2017年春季新版北师大版八年级数学下学期1.1、等腰三角形教案6

合集下载

北师大版八年级数学(下册)1.1.2等腰三角形 教案设计

北师大版八年级数学(下册)1.1.2等腰三角形 教案设计
提请学生思考,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思考的基础上,研究课本“议一议”:
在课本图1—4的等腰三角形ABC中,(1)如果∠ABD= ∠ABC,∠ACE= ∠ACB呢?由此,你能得到一个什么结论?
(2)如果AD= AC,AE= AB,那么BD=CE吗?如果AD= AC,AE= AB呢?由此你得到什么结论?
又∵∠3=∠4.
在△ABC和△ACE中,
∠3=∠4,AB=AC,∠A=∠A.
∴△ABD≌△ACE(ASA).
∴BD=CE(全等三角形的对应边相等).
在证明过程中,学生思路一般还较为清楚,但毕竟严格证明表述经验尚显不足,因此,教学中教师应注意对证明规范提出一定的要求,因此,注意请学生板书其中部分证明过程,借助课件展示部分证明过程;可能部分学生还有一些困难,注意对有困难的学生给予帮助和指导。
教学环节与步骤
教学内容/教师活动/学生活动
二次备课
第四环节:拓展延伸、探索等边三角形性质;
在△ABC中,AB=AC,如果AD= AC,AE= AB,那么BD=CE;如果AD= AC,AE= AB,那么BD=CE.由此我们得到了一个更一般的结论:在△ABC中,AB=AC,AD= AC,AE= AB,那么BD=CE.证明如下:
证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).
又∵∠A+∠B+∠C=180°(三角形内角定理),
∴∠A=∠B=∠C=60°.
课堂练习
课本P6随堂练习第1、2小题在书上完成
课堂小结
通过这节课的学习,同学们学到了什么知识?有什么样的收获和体会?
3.在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉;

北师大版八年级数学下第一章1.1等腰三角形第一课时教学设计

北师大版八年级数学下第一章1.1等腰三角形第一课时教学设计
(三)学生小组讨论
1.分组讨论等腰三角形的性质及应用
我会将学生分成若干小组,让他们讨论等腰三角形的性质在实际问题中的应用。例如,如何利用等腰三角形的性质求解底边长度、底角大小等。
2.分组探讨等腰三角形的判定定理
各小组学生还需探讨等腰三角形的判定定理,并尝试运用定理解决实际问题。在此过程中,我会巡回指导,解答学生的疑问。
-对于作业中的共性问题,将在课堂上进行集中讲解,确保学生理解到位。
-表现优秀的作业将在课堂上展示,以激发学生的学习积极性。
2.学会使用等腰三角形的判定定理,判断一个三角形是否为等腰三角形。
-学生能够理解并掌握“两边相等的三角形是等腰三角形”这一判定定理,并能够运用到实际问题的解决中。
3.掌握等腰三角形的周长和面积计算方法,能够解决相关问题。
-学生能够根据等腰三角形的性质,运用周长和面积公式进行计算,解决实际应用问题。
(二)过程与方法
2.培养学生合作交流的意识,增强团队协作能力。
-教学过程中,教师鼓励学生进行小组合作、讨论交流,培养学生合作解决问题的能力。
3.培养学生勇于探索、积极思考的精神,树立正确的价值观。
-教师引导学生面对问题,勇于尝试,不怕困难,培养积极思考、解决问题的精神。
-学生在学习过程中,认识到数学知识在解决实际问题中的价值,树立正确的价值观。
3.提高学生的应用意识,将等腰三角形的知识与实际生活相结合。
-重难点:将理论知识应用于解决生活中的问题。
-设想:设计真实的情境问题,如建筑物的平面设计、艺术作品的对称性分析等,让学生在解决问题的过程中体验数学的价值。
(二)教学设想
1.采用探究式学习法,激发学生的求知欲和主动性。
-设想:通过引入富有挑战性的问题,如“如何确定等腰三角形的高线和中线?”激发学生的好奇心,引导学生通过实验、观察、推理等手段自主探索答案。

北师大版数学八年级下册1.1.1全等三角形和等腰三角形的性质课件(共39张)

北师大版数学八年级下册1.1.1全等三角形和等腰三角形的性质课件(共39张)

几何语言:
∵△ABC ≌△DEF ∴∠A =∠D,∠B =∠E, ∠C =∠F, AB = DE,AC = DF, BC = EF
A BC
D EF
例1 如图,点B,D在线段AE上,AD=BE,
AC∥EF,∠C=∠F.求证:BC=DF. C
A
D
E
B
F
证明:∵AD=BE,
∴AD-BD=BE-BD,即AB=ED.
第一章 三角形的证明 1 等腰三角形
第1课时 全等三角形和等腰三角形的性质
北师版八年级数学下册
学习目标
1、巩固全等三角形的判定及性质 2、了解并掌握等腰三角形的性质定理及推论
回顾复习
我们已经学了哪些判定三角形全等的方法?
边边边(SSS):三边分别相等的两个三角形全等.
边角边(SAS):两边及其夹角分别相等的两个三 角形全等.
如图,BC=CD=DE=AE,∠A=20°. (1)求∠DEC的度数; (2)求∠B的度数.
解:
练习
知识点三:等腰三角形性质定理的推论
想一想
A
在图中,线段 AD 还具有怎
样的性质?为什么?由此你能得
到什么结论?
B
C
D
推论 等腰三角形顶角的平分线、底边 上的中线及底边上的高线互相重合.
可分解成下面三个方面来理解:
角边角(ASA):两角及其夹边分别相等的两个三 角形全等.
新课导入
建筑工人在建造房子时,为了确定房梁是否水平,常用 这样的方法:把一块等腰三角形板放在梁上,从顶角顶点系 一重物,如果系重物的绳子刚好经过三角形的底边中点,则 认为房梁就是水平的。你知道为什么吗?
新课探究
知识点一:全等,∴∠A=∠E.

北师大版数学八年级下册1.1.1《全等三角形和等腰三角形的性质》说课稿

北师大版数学八年级下册1.1.1《全等三角形和等腰三角形的性质》说课稿

北师大版数学八年级下册1.1.1《全等三角形和等腰三角形的性质》说课稿一. 教材分析北师大版数学八年级下册1.1.1《全等三角形和等腰三角形的性质》这一节主要介绍了全等三角形的性质和等腰三角形的性质。

全等三角形是指在平面上有两个三角形,它们的对应边和对应角都相等。

等腰三角形是指在平面上有两个边相等的三角形。

本节课的内容是学生在学习几何初步知识的基础上进行的,需要学生具备一定的观察和思考能力。

教材通过引入全等三角形的概念,引导学生探究全等三角形的性质,从而得出全等三角形的判定定理。

然后,教材引入等腰三角形的概念,引导学生探究等腰三角形的性质,从而得出等腰三角形的性质定理。

二. 学情分析学生在学习这一节内容时,已经具备了一定的几何知识基础,对三角形的基本概念和性质有所了解。

但是,学生可能对全等三角形和等腰三角形的性质的理解还不够深入,需要通过实例和练习来进一步巩固。

三. 说教学目标本节课的教学目标是让学生掌握全等三角形的性质和等腰三角形的性质,并能够运用这些性质解决实际问题。

具体来说,学生需要能够判断两个三角形是否全等,能够说明全等三角形的性质;学生需要能够判断一个三角形是否是等腰三角形,能够说明等腰三角形的性质。

四. 说教学重难点本节课的重难点是全等三角形的性质和等腰三角形的性质的推导和理解。

学生需要通过观察和思考,理解全等三角形的性质和等腰三角形的性质,并能够运用这些性质解决实际问题。

五. 说教学方法与手段本节课的教学方法主要是讲授法和探究法。

教师通过讲解全等三角形和等腰三角形的性质,引导学生思考和探究,帮助学生理解和掌握这些性质。

同时,教师还可以运用多媒体手段,如PPT等,展示全等三角形和等腰三角形的图形,帮助学生更好地观察和理解。

六. 说教学过程1.导入:教师通过引入全等三角形和等腰三角形的概念,激发学生的兴趣和好奇心。

2.讲解:教师讲解全等三角形的性质和等腰三角形的性质,引导学生思考和探究。

北师大版八年级数学下册1.1等腰三角形(第2课时)优秀教学案例

北师大版八年级数学下册1.1等腰三角形(第2课时)优秀教学案例
2.通过问题的提出和解决,引导学生体会数学的逻辑性和推理过程,培养学生的逻辑思维能力。
3.鼓励学生提出自己的问题,培养学生的提问能力和批判性思维。
(三)小组合作
1.将学生分成小组,每组成员共同讨论和探索等腰三角形的性质。
2.设计具有合作性的任务,如共同完成一个等腰三角形的拼图游戏,或者一起解决一个实际问题。
4.教师通过观察学生的学习行为和表现,了解学生的学习状况,及时调整教学策略,提高教学效果。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些生活中常见的等腰三角形形状的物体,如金字塔、梯子等,引发学生对等腰三角形的关注。
2.提出与等腰三角形相关的问题,如“你们观察过这些物体的形状吗?它们有什么特点?”等,激发学生的思考和探索兴趣。
2.问题导向的教学策略:通过设计具有挑战性和启发性的问题,引导学生主动思考和探索,培养了学生的逻辑思维能力和问题解决能力。同时,教师还鼓励学生提出自己的问题,培养了学生的提问能力和批判性思维。
3.小组合作的学习方式:通过小组合作,学生能够共同探索等腰三角形的性质,培养团队合作意识和沟通能力。同时,小组合作也能够激发学生的学习积极性和主动性,提高学习效果。
4.教师在课后与学生进行交流,了解学生在作业过程中遇到的问题,给予针对性的指导和建议。
五、案例亮点
1.生活情境的创设:通过引入金字塔、梯子等实际生活中的等腰三角形形状的物体,激发了学生的学习兴趣,使学生能够更好地理解和应用所学的数学知识。这种生活情境的创设,不仅能够激发学生的学习兴趣,还能够让学生认识到数学与生活实际的联系,提高学生运用数学解决问题的能力。
本节课的教学目标是让学生掌握等腰三角形的性质,并能够运用这些性质解决实际问题。同时,通过小组合作、讨论交流等方式,培养学生的团队合作意识和沟通能力。在教学过程中,我将以学生为主体,注重启发式教学,引导学生主动探索、发现和总结等腰三角形的性质,从而提高他们的数学素养和解决问题的能力。

北师大版八年级数学下册1.1等腰三角形教学设计

北师大版八年级数学下册1.1等腰三角形教学设计
2.教学方法:教师将学生分成若干小组,针对以下问题进行讨论:a.在生活中,你还来自过哪些等腰三角形?它们有什么作用?
b.如何判定一个三角形是等腰三角形?请举例说明。
c.运用等腰三角形的性质,解决以下问题:(1)已知等腰三角形的底和腰,求顶角;(2)已知等腰三角形的底角,求顶角。
3.学生活动:学生在小组内积极讨论,分享自己的想法和解决问题的方法。
作业要求:
1.学生按时完成作业,书写规范,保持卷面整洁。
2.家长督促孩子认真完成作业,关注孩子学习情况,及时与教师沟通。
3.教师认真批改作业,及时反馈,针对学生存在的问题进行个性化辅导。
4.培养学生运用分类讨论、归纳总结等方法解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生学习几何图形的热情,增强学生对等腰三角形相关知识的探索欲望。
2.培养学生严谨、细致的学习态度,使学生认识到几何图形在学习中的重要性,提高学生对数学美的鉴赏能力。
3.培养学生勇于挑战、克服困难的精神,让学生在解决问题的过程中,体验成功带来的喜悦,增强自信心。
b.在等腰三角形中,已知一边长和底角,求另一边长。
c.在等腰三角形中,已知一边长和顶角,求另一边长。
3.拓展创新题:
a.在等腰三角形中,若底边上的中线等于腰长,求顶角的度数。
b.证明:在等腰三角形中,底角的角平分线、中线、高相互重合。
c.若等腰三角形的底角为α,顶角为β,求证:α + 2β = 180°。
a.通过实例分析,引导学生掌握等腰三角形的判定方法,如两边相等的三角形是等腰三角形等。
b.设计相关练习题,让学生在实际操作中巩固判定方法,提高解决问题的能力。
5.应用拓展:
a.结合实际问题,设计一些与等腰三角形相关的角度和线段问题,引导学生运用所学知识解决问题。

数学北师大版八年级下册等腰三角形教学设计

数学北师大版八年级下册等腰三角形教学设计

等腰三角形教学设计沈阳市培英中学潘立辉等腰三角形教学设计沈阳市培英中学潘立辉一、教材分析【设计本节课的目的和作用】本节课是九年级总复习的一节课,复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成功感”。

如何上好一节行之有效的复习课,一直是我关注的教学问题,在教学中要将已学过的知识一一再现在学生面前,同时还要做到在更深的层面系统的处理前后知识的关联,我决定大胆尝试,不按以往传统复习法一章一章的复习,而是以一类问题的解决方法探索来涵盖我要复习的知识点。

这堂课就是为动态几何问题及开放探究性问题量身打造的一堂课。

涉及的几何基础知识非常广泛,它既能充分的考察学生基础知识的掌握的熟练程度,又能较好的考察学生的观察,分析,比较,概括的能力及发散思维能力。

在本节复习课教学中我注意到避开以下问题:(1)以教师思维代替学生思维,忽视学生学习的能动性;(2)重习题的机械操练,轻认知策略的教学;(3)为追求应试效果、强化训练和解题技巧指导过多,学生独立自主的探究知识学习太少。

【教学内容和目标】知识与技能:使学生通过本节课的学习,能够对平面几何图形尤其是等腰三角形中的相关定理性质有更深一步的了解。

并能灵活运用这些知识进行相关证明。

过程与方法:在教学中通过提出问题,探索研究问题培养学生主动学习的能力,培养学生利用信息技术工具__《几何画板》、网络技术对问题进行分析、探究和归类。

增强师生之间,同学之间的交流与互动,培养学生终身学习的能力。

情感态度与价值观:培养学生主动学习,勇于探索的精神及分类讨论的数学思想,逐步渗透“特殊”-----“一般”的辨证唯物主义思想,培养学生思维的严谨性,灵活性,深刻性等良好的思维品质。

增强师生情感交流。

创新目标:学生通过例2进行深入研究,培养学生动手操作能力,尤其是利用互联网的资源,和对《几何画板》这个有力数学用具的使用,提高学生和知识交流意识和综合分析能力,对例2中各种情况,书写研究性报告,养成分析问题,归纳问题的习惯,形成创新意识和创新精神。

1.1第1课时三角形的全等和等腰三角形的性质-北师大版八年级下册数学教案

1.1第1课时三角形的全等和等腰三角形的性质-北师大版八年级下册数学教案
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的定义、判定方法以及等腰三角形的性质。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.培养学生的空间想象力:通过观察和分析等腰三角形的性质,使学生能够在脑海中构建和想象几何图形,发展空间想象力。
3.培养学生的数据分析能力:引导学生运用全等三角形和等腰三角形的性质解决实际问题,让学生学会收集、整理和分析数据,提高解决实际问题的能力。
4.培养学生的数学抽象能力:使学生能够从具体的几何图形中抽象出全等三角形和等腰三角形的性质,形成数学概念,并运用这些概念进行推理和解决问题。
在教学中,教师应通过以下方法帮助学生突破难点:
-使用直观的教具和动画演示全等三角形的判定过程,增强学生的直观感受。
-设计具有层次性的练习题,从简单到复杂,逐步提升学生的应用能力。
-结合实际情境,让学生通过小组合作和讨论,探索几何知识在生活中的应用。
-提供详细的解题步骤和思路,让学生在模仿中学习,逐步培养独立解决问题的能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指能够完全重合的两个三角形,它们的对应边和对应角都相等。全等三角形的判定在几何学中非常重要,它帮助我们解决实际问题,如土地测量、建筑设计等。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何使用SSS、SAS、ASA、AAS判定法来判断两个三角形是否全等,以及这些性质在实际中的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章三角形的证明
1.2 等腰三角形
【教学内容】证明等腰三角形中相等的线段及等边三角形的性质。

【教学目标】
知识与技能
探索——发现——猜想——证明等腰三角形中相等的线段,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性;
过程与方法
经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性;情感、态度与价值观
鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索与创造,感受数学的严谨性.
【教学重难点】
重点:经历“探索——发现一一猜想——证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论.
难点:经历“探索——发现一一猜想——证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论.
【导学过程】
【知识回顾】
课件展示,复习巩固。

【情景导入】
在回忆上节课等腰三角形性质的基础上,提出问题:
在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?
【新知探究】
探究一、在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。

探究二、活动中,教师应注意给予适度的引导,如可以渐次提出问题:
你可能得到哪些相等的线段?
你如何验证你的猜测?
你能证明你的猜测吗?试作图,写出已知、求证和证明过程;
还可以有哪些证明方法?
探究三、等腰三角形两个底角的平分线相等;
等腰三角形腰上的高相等;
等腰三角形腰上的中线相等.
并对这些命题给予多样的证明。

如对于“等腰三角形两底角的平分线相等”,学生得到了下面的证明方法:
已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的角平分线.
求证:BD=CE .
证法1:∵AB =AC ,
∴∠ABC=∠ACB(等边对等角).
∵∠1=12 ∠A BC ,∠2=12 ∠ABC, ∴∠1=∠2. 在△BDC 和△CEB 中, ∠ACB=∠ABC,BC=CB ,∠1=∠2. ∴△BDC≌△CEB(ASA). ∴BD=CE(全等三角形的对应边相等)
证法2:证明:∵A B=AC ,
∴∠ABC=∠ACB.
又∵∠3=∠4.
在△ABC 和△ACE 中,
∠3=∠4,AB=AC ,∠A=∠A.
∴△ABD≌△ACE(ASA).
∴BD=CE(全等三角形的对应边相等).
【知识梳理】
等腰三角形两个底角的平分线相等;
等腰三角形腰上的高相等;
等腰三角形腰上的中线相等.
等边三角形是特殊的等腰三角形,其三个内角都相等,且每个内角的度数都是60°。

【随堂练习】
如图,已知△ABC 和△BDE 都是等边三角形.
求证:AE=CD 4231E D
C
B
A
C。

相关文档
最新文档