2010年广东省高考冲刺强化训练试卷五文科数学
广东省2010届高考数学模拟试题(5)

广东省2010届模拟试题(5)参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中表示球的半径球的体积公式如果事件在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的概率其中表示球的半径第一部分 选择题(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合,则满足的集合B的个数是()。
A.1 B.3 C.4 D.8 2复数的值等于()A.1 B.-1 C.D.3.设函数在处连续,且,则等于()A.B.C.D.4.函数的图象大致是()5.设等差数列的公差为2,前项和为,则下列结论中正确的是( )A.B.C.D.6.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为,值域为的“同族函数”共有()A.7个 B.8个 C.9个 D.10个7.6支签字笔与3本笔记本的金额之和大于24元,而4支签字笔与5本笔记本的金额之和小于22元,则2支签字笔与3本笔记本的金额比较结果是()A.3本笔记本贵 B.2支签字笔贵 C.相同 D.不确定8.球面上有三点,其中任意两点的球面距离都等于球的大圆周长的,经过这三点的小圆的周长为,则这个球的表面积为()A.B.C.D.9.如图,在中,,AC、BC边上的高分别为BD、AE,则以A、B为焦点,且过D、E的椭圆与双曲线的离心率的倒数和为()EDCABA.B.C.D.10.下图是2007年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()。
A.,B.C.,D.,第二部分 非选择题(共100分)二、填空题:本大题共5小题,其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.每小题5分,满分20分.11.设向量与的夹角为,,则 .12.如图,一条直角走廊宽为1.5m,一转动灵活的平板手推车,其平板面为矩形,宽为1m.问:要想顺利通过直角走廊,平板手推车的长度不能超过 米.13.如图,在正方体ABCD—A1B1C1D1中,点MAA1B111C1D1MDSCB是BC的中点,则D1B与AM所成角的余弦值是.14、(坐标系与参数方程选做题)直线被圆所截得的弦长为.AOBPC15.(几何证明选讲选做题) 15、如图,⊙O的直径=6cm,是延长线上的一点,过点作⊙O的切线,切点为,连接,若30°,PC = 。
2010年高考广东文科数学试题及答案

A是它的前n项和,若,且4a与2a 4 3 5位于y轴左侧,0y=相切,5)2 5).若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是D.1 532 x10.在集合{a ,b ,c ,d }上定义两种运算Å和Ä如下:如下: ○+ a b c d aab cdb b b b b ccbcb d d bbd那么d Ä ()a c Å=A .aB .bC .cD .d二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.某城市缺水问题比较突出,为了制定节水管理办法,.某城市缺水问题比较突出,为了制定节水管理办法, 对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,3x ,4x ,分别为1,1.5,1.5,2,则输出的结果s 为 .12.某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:年份年份2005 2006 2007 2008 2009 收入x 11.5 12.1 13 13.3 15 支出Y 6.8 8.8 9.8 10 12 Äab cd aa aa ab a bcd ca cc ad ad ad根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有,家庭年平均收入与年平均支出有 线性相关关系的三个内角A ,B ,C 所对的边,若=1,b =3,= .= . 标为标为 .p p 的解析式;(3)已知94125=,求si n 文艺节目文艺节目新闻节目新闻节目 总计总计 20到40岁40 18 58 大于40岁 15 27 42 总计总计55 45 100 18.(本小题满分14分)如图4,弧AEC 是半径为a 的半圆,AC 为直径,点E为弧AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ^平面BED ,FB =5a . (1)证明:EB FD ^;(2)求点B 到平面FED 的距离.19.(本小题满分12分)分)某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C .另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C . 如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐20.(本小题满分14分)分)已知函数()f x 对任意实数x 均有()(2)f x kf x =+,其中常数k 为负数,且()f x 在区间[]0,2上有表达式()(2)f x x x =-.(1)求(1)f -,(2.5)f 的值;的值;(2)写出()f x 在[]3,3-上的表达式,并讨论函数()f x 在[]3,3-上的单调性;上的单调性; (3)求出()f x 在[]3,3-上的最小值与最大值,并求出相应的自变量的取值.21.(本小题满分14分)已知曲线2n C y nx =:,点(,)(0,0)n n n n n P x y x y >>是曲线n C 上的点(n=1,2,…). (1)试写出曲线n C 在点n P 处的切线n l 的方程,并求出n l 与y 轴的交点n Q 的坐标;的坐标; (2)若原点(0,0)O 到n l 的距离与线段n n P Q 的长度之比取得最大值,试求试点n P 的坐标(,n n x y );(3)设m 与k 为两个给定的不同的正整数,n x 与n y 是满足(2)中条件的点n P 的坐标,的坐标, 证明:1(1)(1)2snn n m x k y ms ks =+-+<-å(1,2,)s =…wA5575) 2 1圆心坐标为(-5.0),所以所求圆的方程为22(5)5x y ++=,故选D 。
2010广东高考文科数学 (4)

2010广东高考文科数学一、概述2010年广东高考文科数学试卷是广东省教育厅于2010年组织的一次高中毕业生综合评价考试。
本文将对该试卷的题目进行详细分析和解答。
二、试题分析1. 选填题选填题是广东高考文科数学试卷中的一部分,共有若干道题目。
这些题目的特点是答案具有多样性,考生可以根据自己的方法和计算结果进行填写。
举例来说,试题可能是给出了一个方程,考生需要求出方程的根或解。
对于这类题目,考生可以采用因式分解、配方法、求根公式等不同的方法进行计算,最终填写答案。
2. 解答题解答题是广东高考文科数学试卷中的主要部分,包括选择题、填空题和证明题。
2.1 选择题选择题是广东高考文科数学试卷中一道典型的题目。
该类型的题目给出了一些选项,考生需要选择符合要求的选项作为答案。
通常情况下,选择题包括单选题和多选题。
对于选择题,考生需要认真阅读题干和选项,并结合自己的数学知识进行推理和判断,最终选择正确的答案。
2.2 填空题填空题是广东高考文科数学试卷中的一类题目。
该类型的题目通常给出了一些未知数或变量,考生需要根据所给的条件进行计算,并填写答案。
填空题对考生的计算能力和逻辑思维能力有一定的要求,考生需要熟练掌握数学计算方法,并能够合理推理和运用所学知识。
2.3 证明题证明题是广东高考文科数学试卷中的一类题目。
该类型的题目要求考生根据所给的条件和已知的数学知识进行推理和证明,最终得出结论。
对于证明题,考生需要熟悉各种证明方法和数学定理,并能够运用这些知识进行推理和证明。
证明题对考生的逻辑思维能力、分析问题的能力和数学知识的整合能力有较高的要求。
三、题目解答1. 选填题题目一已知方程x2−2x+1=0的两个解之和是?解析:这是一个二次方程求解的问题,考生可以采用求根公式进行计算。
根据求根公式,对于二次方程xx2+xx+x=0,其解为 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$。
2010年广东省高考模拟试题(文科)(一)

2010年广东省高考模拟试题(一)数 学(文科)2009.12本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知复数z 的实部为1-,虚部为2,则5i z=( )A .2i -B .2i +C .2i --D .2i -+2、平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是1m 和1n ,给出下列四个命题:①1m ⊥1n ⇒m ⊥n ; ②m ⊥n ⇒1m ⊥1n ;③1m 与1n 相交⇒m 与n 相交或重合; ④1m 与1n 平行⇒m 与n 平行或重合; 其中不正确的命题个数是( )A.1B.2C.3D.43、双曲线24x -212y =1的焦点到渐近线的距离为( )A.4、函数xe x xf )3()(-=的单调递增区间是( )A. )2,(-∞B.(0,3)C.(1,4)D. ),2(+∞ 5、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+4π+C. 2π+D. 4π+侧(左)视图正(主)视图俯视图6、(2009全国卷Ⅱ理)设323log ,log log a b c π===,则 A. a b c >>B. a c b >>C. b a c >>D. b c a >>7、点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是 ( ) A.22(2)(1)1x y -++= B.22(2)(1)4x y -++= C.22(4)(2)4x y ++-= D.22(2)(1)1x y ++-=8、若双曲线()222213x y a o a -=>的离心率为2,则a 等于( )C.32D. 1 9、计算机是将信息转换成二进制进行处理的. 二进制即“逢二进一”,如2(1101)表示二进制数,将它转换成十进制形式是321012120212⨯+⨯+⨯+⨯= 13,那么将二进制数211611111)(个转换成十进制形式是( ). A .1722- B .1622- C .1621- D .1521-10、已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ∙=∙=∙,则点O ,N ,P 依次是ABC ∆的( )A.重心 外心 垂心B.重心 外心 内心C.外心 重心 垂心D.外心 重心 内心二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15是选做题,考生只能选做一题,两题全答的,只计算前一题得分. 11、若函数f(x)=a x-x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 .12、若函数2()1x af x x +=+在1x =处取极值,则a =13、右图给出的是计算201614121++++ 的值的一个框图,其中菱形判断框内应填入的条件是 .数学试卷 第3页(共5页)14、(坐标系与参数方程选做题)在极坐标系中,已知点A (1,43π)和B )4,2(π,则A 、B 两点间的距离是 .15、(几何证明选讲选做题)已知圆的直径13AB =,C 为圆上一点,过C 作CD AB ⊥于D(AD BD >),若6CD =,则AD 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16、已知向量)sin ,(sin B A =,)cos ,(cos A B =,C 2sin =⋅,且A 、B 、C 分别为ABC ∆的三边a 、b 、c 所对的角。
2010年高考广东数学(文科)模拟试题

2010年高考广东数学(文科)模拟试题一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 定义集合运算:AB={z|z=xy,x∈A,y∈B}.设A={0.2},B={x|x2-3x+2=0},则AB=()A. {0,-2,-4}B. {0,2,-4}C. {0,2,4}D. {0,1,2}2. 若复数z=2sinα-cosα+icosα是纯虚数,则tanα的值为()A. 2B.C.D.3. 以一球体的球心为空间直角坐标系的原点O?o球面上两点A,B的坐标分别为A(1,2,2),B(2,-2,1),则AB=()A. 18B. 12C. 3D. 24. 若等比数列{an}对一切正整数n都有Sn=2an-1,其中Sn是{an}的前n项和,则公比q的值为()A. B. -C. 2D. -25. 已知函数f(x)=sinωx-cosωx(ω>0)的图像与直线y=2的两个相邻交点的距离等于π,则为得到函数y=f(x)的图像可以把函数y=2sinωx的图像上所有的点()A. 向右平移B. 向右平移C. 向左平移D. 向左平移6.“a=-1”是“直线x+y=0和直线x+ay=0相互垂直”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 若函数y=lnx与y=的图像的交点为(x0,y0),则x0所在的区间是()A. (1,2)B. (2,3)C. (e,3)D. (e,+∞)8. 已知点P(a,b)(ab≠0))是圆O:x2+y2=r2内一点,直线m 是以P为中点的弦所在的直线,若直线n的方程为ax+by=r2,则()A. m∥n且n与圆O相离B. m∥n且n与圆O相交C. m与n重合且n与圆O相离D. m⊥n且n与圆O相离9. 在矩形ABCD中,AB=4,AD=6,在该矩形内任取一点P,则使∠APB≥的概率为()A. B. 1-C. 1- D.10. 设定义域为[x1,x2]的函数y=f(x)的图像为C,图像的两个端点分别为A、B ,点O为坐标原点,点M是C上任意一点,向量=(x1,y1),=(x2,y2),=(x,y),满足x=λx1+(1-λ)x2(00,k为常数.根据上面的表述,给出下列结论:①A、B、N三点共线;②直线MN的方向向量可以为=(0,1);③“函数y=5x2在[0,1]上可在标准下线性近似”;④“函数y=5x2在[0,1]上可在标准1下线性近似”,其中所有正确结论的序号为( )A. ①②③B. ①②④C. ①③④D. ②③④二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11-13题)11. 已知函数f(x)=3-x, x>0x2-1,x≤0则f[f(-2)]= .12. 已知命题p:x∈R ,x2+2ax+a≤0. 若命题p是假命题,则实数a的取值范围是.13. 飞机的航线和山顶C在同一个铅垂平面内,已知飞机的高度保持在海拔h(km),飞行员先在点A处看到山顶的俯角为α,继续飞行a(km)后在点B处看到山顶的俯角为β,试用h、a、α、β、表示山顶的海拔高度为(km).(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知抛物线C:x=2t2,y=2t,(t为参数)设O为坐标原点,点M在C上,且点M 的纵坐标为2,则点M到抛物线焦点的距离为.15.(几何证明选讲选做题)如图,AC为⊙O的直径,弦BD⊥AC于点P,PC=2,PA=8,则tan∠ACD的值为.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本题满分12分)已知:△ABC中角A、B、C所对的边分别为a、b、c且sinA?cosB+sinB?cosA=sin2C.(1)求角C的大小;(2)若a,c,b成等差数列,且?=18,求c边的长.17.(本题满分12分)如下图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E点满足=.(1)证明:PA⊥平面ABCD .(2)在线段BC上是否存在点F,使得PF∥平面EAC?若存在,确定点F的位置,若不存在请说明理由.18.(本题满分14分)已知二次函数f(x)=ax2+bx-1,(1)方程ax2+bx-1=0(a,b∈R且a>0)有两个实数根,其中一个根在区间(1,2)内,求a-b的取值范围.(2)若集合P={1,2,3},Q={-1,1,2,3,4},分别从集合P与Q中随机取一个数作为a,b,求函数f(x)=ax2+bx-1在[-1,+∞)是增函数的概率.(3)设点(a,b)是区域a+b-8≤0,a>0,b>0内的随机点,求函数f(x)=ax2+bx-1在[-1,+∞)是增函数的概率.19.(本题满分14分)已知数列{an}的前n项和为Sn,且点Pn(Sn,an)(n∈N*)总在直线x-3y-1=0上.(1)求数列{an}的通项公式;(2)设Tn为数列{}的前n项和,若对n∈N*总有Tn>成立,其中m∈N* ,求m的最小值.20.(本题满分14分)已知椭圆C1:+=1(a>b>0)的离心率为,直线l:x-y+2=0与以原点为圆心,以椭圆C1的短半轴长为半径的圆相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直直线l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;(3)若A(x1,2)、B(x2,y2)、C(x0,y0)是C2上不同的点,且AB ⊥BC,求y0的取值范围.21.(本题满分14分)已知函数f(x)=lnx,g(x)=ax2-x(a≠0).(Ⅰ)若函数y=f(x)与y=g(x)的图像在公共点P处有相同的切线,求实数a的值并求点P的坐标;(Ⅱ)若函数y=f(x)与y=g(x)的图像有两个不同的交点M、N,求a的取值范围;(Ⅲ)在(Ⅱ)的条件下,过线段MN的中点作x轴的垂线分别与f (x)的图像和g (x)的图像交S、T点,以S为切点作f (x)的切线l1,以T为切点作g (x)的切线l2.是否存在实数a使得l1∥l2,如果存在,求出a的值;如果不存在,请说明理由.2010年高考广东数学(文科)模拟试题参考答案一、选择题:解析:1. C.A={0,2},B{1,2},则AB={0,2,4},故选C.2. D.依题意2sinα-cosα=0,cosα≠0,tanα=,故选D.3. C.由空间两点间距离公式得AB==3.4. C.当n=1时,S1=2a1-1,得a1=1;当n=2时,1+a2=2a2-1,得公比q=a2=a1q=2,故选C.5. A.依题意y=f(x)的周期为π,∴ω=2,∴f(x)=2sin(2x-)=2sin2(x-),故选A.6. 由x+y=0,x+ay=0,1×1+1×a=0,解得a=-1,故选C.7. 因x0是函数f (x)=lnx-的零点,而f (2)0,∴x0所在的区间是(2,3),选B.8. A. 由点P(a,b)(ab≠0)是圆O:x2+y2=r2内一点,得=r,故n 与圆O相离.9. D.如右图:以AB为直径作半圆,则当点P落在半圆的内部(包括边界)时,∠APB≥,故P===,故选D.10. 由=λ+(1-λ),得-=λ(-),即=λ,故①成立;令N(x0,y0),由=λ+(1-λ),得(x0,y0)=[λx1+(1-λ)x2,λy1+(1-λ)y2]知②成立; 对于函数y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),从而==5(λ-λ2)=-5(λ-)2+≤,故函数y=5x2在[0,1]上可在标准下线性近似,可知③成立. 从而选A.二、填空题:11. ;12. 011. ∵-2≤0,∴f(-2)=(-2)2-1=3.又∵3>0,∴f(3)=3-3=,∴f(f(-2))=f(3)=.12. 因为命题p是假命题,则p:x∈R,x2+2ax+a>0是真命题,所以△=4a2-4a0,∴cosC=,∴C=.(2)由a,c,b成等差数列,得2c=a+b. ∵?=18,即abcosC=18,ab=36. 由余弦定理得:c2=a2+b2-2abcosC=(a+b)2-3ab,∴c2=4c2-3×36,c2=36 ,∴c=6.17. 解:(1)证明:BC⊥平面PABBC⊥PA. 同理,CD⊥PA,又CD∩BC=C,所以PA⊥平面ABCD.(2)当F为BC中点时,PF∥平面EAC,理由如下:设AC,FD交于点S,∵AD∥FC,∴==.又∵=,∴PF∥ES. ∵PF平面EAC,ES平面EAC,∴PF∥平面EAC.18. 解:(1) f (x)=ax2+bx-1,函数的对称轴为x=-,根据f (0)=-1,且a>0,得f (x)=ax2+bx-1的图像如图1:因为a>0,所以f (1)=a+b-10,a>0.设目标函数z=a-b,画出不等式组a+b-10,a>0所表示的平面区域,如图2,令a=0,得直线a+b-1=0与轴的交点为E(0,1),令a=0,得直线4a+2b-1=0与轴的交点为C(0,),经过比较可知目标函数z=a-b在E(0,1)处取得最小值,其最小值为zmin=-1,所以a-b的取值范围为(-1,+∞).(2)由(1)知函数的对称轴为x=-,因为函数f (x)=ax2+bx-1在[-1,+∞)是增函数,所以x=-≤-1,得b≥2a,且a>0,当a=1时,b=2,3,4,当a=2时,b=4,所求的概率为P1=.(3)由(2)可知当且仅当b≥2a,且a>0,函数f(x)=ax2+bx-1在[-1,+∞)是增函数.依条件可得试验的全部结果所构成的区域是a+b-8≤0,a>0,b>0,构成所求事件的区域为b≥2a,a>0,b>0.我们在aOb坐标系上分别作出他们的图像,如图3,可知阴影部分为所求,由b=2a,a+b-8=0,可得交点坐标为(,),所求事件的概率为P2==.说明:本题以一元二次函数为背景,综合考查了集合、线性规划、一元二次方程、不等式、古典概率、几何概率等知识,还考查了函数与方程与思想、等价转化思想等,考查同学们综合运用知识分析问题、解答问题的能力.19. 解:(1)∵点Pn(Sn,an)(n∈N*)总在直线x-3y-1=0上,∴Sn=3an+1.当n=1时,a1 =3a1+1,∴a1=-.当n≥2时,an=Sn-Sn-1=3an-3an-1,2an=3an-1=(n≥2).即数列{an}是首项a1=-,公比q=的等比数列, ∴an=a1qn-1=-×()n-1.(2)∵an=-×()n-1,∴=-2×()n-1,∴Tn=++…+=-2[1+()+()2+…()n-1]=-2×=-6×[1-()n]>-6.∵对n∈N*总有Tn>成立,∴必须并且只需≤-6即m≥13,∴m的最小值为13.20. 解:(Ⅰ)e=,∴e2===,∴2a2=3b2. ∵直线l:x-y+2=0与圆x2+y2=b2相切,∴=b,∴b=,∴a2=3, ∴椭圆C1的方程是+=1.(Ⅱ)∵MP=MF2, ∴动点M到定直线l1:x=-1的距离等于它的定点F2(1,0)的距离,∴动点M的轨迹是以l1为准线,F2为焦点的抛物线.由=1,得p= 2,∴点M的轨迹C2的方程为y2=4x.(Ⅲ)由(Ⅱ)知A(1,2),B(,y2),C(,y0),y0≠2,y0≠y2,y2≠2……①则=(,y2-2),=(,y0-y2).又因为AB⊥BC,所以?=0,×+(y2-2)(y0-y2)=0,整理得y22+(y0+2)y2+16+2y0=0,则此方程有解,∴△=(y0+2)2-4?(16+2y0)≥0,解得y0≤-6或y0≥10,又检验条件①:y0=-6时,y2=2,不符合题意.∴点C的纵坐标y0的取值范围是(-∞,-6)∪[10,+∞).说明:本题主要考查求曲线的轨迹方程、一条直线与圆锥曲线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.21. 解:(Ⅰ)设函数y=f (x)与y=g (x)的图像的公共点P (x0,y0),则有lnx0=ax20-x0……①又在点P有共同的切线,∴ f ′(x0)=g ′(x0)=2ax0-1a=,代入①,得lnx0=-x0.设h(x)=lnx-+xh ′(x)=+>0(x>0),所以函数h(x)最多只有1个零点,观察得x0=1是零点,故有a=1,此时,点P(1,0).(Ⅱ)法一:由f (x)=g (x)lnx=ax2-xa=.令r (x)=r′(x)==.当00,则r (x)单调递增;当x>1时,r′(x)0.所以,r(x)在x=1处取到最大值r (1)=1,所以,要使y=与y=a有两个不同的交点,则有0法二:根据(Ⅰ)知当a=1时,两曲线切于点(1,0),此时变化的y=g (x)的对称轴是x=,而y=f (x)是固定不动的,如果继续让对称轴向右移动即x=>,得ax2,则MN中点的坐标为(,),以S为切点的切线l1的斜率kS=f ′()=,以T为切点的切线l2的斜率kT=g ′()=a(x1+x2)-1.如果存在a使得kS=kT,即=a(x1+x2)-1……①而且有lnx1=ax21-x1和lnx2=ax22-x2,如果将①的两边同乘x1-x2,得=a(x 21-x 22)-(x1-x2),即=ax 21-x1-(ax22-x2)=lnx1-lnx2=ln,也就是ln=.设=>1,则有ln =(>1). 令h()=ln -(>1),则h ′()=-=.∵>1,∴h ′()>0.因此,h ()在[1,+∞)上单调递增,故h ()>h (1)=0. 所以,不存在实数a使得l1∥l2.说明:函数解答题在压卷位置出现得比较多,属于难题.文科多考查对数函数、指数函数、分式函数以及复合而成的新颖函数的单调性、最值、参数的取值范围等类型.利用导数这个十分有效的处理函数问题的工具,需要对参数分类处理,其怎样分?为什么分?分几类等需要思考清楚的.(本试题由珠海市斗门一中数学科组拟制)责任编校徐国坚。
da2010年高考数学广东(文)

π 3 . 6 2
π , 2
2π 4. π 2
π . 5
∴ f ( x) 3sin 4 x
(3)由 f ∴ cos
π π 9 π 3sin 3cos , 3 6 5 4 12
3 . 5
x ≥ 0,y ≥ 0, x ≥ 0,y ≥ 0, 12 x 8 y ≥ 64, 3 x 2 y ≥ 16, 即 6 x 6 y ≥ 42, x y ≥ 7, 6 x 10 y ≥ 54. 3 x 5 y ≥ 27.
0) , B(4, 3) , C (2, 5) , D(0, 8) 处的值分别是 z 在可行域的四个顶点 A(9,
设 A 表示随机事件“5 名观众中任取 2 名,恰有 1 名观众年龄为 20 至 40 岁” ,则 A 中的基 本事件有 6 种:
Y1 A1,Y1 A2,Y1 A3,Y2 A1,Y2 A2,Y2 A3 ,
故所求概率为 P ( A)
6 3 . 10 5
F
18. (本小题满分 14 分) (1)证明: ∵点 E 为 AC 的中点,且 AB BC,AC 为直径, ∴ EB ⊥ AC . ∵ EC ⊥ 平面 BED ,且 BE 平面 BED , ∴ FC ⊥ EB . ∵ FC∩ AC C , A ∴ EB ⊥ 平面 BDF . ∵ FD 平面 BDF , ∴ EB ⊥ FD . (2)解:∵ FC ⊥ 平面 BED ,且 BD 平面 BED , ∴ FC ⊥ BD . 又∵ BC DC , ∴ FD FB 5a . ∴ VE FBD
2
∴ sin 1 cos
4 . 5
17. (本小题满分 12 分) 解: (1)因为在 20 至 40 岁的 58 名观众中有 18 名观众收看新闻节目,而大于 40 岁的 42
2010年高三数学文科试卷及答案

{}02010年普通高等学校招生全国统一考试数学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷时,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选作题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}3,2,1,0=A ,{}4,2,1=B 则集合=⋃B AA. {}4,3,2,1,0B. {}4,3,2,1C. {}2,1D. 解:并集,选A.2.函数)1lg()(-=x x f 的定义域是A.),2(+∞B. ),1(+∞C. ),1[+∞D. ),2[+∞ 解:01>-x ,得1>x ,选B.3.若函数xxx f -+=33)(与xxx g --=33)(的定义域均为R ,则A. )(x f 与)(x g 与均为偶函数B.)(x f 为奇函数,)(x g 为偶函数C. )(x f 与)(x g 与均为奇函数D.)(x f 为偶函数,)(x g 为奇函数 解:由于)(33)()(x f x f x x=+=----,故)(x f 是偶函数,同理,g (x )为奇函数,选D7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A.54 B.53 C. 52 D. 5110.在集合{}d c b a ,,,上定义两种运算○+和○*如下那么d ○*a (○+=)cA.aB.bC.cD.d解:由上表可知:a (○+c c =),故d ○*a (○+=)c d ○*a c =,选A二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
广东省2010年高三数学考前热身测试 文 新人教版

2010年广东省高三考前热身试题文科数学一、选择题:(10⨯5=50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若集合}2|{xy y M ==,}1|{≥=x x P 则P M =( ) A .}1|{≥y y B .}1|{>x x C .}0|{>y y D .}0|{≥x x 2.已知函数)2sin()(ππ+=x x f ,则下列命题正确的是 ( )A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的偶函数D .)(x f 是周期为2的非奇非偶函数 3.命题“x R ∀∈,2240x x -+≤”的否定为 ( )A .x R ∀∈,2240x x -+≥ B .2,240x R x x ∀∉-+≤C .x R ∃∈,2240x x -+>D .x R ∃∉,2240x x -+>4.设0,0>>b a ,若3是a3与b3的等比中项,则ba 22+的最小值为( ) A .8 B .6 C .3 D .45. 如右图,一个简单空间几何体的三视图其主视图与左视图都是 边长为2的正三角形,其俯视图轮廓为正方形,则其全面积是( )A .4 B. 8 C .4 D. 126. 设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .277.2yx =曲线过点(-1,1)处的切线方程为( )30A x y -+=、2 10B x y ++=、2 10x y +-=C 、 10D x y +-=、28. 若31(,sin ),(cos ,)23a b αα==,其中0απ<<,且//a b ,则tan α=( )A .92-B.1 D9.设,m n 是两条不同的直线,βα,是两个不重合的平面,给定下列四个命题,其中为真命题的是( )① m n m n αα⊥⎫⇒⊥⎬⊂⎭ ② a a ααββ⊥⎫⇒⊥⎬⊂⎭③ //m m n n αα⊥⎫⇒⎬⊥⎭④ ////m n m n αβαβ⊂⎫⎪⊂⇒⎬⎪⎭俯视图A. ①和②B. ②和③C. ③和④D. ①和④ 10. 函数32()31f x x x =-+的单调递减区间是( )A . (0,2)B .(,0)-∞C .(),2-∞D .()2,+∞二、填空题:(本大题4×5=20分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年广东省高考冲刺强化训练试卷五文科数学(广东)本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟.第I卷(选择题)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合,则等于().A.{1 ,2} B.{3,4} C.{1} D.{-2,-1,0,1,2}2.设复数满足,则().A.B .C.D. B3.已知向量,向量,则向量与().A.互相垂直B.夹角为C.夹角为D.是共线向量4.已知等比数列的各项均为正数,前项之积为,若=,则必有().A.=1 B.=1 C.=1 D.=15.设是双曲线上一点,点关于直线的对称点为,点为坐标原点,则().A.B.C.D.6.在平面直角坐标系中,不等式组表示的平面区域的面积是().A.B.C.D.7.已知函数,若,则实数().A.B.C .或D .1或8.若,则的值为().A.B.C.D.9.一个几何体的三视图如右图,其中正视图中△ABC是边长为2的正三角形,俯视图为正六边形,则该几何体的侧视图的面积为().A.12 B.C.D.610.已知命题“”,北西东南命题“”,若命题“” 是真命题,则实数的取值范围是().A.B.C.D.二、填空题:本大题共5小题,考生做答4小题,每小题5分,满分20分.(一)必做题(11-13题)11.统计1000名学生的数学模块(一)水平测试成绩,得到样本频率分布直方图如右图示,规定不低于60分为及格,不低于80分为优秀,则及格人数是;优秀率为.12.如图,海平面上的甲船位于中心的南偏西,与相距海里的处.现甲船以海里小时的速度沿直线去营救位于中心正东方向海里的处的乙船,甲船需要小时到达处.13.如右的程序框图可用来估计圆周率的值.设是产生随机数的函数,它能随机产生区间内的任何一个数,如果输入1200,输出的结果为943,则运用此方法,计算的近似值为.(保留四位有效数字)(二)选做题(13~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在直角坐标系中圆的参数方程为(为参数),以原点为极点,以轴正半轴为极轴建立极坐标系,则圆的极坐标方程为_____ ____.15.(几何证明选讲选做题)如图,、是圆的两条弦,且是线段的中垂线,已知线段,=,则线段的长度为.三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数一个周期的图象如图所示,(1)求函数的表达式;(2)若,且为的一个内角,求的值.频率组距分数0.0350.030.0250.015000510070605017.(本小题满分12分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差(°C)10 11 13 12 8发芽数(颗)23 25 30 26 16(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“”的概率;(2)甲,乙两位同学都发现种子的发芽率与昼夜温差近似成线性关系,给出的拟合直线分别为与,试利用“最小平方法(也称最小二乘法)的思想”,判断哪条直线拟合程度更好.18.(本小题满分14分)如图,在棱长均为2的三棱柱中,设侧面四边形的两对角线相交于,若⊥平面,.(1) 求证:⊥平面;(2) 求三棱锥的体积.19.(本小题满分14分)某公司2008年8月出口欧美的贸易额为2000万元,受金融危机的影响,从2008年9月开始,每月出口欧美的贸易额都比上一个月减少300万元,为了扭转这一局面,该公司充分挖掘内部潜力,加强品牌创新,形势出现转机,2009年1月出口欧美的贸易额比2008年12月增长25%,2009年2月出口欧美的贸易额比2009年1月也增长25%.(1)该公司2008年12月出口欧美的贸易额是多少?(2)假设2009年该公司出口欧美的贸易额都能保持25%的月增长率,问从哪个月开始该公司月出口欧美的贸易额超过2000万元?(参考数据lg2=0.3010,lg3=0.4771)20.(本小题满分14分)已知抛物线的焦点为,点是抛物线上横坐标为4、且位于轴上方的点,点到抛物线准线的距离等于5,过作垂直轴于点,线段的中点为.(1)求抛物线方程;(2)过点作,垂足为,求点的坐标;(3)以点为圆心,为半径作圆,当是轴上一动点时,讨论直线与圆的位置关系.21.(本小题满分14分)已知曲线在处的切线为,(1)求实数的值;(2)若是曲线上的两点,且存在实数使得,证明:.【答案及详细解析】一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A.解析:由集合的运算法则.2.B.解析:由复数的运算法则.3.D.解析:由向量的线性关系.4.B.解析:等比数列前五项为,即.5.B.解析:若点(),则对称点(),于是.6.D.解析:不等式组表示的平面区域是底为6、高为3的三角形,.7.C.解析:由函数图形及;.8.D.解析:.9.C .解析:边长为2的正三角形的正视图的高为侧视图的高,,由于俯视图为边长为1的正六边形,该几何体的侧视图的底,故侧视图的面积为.10.A.解析:“”为真,则p真且q真,由p得a≥e,由q得 a≤4,所以e≤a≤4.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.800,20%(第一空2分,第二空3分).解析::组距为10,则及格的频率为(0.025+0.035+0.01+0.01)×10=0.8,则及格的人数为0.8×1000=800,优秀率=(0.01+0.01)×10×100%=20%.12..解析:由已知得,OC=15,OB=25,由余弦定理有=35,时间.13. .解析:.(二)选做题(14—15题,考生只能从中选做一题)14..解析:由已知有圆的标准方程为,设代人方程得.15..解析:设AB与CD交点为E,则有则AE=6,BE=2,所以由勾股定理即得答案.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.解:(1)从图知,函数的最大值为,则,……1分函数的周期为, ……2分而,则, ……3分又时,,∴,而,则,……5分∴函数的表达式为.……6分(2)由得:,化简,得,……8分∴;……9分由于,则,但,则,即A为锐角,从而;……11分因此.……12分17.解:(1)的取值情况有,,.基本事件总数为10. ……3分设“”为事件,则事件包含的基本事件为,……5分所以,故事件“”的概率为. ……7分(2)将甲,乙所作拟合直线分别计算的值得到下表:10 11 13 12 823 25 30 26 1622 24.2 28.6 26.4 17.622 24.5 29.5 27 17用;………9分用作为拟合直线时,所得到的值与的实际值的差的平方和为;………11分由于,故用直线的拟合效果好. ………12分18.(1)证明:∵⊥平面,而AO平面,∴⊥………2分∵,∴,而BCFE为菱形,则为中点,∴⊥, …………4分且,∴⊥平面. ……………6分(2)∥,∥平面,∴点、到面的距离相等,………8分,……………9分∵,AO=AO,∴AOE≌AOB,得OE=OB,即EC=FB,而BCFE为菱形,则BCFE是正方形,……………10分计算得AO=,的面积等于正方形BCFE的一半,……………12分因此.……………14分19. 解: (1) 2008年8月至12月,该公司月出口欧美的贸易额组成等差数列,……2分设2008年8月的出口额为首项,则2008年12月该公司出口欧美的贸易额为第5项,且公差为-150,……4分则公司2008年12月出口欧美的贸易总额为(万元); ……6分因此,该公司2008年12月出口欧美的贸易总额为800万元.……7分(2) 设2009年第月该公司出口欧美的贸易额超过2000万元,则从2008年12月开始,月出口欧美的贸易额组成等比数列,……8分由于2009年该公司出口欧美的贸易额都能保持25%的月增长率,由(1)得:2008年12月出口欧美的贸易额为800万元,则2009年第月该公司出口欧美的贸易额为:……10分由,即,两边取对数得,即从而,……13分因此,从2009年5月开始其月出口欧美的贸易额超过2000万元.……14分注:本题也可以直接求出估计由,知,从2009年5月开始,该公司月出口欧美的贸易额超过2000万元.20. 解:(1)抛物线的准线∴所求抛物线方程为.………………3分(2)∵点A的坐标是(4,4),由题意得B(0,4),M (0,2),又∵F(1,0),∴则FA的方程为y=(x-1),MN的方程为解方程组………………7分(3)由题意得,圆M的圆心是点(0,2),半径为2.当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离,……………9分当m≠4时,直线AK的方程为即为…………………10分圆心M(0,2)到直线AK的距离,…………………11分令,时,直线AK与圆M相离;……………………12分当m=1时,直线AK与圆M 相切;…………………13分当时,直线AK与圆M相交. ……………………14分21.解:(1),……2分而在处的切线为,则,即,从而,……4分(2)由(1)得:,,依题意有即.……6分要证明,只要证;即要证明:;……7分只要证明:;设,则,记,则只要证明;……9分当时,,易见在上是减函数,所以成立,从而不等式成立. ……11分要证明,只要证明;……12分即证明,记,则,记,则只要证明;而() ,所以在上是增函数,故成立,所以成立. ……13分从而,有. ……14分。