光无源器件介绍
光无源器件研究报告

光无源器件研究报告近年来,随着通信技术的快速发展,人们对光通信技术的研究和应用越来越广泛。
而光无源器件作为光通信系统中重要的组成部分,对于提高光通信的性能和稳定性具有重要的意义。
本文将介绍光无源器件的研究现状和发展趋势。
一、光无源器件的定义和分类光无源器件是指无需外部能量输入即可实现光信号处理的元器件。
它不需要任何电、磁或化学能量的输入,只需要利用光本身的特性完成光信号的处理。
光无源器件广泛应用于光通信、光存储、光计算等领域。
根据不同的工作原理,光无源器件可以分为几种类型,如:1. 光纤光纤是一种将光信号传输到目的地的无源设备。
光纤具有低损耗、高速率和抗电磁干扰等特点,因此它广泛应用于光通信系统中。
一般来讲,光纤可分为单模光纤和多模光纤两种。
其中,单模光纤适合远距离传输,而多模光纤适合短距离传输。
2. 光栅光栅是一种将光信号进行处理的器件。
它通常由一系列的反射棱镜组成,可以用来扩展、稳定和调制光信号。
光栅广泛应用于激光系统、治疗仪器和光谱仪等领域。
3. 光衰减器光衰减器是一种可以调节光的强度的器件。
它可用来控制光信号的输出功率,从而保证通信系统的正常运行。
光衰减器通常由气体、固体材料或半导体材料构成。
4. 光开关光开关是一种可以控制光线的传输路径的器件。
它通过调节光的传输路径来进行光信号的切换和路由。
光开关广泛应用于网络通信、光计算和光传感器等领域。
近年来,随着通信技术的快速发展,人们对光无源器件的研究越来越深入。
目前,研究人员主要关注以下几个方面:1. 新型光无源器件的研发为了提高光通信系统的性能和稳定性,研究人员一直在努力研发新型的光无源器件。
这些新型器件具有更高的灵敏度、更低的损耗和更广泛的应用范围,并且可以适应不同的光通信需求。
除了研发新型器件之外,研究人员还在努力优化现有的光无源器件。
通过改进设备的结构和材料,研究人员可以提高器件的性能和工作效率,并提高器件的可靠性和稳定性。
随着通信设备越来越小、越来越便携,研究人员也在努力实现光无源器件的集成化。
光无源器件介绍范文

光无源器件介绍范文光无源器件是指无需外界能源输入即可以产生、控制、处理或传输光信号的器件。
它们在光通信、光传感、光储存、激光装置等领域具有重要应用价值。
本文将详细介绍几种常见的光无源器件,包括光纤、光栅、偏振器件、光耦合器件和光探测器等。
首先,光纤是一种常见的光无源传输介质。
它具有优异的光学特性,可以实现长距离、高速、低损耗的光信号传输。
光纤通信系统中的核心部件就是光纤。
光纤根据其结构可以分为多模光纤和单模光纤。
多模光纤通常用于短距离通信,而单模光纤适用于长距离通信。
光纤的制作工艺和材料技术的不断进步使得光纤通信系统性能不断提升。
其次,光栅是另一种常见的光无源器件。
光栅是在光介质中周期性变化的折射率结构,可以对入射光进行衍射和反射。
光栅可以用于光谱分析、光信号处理和光波波长选择等应用。
根据光栅的结构可以分为吸收光栅和反射光栅。
吸收光栅通过调整折射率分布来实现频率选择,反射光栅则通过反射光波形成波束宽度调制。
光栅可以实现光信号的分光、滤波和耦合等功能。
再次,偏振器件是用于控制和调整光波偏振状态的器件。
偏振器件根据其工作原理可以分为吸收式偏振器、分束偏振器和光学偏振调制器。
吸收式偏振器通过吸收非期望偏振分量来实现偏振分离。
分束偏振器通过折射率分布的改变实现光波的分离。
光学偏振调制器则通过改变材料的光学特性或施加电场来调制光的偏振状态。
其次,光耦合器件用于实现不同光波的耦合和分离。
光耦合器按照其结构和工作原理可分为分离型光耦合器和集成型光耦合器。
分离型光耦合器通过光波的反射和折射实现光波的耦合。
集成型光耦合器则通过光导波结构的耦合来实现不同波长光波的耦合和分离。
光耦合器为光通信和光传感等系统提供了重要的互连和耦合功能。
最后,光探测器是一种用于接收光信号并转换为电信号的器件。
根据工作原理,光探测器可分为光电二极管、光电导探测器和光电子倍增器等。
光电二极管是最常见的光探测器,它利用内建电场将吸收的光电子转化为电流。
光无源器件

光无源器件—光纤活动连接器光无源器件是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。
具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等。
光无源器件主要有光纤活动连接器、光耦合器、光衰减器、光隔离器、波分复用/解复用器、光开关等。
这类器件通过消耗光信号的能量来实现光路连接、控制光的传输方向、控制光功率的分配、实现器件与器件之间、器件与光纤之间的光耦合、合波及分波、光路转换等功能。
其中,光纤活动连接器是应用最广泛的基础元件之一。
随着制造技术和加工精度的提高,目前广泛应用的光纤活动链接器的通信损耗已降到0.1dB,通过改变插针端面的几何形状,回波损耗也提高到70dB以上。
光纤活动连接器,俗称活接头,国际电信联盟(ITU)建议将其定义为“用以稳定地,但并不是永久地连接两根或多根光纤的无源组件”(CCITT第VI研究组1992年3月于日内瓦通过)。
是用于光纤与光纤之间进行可拆卸(活动)连接的器件.它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小。
光纤活动连接器是实现光纤之间活动连接的无源光器件,它还有将光纤与有源器件、光纤与其它无源器件、光纤与系统和仪表进行连接的功能。
活动连接器伴随着光通信的发展而发展,现在已形成门类齐全、品种繁多的系统产品。
光纤活动连接器根据传输的媒介不同分为单模光纤活动连接器和多模光纤活动连接器;按结构的不同可分为FC、SC、ST、MU、LC等各种形式;按连接器的端面形状可分为FC、UPC和APC;按光纤芯数可分为单芯、多芯型光纤活动连接器。
光纤活动连接器种类虽然很多,但现在使用最多的是非调心型对接耦合式活动连接器,如平面对接模式(FC型)、直接接触模式(PC型)和矩形模式(SC型)活动连接器等。
光无源器件的技术分析

光无源器件的技术分析光无源器件是指在光通信和光网络中,不需要外部能量输入就能起作用的光学器件,例如光纤、分光器和波长分复用器等。
这些器件在光通信和光网络中起着至关重要的作用,它们的性能直接影响到整个系统的性能和稳定性。
本文将对光无源器件的技术进行分析,探讨其应用领域、性能特点和发展趋势。
一、光无源器件的应用领域光无源器件广泛应用于光通信和光网络领域,包括光纤通信系统、光纤传感系统、光纤传输系统、光纤传感测量系统等。
在光纤通信系统中,光纤作为光信号的传输介质,承担着传输和接收光信号的任务;而分光器和波长分复用器等器件则用于对光信号进行分配、合并和波长分复用。
在光纤传感系统中,光纤传感器借助于光无源器件对光信号进行传输和检测,实现对环境参数的实时监测。
二、光无源器件的性能特点1. 低损耗:光无源器件在光信号的传输和处理过程中,尽可能地减少能量损耗,保证光信号的传输稳定和可靠。
2. 增益均匀:光无源器件对光信号进行分配、合并和波长分复用时,能够保持光信号的增益均匀,保证传输系统的性能稳定。
3. 高灵敏度:光无源器件在提取和传输光信号时,对光信号的灵敏度高,能够快速、准确地传输光信号。
4. 高波长选择性:光无源器件对不同波长的光信号具有高度的选择性,能够对不同波长的光信号进行准确的分配和合并。
5. 高可靠性:光无源器件的制作工艺和材料选择经过严格的筛选和测试,保证其在光通信和光网络系统中具有高可靠性和长寿命。
三、光无源器件的发展趋势1. 高性能化:随着光通信和光网络技术的不断发展,光无源器件的要求也越来越高,未来光无源器件将不断追求更高的性能,包括更低的损耗、更高的增益均匀性、更高的波长选择性和更高的可靠性。
2. 多功能化:未来光无源器件将趋向于多功能化,能够实现多种功能的器件,例如光纤传输系统中的光纤分光合并器将具有分光、合并和波长分复用的功能。
3. 集成化:随着微纳光电子器件和光学集成技术的不断发展,未来光无源器件将趋向于集成化,实现多种功能的集成器件。
光无源器件的原理及应用

光无源器件的原理及应用概述光无源器件是指在光通信系统中不需要能量供给而能够实现光信号的传输和处理的器件。
这些器件主要包括光纤、光耦合器、光分路器和光合器等。
本文将介绍光无源器件的原理和应用。
光纤光纤是光通信系统的核心组成部分。
它通过将光信号以光的全内反射方式在高纯度的玻璃/塑料纤维中传输。
光纤有着很低的损耗和高的带宽能力,也是目前最主要的传输媒介之一。
光纤的原理光纤的工作原理基于光的光束泄漏现象,即当光束从一种介质射入另一种折射率较低的介质中时,光束会不断发生反射并沿着光纤内部进行传输。
光纤的核心由折射率较高的材料组成,以便在传输过程中最小化信号的损耗。
光纤的应用光纤广泛应用于长距离通信和局域网等领域。
其高带宽和低损耗的特点使得它成为传输大量数据的理想选择。
此外,光纤还应用于医疗设备、光纤传感器和光纤显示等领域。
光耦合器光耦合器是一种用于将光信号从一个光纤耦合到另一个光纤的器件。
它广泛应用于光通信系统中,可以实现信号的分配、处理和路由等功能。
光耦合器的原理光耦合器的原理基于波导模式之间的耦合。
当光信号从一个波导模式传输到另一个波导模式时,通过适当设计导波结构,可以实现高效的能量转移。
光耦合器的设计可以根据具体的应用需求进行调整,以实现不同的功能。
光耦合器的应用光耦合器广泛应用于光网络中的信号分配和路由。
在光通信系统中,光耦合器可以用于将信号从主干光纤耦合到分支光纤或从分支光纤耦合到接收器等。
此外,光耦合器还可以应用于光传感器和光存储等领域。
光分路器光分路器是一种可以将入射光信号分为两个或多个输出通道的器件。
它常用于光网络中的信号分配和选择。
光分路器的原理光分路器的原理基于多模干涉。
当光信号通过光分路器时,不同波长的光信号会按照特定的光学路径进行干涉,从而实现光的分路。
根据光分路器的设计,可以实现不同的分路比例和带宽。
光分路器的应用光分路器广泛应用于光通信系统中的信号分配和选择。
光分路器可以将光信号分为不同的通道,实现多路复用和分布式传输。
光通信:第04章常用光无源器

光隔离器的应用场景
光隔离器是一种用于防止光信 号反方向传输的无源器件,主 要用于光纤放大器和激光雷达 等光通信系统。
在光纤放大器中,光隔离器可 以防止反向传输的光信号对放 大器的工作产生干扰,提高系 统的稳定性。
在激光雷达中,光隔离器可以 防止反向传输的光信号对激光 源的工作产生干扰,提高系统 的测量精度。
光通信第04章常用光无源器
contents
目录
• 光无源器件概述 • 常用光无源器件 • 光无源器件的工作原理 • 光无源器件的应用场景 • 光无源器件的挑战与解决方案
01 光无源器件概述
定义与分类
定义
光无源器件是指那些在光通信网络中 ,不需要外部电源直接驱动,只起到 传输、控制或变换光信号作用的器件 。
光衰减器的工作原理
光衰减器是一种用于降低光信号 强度的器件,它可以通过吸收或 散射等方式将光信号能量损耗掉
一部分。
光衰减器通常由光学玻璃、陶瓷 等材料制成,其结构可分为均匀
损耗和渐变损耗两种类型。
光衰减器在光通信系统中主要用 于调整光信号的功率、测试光路 的损耗以及保护光接收器件等。
光分路器的工作原理
光环形器的应用场景
光环形器是一种用于实现光信 号环形传输的无源器件,主要 用于光纤传感和激光雷达等光
通信系统。
在光纤传感中,光环形器可 以将多个传感光纤环形连接 在一起,实现多点同时测量
和数据采集。
在激光雷达中,光环形器可以 将多路激光信号环形连接在一 起,实现多目标同时测量的功
能。
05 光无源器件的挑战与解决 方案
应用
WDM系统等领域。
03 光无源器件的工作原理
光纤连接器的工作原理
光纤连接器是用于连接两根光纤的器件,通过精确对准光纤的纤芯和包层,实现光 信号的传输。
光无源器件测试方法

光无源器件测试方法光无源器件是指在光通信系统中,不需要外部能源供应而能够实现光信号的传输和控制的器件。
典型的光无源器件包括光纤、光栅、光分路器、光耦合器等。
为了确保光无源器件在正常工作条件下能够稳定可靠地传输光信号,需要进行严格的测试和验证。
本文将从光纤、光栅、光分路器和光耦合器等不同类型的光无源器件入手,介绍其测试方法。
1.光纤测试方法光纤是光通信系统中最基础、最重要的光无源器件。
常用的光纤测试方法包括:(1)衰减测试:通过测试光信号从光纤中的衰减情况,来评估光纤功率损失情况。
(2)反射测试:测试光纤接口的反射损耗,确保光信号不会因为接口反射而引起干扰或损失。
(3)纤芯直径测试:测试光纤纤芯直径的尺寸,以确保光信号能够正常传输。
2.光栅测试方法光栅是一种具有周期性折射率变化的光无源器件,常用于光波的衍射和光谱分析等应用。
光栅的测试方法包括:(1)频率响应测试:测试光栅的响应频率范围和频率分辨率,以评估其衍射性能。
(2)衍射效率测试:测试光栅的衍射效率,即测试输入光功率和输出光功率之间的关系。
(3)波长选择测试:测试光栅的波长选择性能,即测试不同波长的光信号在光栅中的传输效果和衍射效率。
3.光分路器测试方法光分路器是一种能够将入射光信号分成两个或多个输出的光无源器件。
光分路器的测试方法包括:(1)分光比测试:通过测试输入光功率和输出光功率之间的关系,来评估光分路器的分光比性能。
(2)均匀性测试:测试光分路器的不同输出通道之间的功率均匀性,以确保光信号在分路器中能够平衡地分布。
4.光耦合器测试方法光耦合器是一种能够将两个或多个光纤的光信号耦合在一起的光无源器件。
光耦合器的测试方法包括:(1)插损测试:通过测试耦合器输入光功率和输出光功率之间的差异,来评估光耦合器的插损性能。
(2)均匀性测试:测试耦合器不同输出通道之间的功率均匀性,以确保光信号在耦合器中能够均匀地分布。
综上所述,光无源器件的测试方法主要包括衰减测试、反射测试、频率响应测试、衍射效率测试、波长选择测试、分光比测试、均匀性测试和插损测试等。
光无源器件

光调制器
接电流
马吕斯定律:I=I0· cos2a
光调制器
(2 )电光调制器
电光晶体
θ
θ
电光调制的原理基于偏振光的双折射效应。(通过 电光晶体的两个垂直分量的相角与调制电压有关)
要点总结 1、光器件与电器件的比较 电源 光方向耦合器
电探头
电阻 电混频器 电插头 二极管 分支器(三通) MODEL
T3 T4
T2
T1 T2 T3 T4
光开关
二、光开关的类型 (1)机械式光开关 ★移动光纤式 原理 ★移动棱镜式
光开关
移动光纤式:
套管
方空玻璃套筒
光 纤2
光纤1
光纤3 玻璃套筒 光纤2
光纤1 光纤3
光开关
移动棱镜式:
棱镜
自聚焦透镜
光开关
新型的微光机电系统光开关 微光机电系统(MOEMS)光开关微机电系统(MEMS) 技术与传统的光技术的结合
光源 尾纤 光跳线 光中继
光耦合器
光测试仪器
光检测器
二、光纤连接器的典型类型及工作原理
1、平面对接型光纤连接器 (FC型—face connect)
结构:
粘合剂 插针体 套筒 插针体
固定盘
光纤
光纤
光连接器
FC 型光纤连接器
使用方法: 将带有接收光纤和发射光纤的插针体分别插入 套筒中,将螺旋拧紧,就实现了光纤的耦合。
1
2
3
要点总结 9、 内调制和外调制技术, 为什么要采用 外调制技术。磁光调制与电光调制的原理。 内调制技术:直接用电信号驱动光信号。
外调制技术:信号源加在外调制器上,调制直流光信号, 克服了内调制产生的啁啾现象。 磁光调制的原理基于法拉第效应。 电光调制的原理基于双折射效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、Polarization-Dependent Free-space Optical Isolator
空间型偏振相关隔离器,简称PDFI。其工作原理是利用了磁光晶体的法拉第效 应,具体结构是两个线偏振器中加一个法拉第旋转器而成。 微型空间型偏振相关隔离器,简称MOFI,是PDFI的微型化,原理与其相同。
Title
Optical Passive Devices
光无源器件
概述
简介
• 是一种光学元器件 • 工艺原理遵循光学的基本原理,即光线理论 以及电磁波理论 • 光通信设备的重要组成部分 • 工艺涉及多种加工工艺,特别复杂
概述 光无源器件主要分为以下几种
1. 2. 3. 4. 5. 6. 光纤准直器(Fiber Collimators ) 光纤连接器(Connector) 光耦合器件(Coupler) 光衰减器(Attenuator) 光隔离器(Isolator) 光波分复用器(WDM)
4、方向性(Directivity):
输入侧非注入光一端的输出光功率与全部注入功率的比较值 5、均匀性(Uniformity): 在器件工作带宽范围内,各输出端口输出光功率的最大变化值 6、偏振相关损耗(Polarization Dependent Loss) 当传输光信号偏振态发生360度变化,器件各端口输出光功率最大 变化量 7、隔离度(Isolation)
2、固定连接器:主要为光纤熔接(Fiber Fusing Splicing )
连接器(Connector) 基本制造类型
序号 按 ferrule插针分类 1 2 3 4 5 6 ø2.5mm陶瓷 ø1.25mm陶瓷 ø2.0mm陶瓷 ø3.17 mm陶瓷 方型塑料插芯 双锥插芯 SC LC D4 SMA905 MT (老式连接器) SMA906 MT-RJ MPX MPT FC MU ST 类型 ESCON E2000 BSC2 DIN
连接器(Connector)
部分连接器图例
SC/PC
SC/APC
连接器(Connector)
FC/PC
FC/APC
连接器(Connector)
LC/PC
LC/APC
连接器(Con(Connector)
ST/PC
连接器(Connector)
E2000/PC
可使两准直器之间保持较长的距离,可以插入光学元件以实现 器件性能。如下图所示;
光纤准直器(Collimator) 原理示意图
束腰半径小 发散角大 近高斯光束 腰斑较大 发散角小
Fiber Pigtail 光纤尾纤
Grin Lens Glass Sleeve (1/4透镜) 玻璃套管
折射率径向变 化示意图
光纤耦合器件某一光路对其他光路中光信号的隔离能力
光衰减器(Attenuator)
4. 光衰减器(Attenuator)
光衰减器(Attenuator)
光衰减器的作用:
光衰减器是重要的光学无缘器件,常用于在系统中吸收或反射 掉光功率余量、评估系统的损耗以及各类测试中。
光衰减器可以按照用户的要求将光信号进行预期的衰减,类型 很多,不同类型衰减器分别采用不同的工作原理。
连接器(Connector) 种类
1、活动连接器: a、连接器插头(Plug Connector)
使光纤(缆)在转换器或变换器中完成插拔功能的器件
b、转换器(Adaptor) 把光纤(缆)插头连接在一起,从而实现光纤接通的器件 c、跳线(Jumper Connector ) 一根光纤(缆)的两端都装上插头 d、变换器(Converter) 使某种型号的插头换成另一种型号插头的器件 e、裸光纤转换器(Bare Fiber Adaptor ) 使裸光纤与光源、探测器、各类光仪表连接的器件
E2000/APC
连接器(Connector)
F3000/PC
Note: SFF Connector: Small Form Factor (1.25mm ferrule OD).
F3000/APC
连接器(Connector)
插针套筒式连接器示意图
插针 插针B
插针A
光纤
连接器(Connector)
Epoxy环氧胶
Silicon Rubber硅胶
V-shape Quartz Tube V型石英基板
光耦合器(Coupler)
主要性能技术指标
1、插入损耗 2、附加损耗(Excess Loss ): 全部输出端口功率总和相对于全部输入功 率总和的减少值 3、分光比(Coupling Ratio): 耦合器各输出端口的输出功率的比值
光衰减器(Attenuator)
光衰减器的种类
横向位移型 位移型光衰减器 纵向位移型
光衰减器
直接镀膜型光衰减器(吸收或反射膜) 衰减片型光衰减器 液晶型光衰减器
光衰减器(Attenuator)
MEMS衰减器的原理
正视图
Double Core Tube 双光纤毛细管 Epoxy 632胶 Vane 折光叶片 Coating 镀反射模
LC/PC连接器组装结构
组装前
组装后
连接器(Connector)
主要性能技术指标 1、插入损耗(Insertion Loss)
2、回波损耗(Return Loss)
3、重复损耗:多次插拔的损耗 4、互换损耗:连接器部件互换时损耗
光耦合器(Coupler)
3. 光耦合器(Coupler)
光耦合器(Coupler)
连接器(Connector) 各种制造标准
类型 厂商 FC&SC NTT ST LC MU D4 DIN&E2000 BSC2 Diamond Molex MPX MT-RJ VF-45
AT&T Lucent NTT NEC
AMP AMP&Stratos Siemeas
连接器(Connector)
1. 2. 3. 4. 5. Wavelength(波长) = 1520 ~ 1580 nm Insertion Loss(插入损耗) < 0.15 dB Return Loss(回波损耗) > 65 dB Tensile Load (拉力)> 5 N Working Distance(工作距离): 10 mm
光纤结构示意图
Coating包胶层
Cladding涂覆层 Core纤芯
光耦合器(Coupler)
光线的传播
1. Meridional Ray子午光线的传播(总与光纤轴相交)
Cladding
Cladding
光耦合器(Coupler)
光线的传播
2. Skew Ray斜光线的传播(射入角大于子午线,不与光纤轴相交)
7.
8. 9.
偏振光合波器(PBC)
光开关(Switch) 光环形器(Circulator)
概述 PPT内容介绍
• 各种无源器件的基本原理
• 各种无源器件的种类 •各种无源器件的性能技术指标
光纤准直器(Collimator)
1. 光纤准直器(Fiber Collimator)
光纤准直器(Collimator) 原理与作用
耦合器件的定义以及种类
光耦合器是重要的无源器件,可是传输中的光信号在特殊结构的耦 合区发生耦合,然后进行再分配。
种类从功能上分光功率(Splitter)和光波长分配耦合器(WDM Coupler);从端口形式可分为X形、Y形、星形以及树形耦合器; 从工作带宽分窄带耦合器、单工作窗口宽带耦合器、双工作窗口的 宽带耦合器;从传导光模式分多模耦合器、单模耦合器。 熔融拉锥型全光纤耦合器应为其良好的综合优势成为现在制作耦合 器的主要方法。JDSU主要制造此类Coupler,为本章节专讲内容。
连接器(Connector)
2. 连接器(Connector)
连接器(Connector)
基本原理
光纤连接器的基本原理是采用某种机械和光学机 构,是两根光纤的纤心对准,保证90%以上的光 可以通过。 光纤连接器是光学元器件中的基础元件,除了实 现光纤之间的连接外,它还具有将光纤光缆、有 源器件、其他无源器件、系统与仪表实现连接的 功能。
光耦合器(Coupler)
熔融拉锥型全光纤耦合器的优势
1、极低的附加损耗:标准X型可达到0.05dB以下;
2、方向性好:一般超过60dB; 3、良好的环境稳定性:例如在-40度-85度范围内可 保持稳定的工作特性; 4、控制方法简单、灵活;
5、成本低廉:原料为一般光纤,自动化程度高,成品
率高。
光耦合器(Coupler)
插针端面
PC:
Non-angled Physical Contact connector 无角度接触连接器
APC: Angled Physical Contact connector
有角度接触连接器
这里端面一般为球面,球面增加回损。比较两种连接器, APC斜球端面连接器可以在接触时产生更大的回波损耗, 其数值可以达到50-70dB,而一般的PC端面连接器回损约 为30-40dB,只是由于角度位置的要求,APC连接器制作 工艺会稍微复杂。
光耦合器(Coupler)
耦合机理:(单模光纤耦合器)
耦合即是入射光功率在熔融拉锥区域进行功率再分配,一部分通过 “直通臂”继续传输,另一部分由“耦合臂”传到另一光路。 基本原理是:当光线输入进入熔锥区输入端时,由于纤芯的不断变 细,入射角度也不断变大,当超过全反射的角度临界点时,会有部 分的光功率会逸出“输入臂”熔锥区的光纤包层,这时光功率是以 包层作为芯,纤外介质(空气)作为新的复合波导中传播的;在输 出端,随着纤芯变粗,入射角度逐渐变小,光功率被两个纤芯以特 定的比率捕获。
3、Attenuation range :衰减范围