江西省赣州市八年级上学期期末数学试卷
江西省赣州市八年级上学期期末数学试卷

江西省赣州市八年级上学期期末数学试卷姓名:________班级:________成绩:________一、 选择题 (共 12 题;共 24 分)1. (2 分) (2020 七上·文登期末) 下列说法中,正确的个数为( )①若,则点在第三象限②若点在第一象限的角平分线上,则③点到 轴的距离为 ,到 轴的距高为④若点 的坐标为,点 的坐标为,则直线轴A. 个 B. 个 C. 个 D. 个 2. (2 分) -4 的相反数是 ( ) A . -4 B.4C. D . ±4 3. (2 分) (2017·黑龙江模拟) 下列实数中,无理数是( )A.﹣B.C. D . ﹣|﹣5| 4. (2 分) 下面各对数值中,属于方程 x2﹣3y=0 的解的一对是( )A. B. C. D.第 1 页 共 20 页5. (2 分) 计算 A.6的结果是( ).B.C. D . 12 6. (2 分) (2017·江东模拟) 如图,AB∥CD,EC⊥CD 于 C,CF 交 AB 于 B,已知∠2=29°,则∠1 的度数是 ()A . 58°B . 59°C . 61°D . 62°7. (2 分) 某居民小区开展节约用电活动,该小区 100 户家庭 4 月份的节电情况如下表所示.节电量(千瓦时)20304050户数(户)20303020那么 4 月份这 100 户家庭的节电量(单位:千瓦时)的平均数是( )A . 35B . 26C . 25D . 208. (2 分) (2019 九上·萧山开学考) 在平面直角坐标系中,P点关于原点的对称点于 轴的对称点为,则等于( )A . -2B.2C.4D . -49. (2 分) (2019 八下·顺德期末) 下列命题是假命题的是( )第 2 页 共 20 页,P点关A . 两直线平行,同位角相等B . 两组对角分别相等的四边形是平行四边形C.若,则D.若,则10. (2 分) (2017 八上·陕西期末) 如图,在平面直角坐标系中,以原点 为圆心的同心圆的半径由内向外依次为 , , , ,…,同心圆与直线和分别交于 , , , ,…,则的坐标是( )A.B.C. D. 11. (2 分) (2017·哈尔滨模拟) 在哈市地铁 2 号线的建设中,甲、乙两个建设公司同时挖掘两段长度相等 的隧道,如图是甲、乙两公司挖掘隧道长度 y(米)与挖掘时间 x(时)之间关系的部分图象.如果甲队施工速度 始终不变,乙队在开挖 6 小时后,施工速度每小时增加了 7 米,结果两队同时完成了任务,那么甲队从开挖到完工 所挖隧道的总长度为( )米.A . 100 B . 110 C . 120 D . 130 12. (2 分) (2019·萧山模拟) 如图,直径 AB,CD 相互垂直,P 为弧 BC 上任意一点,连 PC,PA,PD,PB,下列结论:①∠APC=∠DPE;②∠AED=∠DFA;③;其中正确的是( )第 3 页 共 20 页A . ①③ B . 只有① C . 只有② D . ①②③二、 填空题 (共 5 题;共 5 分)13. (1 分) (2018 九上·西安月考) 如图,三个正方形的边长分别为 2,6,8;则图中阴影部分的面积为 ________.14. (1 分) (2019 八上·揭阳期中) 如果点 P(2a﹣1,2a)在 y 轴上,则 P 点的坐标是________. 15. (1 分) (2020 八上·甘州期末) 如图,已知函数 y=ax+b 和 y=kx 的图象交于点 P,则根据图象可得,关于 x,y 的二元一次方程组的解是________.16. (1 分) (2017 八上·林州期中) 如图,AD⊥BC 于点 D,D 为 BC 的中点,连接 AB,∠ABC 的平分线交 AD 于点 O,连结 OC,若∠AOC=125°,则∠ABC=________.17. (1 分) (2016 九上·高安期中) 已知 x 能使得+的对称点 P′在第________象限.第 4 页 共 20 页有意义,则点 P(x+2,x﹣3)关于原点三、 解答题 (共 7 题;共 70 分)18. (10 分) 化简:(1);(2).19. (5 分) (2019 七下·东台期中) 如图,直线 分别与直线 、 交于点 、 ,平分,平分,且//.求证: // .20. (15 分) 随着世界气候大会于 2009 年 12 月在丹麦首都哥本哈根的召开,“低碳生活”概念风靡全球.在“低碳”理念的引领下,某市为实现森林城市建设的目标,在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植 400 株树苗,某树苗公司提供如下信息:信息一:可供选择的树苗有雪松、香樟,垂柳三种,并要求购买雪松、香樟的数量相等.信息二:如下表:设购买雪松,垂柳分别为 x 株、y 株.树苗雪松 香樟 垂柳每株树苗批发价格 两年后每株树苗对(元)空气的净化指数300.4200.1P0.2(1) 写出 y 与 x 之间的函数关系式(不要求写出自变量的取值范围);(2) 当每株垂柳的批发价 P 等于 30 元时,要使这 400 株树苗两年后对该住宅小区的空气净化指数不低于 90,应怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元?(3) 当每株垂柳批发价格 P(元)与购买数量 y(株)之间存在关系 P=30﹣0.05y 时,求购买树苗的总费用 W(元)与购买雪松数量 x(株)之间的函数关系式(不要求写出自变量的取值范围),并求出购买树苗总费用的最大值.21. (10 分) (2019·南关模拟) 某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级各有人参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取 名学生的成绩,数据如下:七年级八年级整理数据 按如下分段整理本数据并补全表格:人数第 5 页 共 20 页成绩年级 七年级 八年级分析数据 补全下列表格中的统计量:统计量 平均数年级七年级八年级中位数众数方差得出结论【答案】1|1|94|93.5(1) 估计该校八年级参加这次“汉字听写”大赛成绩低于 分的人数.(2) 你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(写一条即可)22. (15 分) (2019 八上·锦江期中) 在平面直角坐标系 xOy 中,△ABC 的位置如图所示.(1) 分别写出以下顶点的坐标:A(________,________);B(________,________) ;C(________,________). (2)顶点 A 关于 x 轴对称的点 A′的坐标(________,________),顶点 C 关于 y 轴对称的点 C′的坐标(________, ________). (3) 求△ABC 的面积. 23. (5 分) (2019·合肥模拟) 如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌 C 的坡脚 A 处测得宣传牌底部 D 的仰角为 60°,沿山我向上走到 B 处测得宣传牌顶部 C 的仰角为 45°。
2022年-有答案-江西省赣州市某校初二(上)期末考试数学试卷

2022学年江西省赣州市某校初二(上)期末考试数学试卷一、选择题1. 下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.2. 下列四个多项式中,能因式分解的是( )A.a2+1B.x2+5yC.x2−5yD.a2−6a+93. 满足下列条件的三条线段a,b,c能构成三角形的是( )A.a:b:c=1:2:3B.a+b=4,a+b+c=9C.a=3,b=4,c=5D.a:b:c=1:1:24. 下列式子运算结果为x+1的是( )A.1−1x B.x2+2x+1x+1C.x+1x ÷1x−1D.x2−1x⋅xx2+15. 如图,∠ACD是△ABC的外角,若∠ACD=125∘,∠A=75∘,则∠B的度数为()A.30∘B.36∘C.45∘D.50∘6. 如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP // AR;④△BRP≅△QSP.其中,正确的有( )A.4个B.3个C.2个D.1个二、填空题世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为________米.点P(2, −3)关于直线y =1的对称点的坐标是________.计算:832+83×34+172=________.若a 2−b 2=−116,a +b =−14,则a −b 的值为________.如图,在平面直角坐标系中,已知A (0,5),B (2,0),在第一象限内的点C ,使△ABC 是以AB 为腰的等腰直角三角形,则点C 的坐标为________.三、解答题(1)计算: 2x 23y 2⋅5y 7x ÷10y 21x 2 ;(2)因式分解: 4(a −2b )2−1.化简求值:[(x +12y)2+(x −12y)2](2x 2−12y 2),其中x =−3,y =4.解方程x x−1−1=3x 2−1.如图,在平面直角坐标系中,点A的坐标是(4, 0),点B的坐标是(2, 3),点C的坐标是(0, 3).(1)作出四边形OABC关于y轴对称的图形,并写出点B对应点的坐标;(2)在y轴上找一点P,使PA+PB的值最小.(不要求写作法,保留作图痕迹)知△ABC的三边a,b,c满足a2+b2+c2−ab−bc−ac=0,试判断△ABC的形状.如图,点P在∠AOB内,点M,N分别是P点关于OA,OB的对称点,且MN交OA,OB相交于点E,若△PEF的周长为20,求MN的长.如图,点E是BC边上的点,BM // NC,BM=NC.试判断点E是否为线段BC的中点,并说明理由.如图,在△ABC中,AC=BC,点D,E分别为AB,BC上的点,∠CDE=∠A,若BC=BD,求证:CD=DE.如图,在△ABC中,∠ACB=90∘,AC=BC,D是AB的中点,点E在AC上,点F在BC 上,且AE=CF.求证:DE=DF,DE⊥DF.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30∘,那么它所对的直角边等于斜边的一半.即:如图(1),在Rt△AB.ABC中,∠ACB=90∘,∠ABC=30∘,则AC=12探究结论:小明同学对以上结论作了进一步研究.(1)如图(1),作AB边上的中线CE,得到结论:①△ACE为等边三角形;②BE与CE之间的数量关系为________.(2)如图(2),CE是△ABC的中线,点D是边CB上任意一点,连接AD,作等边△ADP,且点P在∠ACB的内部,连接BP.试探究线段BP与DP之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)中条件的基础上,线段BP与DP之间存在怎样的数量关系?直接写出答案即可.参考答案与试题解析2022学年江西省赣州市某校初二(上)期末考试数学试卷一、选择题1.【答案】C【考点】轴对称图形【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.根据轴对称图形的定义得,C选项图形是轴对称图形.故选C.2.【答案】D【考点】因式分解-运用公式法【解析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A,B,C都不能把一个多项式转化成几个整式积的形式,故A,B,C不能因式分解;D是完全平方公式的形式,a2−6a+9=(a−3)2,故D能因式分解.故选D.3.【答案】C【考点】三角形三边关系【解析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【解答】解:A,设a,b,c分别为x,2x,3x,则有a+b=c,不符合三角形任意两边之和大于第三边,故错误;B,当a+b=4时,c=5,4<5,不符合三角形任意两边之和大于第三边,故错误;C,当a=3,b=4,c=5时,3+4>5,故正确;D,设a,b,c分别为x,x,2x,则有a+b=c,不符合三角形任意两边之和大于第三边,故错误.故选C.4.【答案】B【考点】分式的加减运算分式的乘除运算【解析】对各个选项中的式子进行化简即可解答本题.【解答】解:选项A,1−1x =x−1x,故选项A不符合题意;选项B,x 2+2x+1x+1=(x+1)2x+1=x+1,故选项B符合题意;选项C,x+1x ÷1x−1=x+1x⋅x−11=x2−1x,故选项C不符合题意;选项D,x 2−1x⋅xx2+1=x2−1x2+1,故选项D不符合题意.故选B.5.【答案】D【考点】三角形的外角性质【解析】根据三角形的内角与外角之间的关系解答即可.【解答】解:∵∠ACD=125∘,∠A=75∘,∴∠B=∠ACD−∠A=125∘−75∘=50∘.故选D.6.【答案】A【考点】等边三角形的性质全等三角形的性质与判定平行线的判定【解析】此题暂无解析【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,PR=PS,∴Rt△BPR≅Rt△CPS(HL),∴BR=CS,∴AR=AS,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60∘=∠BAC,∴PQ // AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≅△PCS,又由②可知,△BRP≅△QSP,故④正确,综上,①②③④都正确,共4个.故选A.二、填空题【答案】6×10−9【考点】科学记数法--表示较小的数【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000006=6×10−9.故答案为:6×10−9.【答案】(2, 5)【考点】坐标与图形变化-对称【解析】点P(2, −3)关于直线y=1对称的点与点P的连线平行于y轴,因而横坐标与P的横坐标相同,纵坐标与−3的平均数是1,因而纵坐标是5.【解答】解:点P(2, −3)关于直线y=1对称的点的坐标是(2, 5).故答案为:(2, 5).【答案】10000【考点】完全平方公式【解析】把34写成2×17,然后根据完全平方公式计算.【解答】解:832+83×34+172=832+2×83×17+172=(83+17)2=1002=10000.故答案为:10000.【答案】14【考点】平方差公式【解析】根据整式的混合运算,用到的知识点有平方差公式【解答】解:∵a2−b2=(a+b)(a−b)=−116,a+b=−14,∴a−b=14.故答案为:14.【答案】(7,2)或(5,7)【考点】坐标与图形性质全等三角形的性质与判定等腰直角三角形【解析】分别从当∠ABC=90∘,AB=BC时,当∠BAC=90∘,AB=AC时去分析求解,利用全等三角形的判定与性质,即可求得点C的坐标.【解答】解:如图1,当∠ABC=90∘,AB=BC时,过点C作CD⊥x轴于点D,∴∠CDB=∠AOB=90∘,∵∠OAB+∠ABO=90∘,∠ABO+∠CBD=90∘,∴∠OAB=∠CBD,在△AOB和△BDC中,{∠AOB=∠BDC,∠OAB=∠CBD,AB=BC,∴△AOB≅△BDC(AAS),∴BD=OA=5,CD=OB=2,∴OD=OB+BD=7,∴点C的坐标为(7,2);如图2,当∠BAC=90∘,AB=AC时,过点C作CD⊥y轴于点D,同理可证得:△OAB≅△DCA,∴AD=OB=2,CD=OA=5,∴OD=OA+AD=7,∴点C的坐标为(5,7).综上所述,点C的坐标为(7,2)或(5,7). 故答案为:(7,2)或(5,7).三、解答题【答案】解:(1)原式=2x 23y2⋅5y7x⋅21x210y=x3y2.(2)原式=[2(a−2b)]2−1=[2(a−2b)+1][2(a−2b)−1]=(2a−4b+1)(2a−4b−1).【考点】分式的乘除运算因式分解-运用公式法【解析】(1)根据分式乘除法的运算法则,把除法转化为乘法,约分即可.(2)利用平方差公式分解因式即可.【解答】解:(1)原式=2x 23y2⋅5y7x⋅21x210y=x3y2.(2)原式=[2(a−2b)]2−1=[2(a−2b)+1][2(a−2b)−1] =(2a−4b+1)(2a−4b−1). 【答案】解:原式=(x2+xy+14y2+x2−xy+14y2)(2x2−12y2)=(2x2+12y2)(2x2−12y2)=4x4−14y4,把x=−3,y=4代入,原式=4×(−3)4−14×44=324−64=260.【考点】整式的混合运算——化简求值【解析】(1)去括号化简,再把值代入即可.【解答】解:原式=(x2+xy+14y2+x2−xy+14y2)(2x2−12y2)=(2x2+12y2)(2x2−12y2)=4x4−14y4,把x=−3,y=4代入,原式=4×(−3)4−14×44=324−64=260.【答案】解:方程两边乘(x−1)(x+1),得x(x+1)−(x−1)(x+1)=3,解得x=2.检验:当x=2时,(x−1)(x+1)≠0,所以,原分式方程的解为x=2.【考点】解分式方程——可化为一元一次方程【解析】此题暂无解析【解答】解:方程两边乘(x−1)(x+1),得x(x+1)−(x−1)(x+1)=3,解得x=2.检验:当x=2时,(x−1)(x+1)≠0,所以,原分式方程的解为x=2.【答案】解:(1)四边形OABC关于y轴对称的图形为四边形OA′B′C,如图所示,因为点B的坐标是(2, 3),点B的对应点为B′,所以点B的对应点的坐标为(−2, 3).(2)连接AB′与y轴交于点P,点P即为使PA+PB的值最小的点.【考点】作图-轴对称变换关于x轴、y轴对称的点的坐标轴对称——最短路线问题【解析】(1)延长BC至B′,使B′C=BC,在x轴负半轴上截取OA′,使OA′=OA,然后顺次连接A′B′CO即可,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相等写出点B的对应点的坐标;(2)根据轴对称确定最短路线问题,连接AB′与y轴的交点即为点P.【解答】解:(1)四边形OABC关于y轴对称的图形为四边形OA′B′C,如图所示,因为点B的坐标是(2, 3),点B的对应点为B′,所以点B的对应点的坐标为(−2, 3).(2)连接AB′与y轴交于点P,点P即为使PA+PB的值最小的点.【答案】解:∵a2+b2+c2−ab−bc−ac=0,∴2a2+2b2+2c2−2ab−2bc−2ac=0,即(a2−2ab+b2)+(b2−2bc+c2)+(a2−2ac+c2)=0,∴(a−b)2+(b−c)2+(a−c)2=0,∴a−b=0,b−c=0,a−c=0,即a=b=c,∴△ABC是等边三角形.【考点】等边三角形的判定完全平方公式非负数的性质:偶次方【解析】本题主要考查了等式和等边三角形的判定的相关知识点,需要掌握等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式;三个角都相等的三角形是等边三角形;有一个角等于60∘的等腰三角形是等边三角形才能正确解答此题.【解答】解:∵a2+b2+c2−ab−bc−ac=0,∴2a2+2b2+2c2−2ab−2bc−2ac=0,即(a2−2ab+b2)+(b2−2bc+c2)+(a2−2ac+c2)=0,∴(a−b)2+(b−c)2+(a−c)2=0,∴a−b=0,b−c=0,a−c=0,即a=b=c,∴△ABC是等边三角形.【答案】解:∵点M是P点关于OA的对称点,∴EP=EM,∵N是P点关于OB的对称点,∴FP=FN,∵△PEF的周长为20,∴EP+EF+FP=20,∴MN=EM+EF+FN=20.【考点】轴对称的性质【解析】根据轴对称的性质可知:EP=EM,PF=FN,所以线段MN的长=△PEF的周长,再根据△PEF的周长为20,即可得出MN的长.【解答】解:∵点M是P点关于OA的对称点,∴EP=EM,∵N是P点关于OB的对称点,∴FP=FN,∵△PEF的周长为20,∴EP+EF+FP=20,∴MN=EM+EF+FN=20.【答案】解:点E是线段BC的中点.理由是:∵BM // NC,∴∠M=∠CNE,在△BME和△CNE中,{∠M=∠CNE,∠BEM=∠CEN, BM=CN,∴△BME≅△CNE(AAS),∴BE=CE,即点E为线段BC中点.【考点】全等三角形的性质与判定平行线的性质【解析】根据平行线性质求出∠M=∠CNE,根据AAS推出△BME≅△CNE即可.【解答】解:点E是线段BC的中点.理由是:∵BM // NC,∴∠M=∠CNE,在△BME和△CNE中,{∠M=∠CNE,∠BEM=∠CEN, BM=CN,∴△BME≅△CNE(AAS),∴BE=CE,即点E为线段BC中点.【答案】证明:∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∠CDE=∠A,∴∠ACD=∠BDE.∵AC=CB,BC=BD,∴∠A=∠B,AC=BD.在△ACD和△BDE中,∵{∠A=∠B,AC=BD,∠ACD=∠BDE,∴△ACD≅△BDE(ASA),∴CD=DE.【考点】全等三角形的性质与判定【解析】暂无【解答】证明:∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∠CDE=∠A,∴∠ACD=∠BDE.∵AC=CB,BC=BD,∴∠A=∠B,AC=BD.在△ACD和△BDE中,∵{∠A=∠B,AC=BD,∠ACD=∠BDE,∴△ACD≅△BDE(ASA),∴CD=DE.【答案】证明:如图,连接CD,∵AC=BC,∠ACB=90∘,∴△ABC是等腰直角三角形,∠A=∠B=45∘. ∵D为AB中点,∴AD=BD,CD平分∠ACB,CD⊥AB,∴∠DCF=45∘,∴AD=BD=CD,在△ADE和△CDF中,{AE=CF,∠A=∠FCD, AD=CD,∴△ADE≅△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90∘,∴∠CDF+∠EDC=∠EDF=90∘,即DE⊥DF.【考点】等腰直角三角形全等三角形的性质与判定等腰三角形的性质:三线合一【解析】(1)首先可判断△ABC是等腰直角三角形,连接CD,再证明BD=CD,∠DCF=∠A,根据全等三角形的判定易得到△ADE≅△CDF,继而可得出结论.【解答】证明:如图,连接CD,∵AC=BC,∠ACB=90∘,∴△ABC是等腰直角三角形,∠A=∠B=45∘.∵D为AB中点,∴AD=BD,CD平分∠ACB,CD⊥AB,∴∠DCF=45∘,∴AD=BD=CD,在△ADE和△CDF中,{AE=CF,∠A=∠FCD, AD=CD,∴△ADE≅△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90∘,∴∠CDF+∠EDC=∠EDF=90∘,即DE⊥DF.【答案】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:600x =6001.5x+5,化简得600×1.5=600+5×1.5x,解得x=40,∴ 1.5x=60,经检验,x=40是分式方程的解且符合实际意义. 答:甲每天加工60个零件,乙每天加工40个零件.(2)设甲加工了x天,乙加工了y天,由题意得{60x+40y=3000,150x+120y≤7800,由①得y=75−1.5x③,将③代入②得150x+120(75−1.5x)≤7800,解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【考点】一元一次不等式的实际应用分式方程的应用【解析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:600x =6001.5x+5,化简得600×1.5=600+5×1.5x,解得x=40,∴ 1.5x=60,经检验,x=40是分式方程的解且符合实际意义. 答:甲每天加工60个零件,乙每天加工40个零件.(2)设甲加工了x天,乙加工了y天,由题意得{60x+40y=3000,150x+120y≤7800,由①得y=75−1.5x③,将③代入②得150x+120(75−1.5x)≤7800,解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【答案】BE=CE(2)PD=PB.证明:如图,连接PE,∵△ACE,△ADP都是等边三角形,∴AC=AE,AD=AP,∠CAE=∠DAP=60∘,∴∠CAE−∠DAB=∠DAP−∠DAB,∴∠CAD=∠EAP,∴△CAD≅△EAP(SAS),∴∠ACD=∠AEP=90∘,∴PE⊥AB.∵EA=EB,∴PA=PB.∵DP=AP,∴PD=PB.(3)当点D为边CB延长线上任意一点时,同(2)中的方法可证PD=PB.【考点】含30度角的直角三角形等边三角形的判定全等三角形的性质与判定等边三角形的性质与判定线段垂直平分线的性质【解析】(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似.【解答】解:(1)∵∠ACB=90∘,∠B=30∘,∴∠A=60∘.∵CE为AB边上的中线,AB=AE=EB,∴AC=12∴△ACE是等边三角形,∴EC=AE=EB.故答案为:BE=CE.(2)PD=PB.证明:如图,连接PE,∵△ACE,△ADP都是等边三角形,∴AC=AE,AD=AP,∠CAE=∠DAP=60∘,∴∠CAE−∠DAB=∠DAP−∠DAB,∴∠CAD=∠EAP,∴△CAD≅△EAP(SAS),∴∠ACD=∠AEP=90∘,∴PE⊥AB.∵EA=EB,∴PA=PB.∵DP=AP,∴PD=PB.(3)当点D为边CB延长线上任意一点时,同(2)中的方法可证PD=PB.。
江西省赣州市八年级上学期数学期末考试试卷

江西省赣州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·福田模拟) 下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2016·来宾) 下列计算正确的是()A . (﹣x3)2=x5B . (﹣3x2)2=6x4C . (﹣x)﹣2=D . x8÷x4=x23. (2分)计算8x8÷(﹣2x2)的结果是()A . ﹣4x2B . ﹣4x4C . ﹣4x6D . 4x64. (2分)计算÷ 的结果是()A .B .C .D .5. (2分) (2019八下·温江期中) 下列各式由左边到右边的变形中,是因式分解的是A .B .C .D .6. (2分)若4x2+ax+1是一个完全平方式,则a的值为()A . ±1B . ±2C . ±4D . 47. (2分)(2018·通辽) 如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD= AB,连接OE.下列结论:①S▱ABCD=AD•BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE ,其中正确的个数有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2019八上·椒江期中) 一个正多边形的内角和为900°,那么从一点引对角线的条数是()A . 3B . 4C . 5D . 69. (2分) (2019八上·秀洲月考) 如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。
赣州市八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A. 0.25×10-5B. 2.5×10-5C. 2.5×10-6D. 2.5×10-72.下列运算中,正确的是()A. 4a•3a=12aB. a•a2=a3C. (3a2)3=9a6D. (ab2)2=ab43.下列图形中,不是轴对称图形的是()A. B. C. D.4.点P(-1,-3)关于y轴对称的点的坐标是()A. (-1,3)B. (1,3)C. (3,-1)D. (1,-3)5.下列从左到右的运算是因式分解的是()A. 4a2-4a+1=4a(a-1)+1B. (x-y)(x+y)=x2-y2C. x2+y2=(x+y)2-2xyD. (xy)2-1=(xy+1)(xy-1)6.若x2-2xy+y2=(x+y)2+A,则A为()A. 4xyB. -4xyC. 2xyD. -2xy7.如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A. (a+b)2=a2+2ab+b2B. (a-b)2=a2-2ab+b2C. (a+b)(a-b)=a2-b2D. a(a+b)=a2+ab8.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A. AE=ECB. AE=BEC. ∠EBC=∠BACD. ∠EBC=∠ABE二、填空题(本大题共8小题,共24.0分)9.计算:20190=______.10.要使分式有意义,则x的取值范围是______.11.分解因式:ab2-4a=______.12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件______使得△ABC≌△DEF.13.如图,某小区规划在边长为xm的正方形场地上,修建两条宽为ym的甬道(阴影部分),其余部分种草,则阴影部分的面积是______m2.14.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为______.15.若(m+n)2=5,(m-n)2=36,则m2-mn+n2=______.16.已知△ABO关于x轴对称,点A的坐标为(1,﹣2),若在坐标轴上有一个点P,满足△BOP的面积等于2,则点P的坐标为____.三、计算题(本大题共1小题,共6.0分)17.解方程:=0四、解答题(本大题共7小题,共46.0分)18.化简:2ab•3b-12a3b2÷4a219.如图,AB=CD,DE⊥AC,BF⊥AC,点E,F是垂足,AE=CF,求证:(1)△ABF≌△CDE;(2)AB∥CD.20.如图,在正五边形ABCDE中,请仅用无刻度的直尺,分别按下列要求作,(1)在图1中,画出过点A的正五边形的对称轴;(2)在图2中,画出一个以点C为顶点的72°的角.21.先化简,后求值:,其中a=-.22.如图,已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点。
江西省赣州市八年级上学期期末数学试卷

江西省赣州市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A . ( 4 , 3 )B . (-5,4)C . (-1,-2)D . (-2,-1)2. (2分)下列说法正确的是()A . |﹣2|=﹣2B . 0的倒数是0C . 4的平方根是2D . ﹣3的相反数是33. (2分)下列各数中,是无理数的()A . 0B . 2πC .D .4. (2分)判断下列四组x,y的值,是二元一次方程2x﹣y=4的解的是()A .B .C .D .5. (2分) (2016八上·灵石期中) 下列运算中错误的是()A .B .C .D .6. (2分)如图所示,在四边形ABCD中,AB∥CD,AD∥BC,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A . 110°B . 30°C . 50°D . 70°7. (2分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是 6,9,9,8,6,9,9,8,对于这组数据,下列说法不正确的是()A . 中位数是8B . 众数是9C . 平均数是8D . 方差是1.58. (2分)(2017·海南) 如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1 ,再作与△A1B1C1关于x轴对称的△A2B2C2 ,则点A的对应点A2的坐标是()A . (﹣3,2)B . (2,﹣3)C . (1,﹣2)D . (﹣1,2)9. (2分)有下列四个命题:其中正确的个数为()(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是菱形;(3)两条对角线互相垂直的四边形是正方形;(4)两条对角线相等且互相垂直的四边形是正方形.A . 4B . 3C . 2D . 110. (2分)已知点(-4,y1),(2,y2)都在直线y=-2x+2上,则y1、y2的大小关系是()A . y1 >y2B . y1 =y2C . y1 <y2D . 不能比较11. (2分) (2017九下·沂源开学考) 在平行四边形ABCD中,AC=4,BD=6,P是BD上的.任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.如图,设BP=x,EF=y,则能反映y与x之间关系的图象为()A .B .C .D .12. (2分)等腰三角形边长分别为a , b , 2,且a , b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为().A . 9B . 10C . 9或10D . 8或10二、填空题 (共5题;共6分)13. (1分) (2017八下·钦州期末) 如图,正方形ABCD中,∠DAF=25°,AF交对角线BD于点E,连接EC,则∠BCE=________°.14. (2分)点A(m+5,m﹣4)在x轴上,则m=________;若点A在第三象限,则m的取值范围是________.15. (1分) (2017八下·万盛期末) 一次函数y1=kx+b与y2=x+a的图象如图所示,则关于x、y的方程组的解为________.16. (1分) (2015八上·青山期中) 如图,在△ABC中,∠A=60°,BD,CD分别平分∠ABC,∠ACB,M,N,Q分别在DB,DC,BC的延长线上,BE,CE分别平分∠MBC,∠BCN,BF,CF分别平分∠EBC,∠ECQ,则∠F=________.17. (1分)当x=2+ 时,式子x2﹣4x+2017=________.三、解答题 (共7题;共61分)18. (4分)计算:(1) =________,(2)()2=________,(3)﹣9 =________,(4)(2 ﹣)=________.19. (5分) (2018八上·昌图期末) 已知:如图,EG FH,∠1=∠2.求证:∠BEF+∠DFE=180°.20. (10分) (2018九下·游仙模拟) 绵阳某工厂从美国进口A、B两种产品销售,已知每台A种产品进价为3000元,售价为4800元;受中美贸易大战的影响,每台B种产品的进价上涨500元,进口相同数量的B种产品,在中美贸易大战开始之前只需要60万元,中美贸易大战开始之后需要80万元。
江西省赣州市八年级上学期数学期末考试试卷

江西省赣州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,在一座高层的商业大厦中,每层的摊位布局基本相同,高档服装销售摊位可表示为(6,2,3),同一层的手表摊位可表示为()A . (6,2,5)B . (6,4,4)C . (6,3,5)D . (6,4,5)2. (2分)下列图形中,既是轴对称图形又是中心对称图形的有()A . 4个B . 3个C . 2个D . 1个3. (2分)已知a<b,则下列不等式中不正确的是()A . <B . ﹣a+4>﹣b+4C . ﹣4a<﹣4bD . a﹣4<b﹣44. (2分)如图,过点A的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的关系式是()A . y=2x+3B . y=2x-3C . y=x-3D . y= -x+35. (2分)下列说法正确中的是()A . 顶点在圆周上的角称为圆周角B . 相等的圆周角所对的弧相等C . 若三角形一边上的中线等于这边的一半,则这一边必为此三角形外接圆的直径D . 圆周角等于圆心角的一半6. (2分)在一次夏令营活动中,小霞同学从营地点出发,要到距离点m的地去,先沿北偏东方向到达地,然后再沿北偏西方向走了m到达目的地,此时小霞在营地的()A . 北偏东方向上B . 北偏东方向上C . 北偏东方向上D . 北偏西方向上7. (2分) (2018八上·孝感月考) 如图,已知AB=AD,添加一个条件后,仍然不能判定△ABC≌△ADC的是()A . CB=CDB . ∠BAC=∠DACC . ∠BCA=∠DCAD . ∠B=∠D=90°8. (2分)两条平行直线被第三条直线所截,下列命题中正确的是()A . 同位角相等,但内错角不相等B . 同位角不相等,但同旁内角互补C . 内错角相等,且同旁内角不互补D . 同位角相等,且同旁内角互补9. (2分)利用加减消元法解方程组,下列做法正确的是()A . 要消去y,可以将B . 要消去x,可以将C . 要消去y,可以将D . 要消去x,可以将10. (2分)某地电力公司的用电收费标准如图,x(度)表示用户每月的用电量,y(元)表示每月应付的电费,看图可知,当用户一个月的用电量超过50度时,超过部分的收费标准是每度()A . 0.96元B . 0.78元C . 0.60元D . 0.3元二、填空题 (共10题;共10分)11. (1分) (2018八上·裕安期中) 如图,在△ABC中,D、E分别是边AB、AC上一点,将△ABC沿DE折叠,使点A落在边BC上.若∠A=55°,则∠1+∠2+∠3+∠4=________.12. (1分) (2016九上·肇源月考) 若不等式ax|a-1|>2是一元一次不等式,则a=________.13. (1分) (2020八下·新疆月考) 下列命题中,其逆命题成立的是________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2 ,那么这个三角形是直角三角形.14. (1分) (2017七下·南沙期末) 在平面直角坐标系中,以任意两点P(x1 , y1),Q(x2 , y2)为端点的线段的中点坐标为(,).现有A(3,4),B(1,8),C(﹣2,6)三点,点D为线段AB的中点,点C为线段AE的中点,则线段DE的中点坐标为________.15. (1分) (2017八下·日照开学考) 等腰三角形一腰上的高与另一边的夹角为80°,则顶角的度数为________.16. (1分) (2017八上·西湖期中) 如果,则 ________ (填“ ”或“ ”).17. (1分)(2020·绍兴) 如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(片在结合部分不重叠无缝隙),则图2中阴影部分面积为________。
赣州初二期末数学试题及答案

赣州初二期末数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. 2√3C. √(-1)D. √2x答案:A2. 计算(-2)的平方,结果是多少?A. 4B. -4C. 2D. -2答案:A3. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 6D. -6答案:A4. 下列哪个选项是一元一次方程?A. 2x + 3 = 0B. x^2 + 1 = 0C. 2x - 3y = 0D. 3x^2 + 2 = 0答案:A5. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C6. 下列哪个选项是不等式?A. 3x - 5 = 0B. 2x + 3 > 0C. 4x - 6 = 0D. 5x - 2 ≠ 0答案:B7. 计算(-3)+(-2),结果是多少?A. -5B. 1C. -1D. 5答案:A8. 一个数的平方是16,那么这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C9. 计算(-2)×(-3),结果是多少?A. -6B. 6C. -2D. 3答案:B10. 下列哪个选项是一元二次方程?A. 2x + 3 = 0B. x^2 + 1 = 0C. 2x - 3y = 0D. 3x^2 + 2 = 0答案:D二、填空题(每题3分,共30分)1. 一个数的立方根是2,那么这个数是______。
答案:82. 一个数的平方是9,那么这个数是______。
答案:±33. 一个数的倒数是2,那么这个数是______。
4. 如果a = -3,那么-2a的值是______。
答案:65. 一个数的绝对值是4,那么这个数可能是______。
答案:±46. 计算(-4)÷(-2),结果是______。
答案:27. 计算√9,结果是______。
答案:38. 计算2^3,结果是______。
2022-2023学年江西省赣州市于都县八年级(上)期末数学试卷(含解析)

2022-2023学年江西省赣州市于都县八年级(上)期末数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.奥运火炬时隔14年再次在“鸟巢”点燃,北京由此成为世界上首个既举办夏季奥运会又举办冬季奥运会的“双奥之城”,下列各届冬奥会会徽图案中,是轴对称图形的是( )A. B. C. D.2.计算a2⋅a2的结果是( )A. a4B. a3C. a2D. a3.光刻机采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上,是制造芯片的核心装备.ArF准分子激光是光刻机常用光源之一,其波长为0.000000193米,该光源波长用科学记数法表示为( )A. 193×106米B. 193×10−9米C. 1.93×10−7米D. 1.93×10−9米4.若一个三角形的三边长分别为5,8,a,则a的值可能是( )A. 6B. 3C. 2D. 145.如图,OD平分∠AOB,DE⊥AO于点E,DE=5,点F是射线OB上的任意一点,则DF的长度不可能是( )A. 4B. 5C. 6D. 76.如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是( )A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+b)(a−b)=a2−b2D. (ab)2=a2b2二、填空题:本题共6小题,每小题3分,共18分。
7.因式分解:m2+3m=.8.如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是°.9.如图,点A在y轴上,△AOB是等腰三角形,AB=OB,点B关于y轴的对称点的坐标为(−5,3),则点A的坐标为______.10.计算:x−1x−2−1x−2=______11.如图,等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=6,则EP+CP的最小值为12.在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角△ABC,则点C的坐标为______ .三、计算题:本大题共1小题,共6分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省赣州市八年级上学期期末数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分)(2011·湛江) 在下列图形中,既是轴对称图形,又是中心对称图形的是()
A . 直角三角形
B . 正五边形
C . 正方形
D . 等腰梯形
2. (2分) (2017八上·山西月考) 下面各式中正确的是()
A .
B .
C .
D .
3. (2分)在、、、m+ 中,分式共有()
A . 1个
B . 2个
C . 3个
D . 4个
4. (2分)下列各式由左边到右边的变形中,是分解因式的为().
A . a(x+y)=ax+ay
B . x2-4x+4=x(x-4)+4
C . 10x2-5x=5x(2x-1)
D . x2-16+3x=(x+4)(x-4)+3x
5. (2分)以下是解分式方程−3=,去分母后的结果,其中正确的是()
A . 1-x-3=1
B . x-1-3x+6=1
C . 1-x-3x+6=1
D . 1-x-3x+6=-1
6. (2分) (2017八下·临沂开学考) 若△ABC有一个外角是锐角,则△ABC一定是()
A . 钝角三角形
B . 锐角三角形
C . 等边三角形
D . 等腰三角形
7. (2分)如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1 ,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()
A . (0,64)
B . (0,128)
C . (0,256)
D . (0,512)
8. (2分) (2017八下·罗山期中) 如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()
A . 50°
B . 60°
C . 70°
D . 80°
二、填空题 (共6题;共6分)
9. (1分) (2017七下·东城期中) 如图,,,将纸片的一角折叠,使点落在
内,若,则的度数为________.
10. (1分) (2017八下·宝丰期末) 当x=________时,分式的值为0.
11. (1分) (2016七上·老河口期中) 多项式 x|m|﹣(m﹣2)x+3是关于x的二次三项式,则m的值是________.
12. (1分)(2014·温州) 因式分解:a2+3a=________.
13. (1分)如图,把△ABC绕点B逆时针旋转26°得到△EBF,若EF正好经过A点,则∠BAC=1 .
14. (1分) (2016八上·铜山期中) 点P到△ABC三边的距离相等,则点P是________的交点.
三、解答题 (共9题;共75分)
15. (10分)因式分解:
(1)﹣3x3+6x2y﹣3xy2
(2) 25(a+b)2﹣4(a﹣b)2.
16. (5分)计算:
(1)﹣t3•(﹣t)4•(﹣t)5;
(2)(b2n)3(b3)4n÷(b5)n;
(3)tm+1•t+(﹣t)2•tm(m为整数);
17. (10分)
(1)计算:;
(2)先化简,再求值:,其中 .
18. (10分)如下图,已知两点A(–1,3)、B(3,5),点P为x轴上的一个动点.
(1)
求点A关于x轴的对称点A'的坐标;
(2)
P点在x轴上移动,求作PA+PB最小时点P的位置.
19. (5分) (2019八上·朝阳期末) 先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a=,b=﹣2.
20. (5分) (2016八上·宁城期末) 列方程解应用题:八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,走了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.
21. (10分) (2017八下·建昌期末) 如图1,四边形ABCD为菱形,E为对角线AC上的一个动点,连接DE 并延长交射线AB于点F,连接BE.
(1)求证:∠F=∠EBC;
(2)若∠DAB=90°,当△BEF为等腰三角形时,求∠F的度数(如图2).
22. (10分) (2016八上·余杭期中) 如图,点在的外部,点边上,交于点,若,,.
(1)求证:;
(2)若,判断的形状,并说明理由.
23. (10分) (2019八下·温岭期末) 小聪与小明在一张矩形台球桌ABCD边打台球,该球桌长AB=4m,宽AD=2m,点O、E分别为AB、CD的中点,以AB、OE所在的直线建立平面直角坐标系。
(1)如图1,M为BC上一点;
①小明要将一球从点M击出射向边AB,经反弹落入D袋,请你画出AB上的反弹点F的位置;
②若将一球从点M(2,1.2)击出射向边AB上点F(0.5,0),问该球反弹后能否撞到位于(-0.5,0.8)位置的另一球?请说明理由
(2)如图2,在球桌上放置两个挡板(厚度不计)挡板MQ的端点M在AD中点上且MQ⊥AD,MQ=2m,挡板EH的端点H在边BC上滑动,且挡板EH经过DC的中点E;
①小聪把球从B点击出,后经挡板EH反弹后落入D袋,当H是BC中点时,试证明:DN=BN;
②如图3,小明把球从B点击出,依次经挡板EH和挡板MQ反弹一次后落入D袋,已知∠EHC=75°,请你直接写出球的运动路径BN+NP+PD的长。
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共6题;共6分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题 (共9题;共75分)
15-1、
15-2、
16-1、17-1、
17-2、18-1、
18-2、19-1、20-1、
21-1、
21-2、
22-1、22-2、
23-1、
23-2、。