4-2) (2)否。
4-2 “替代”与第二章的“等效变换”都能简化电路分析,但它们是两个不同的概念,“替代”与“等效变换”的区别是什么? 答:“替代”是针对特定外电路而言的,当某单口网络接特定外电路,在已知单口网络端口电压k u 或端口电流k i 时, 可将此单口网络替代为电压源k u 或电流源k i ,替代后,该特定外电路中所有电压、电流不变。
替代的电压源k u 或电流源k i 与原单口网络不见得等效,因为外电路改变后,单口网络端口电压或端口电流可能就不是k u 或k i 了,此时还用电压源k u 或电流源k i 去替代就错了。