基于PLC温度控制系统设计

合集下载

基于PLC的温度控制系统的设计

基于PLC的温度控制系统的设计

1 引言1.1 设计目的温度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。

在许多场合,及时准确获得目标的温度、湿度信息是十分重要的。

近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,能够在工业、农业等各领域中广泛使用。

1.2 设计内容主要是利用PLC S7-200作为可编程控制器,系统采用PID控制算法,手动整定或自整定PID参数,实时计算控制量,控制加热装置,使加热炉温度为为一定值,并能实现手动启动和停止,运行指示灯监控实时控制系统的运行,实时显示当前温度值。

1.3 设计目标通过对温度控制的设计,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。

培养团队精神,科学的、实事求是的工作方法,提高查阅资料、语言表达和理论联系实际的技能。

2 系统总体方案设计2.1 系统硬件配置及组成原理2.1.1 PLC型号的选择本温度控制系统采用德国西门子S7-200 PLC。

S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。

S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。

因此S7-200系列具有极高的性能/价格比。

2.1.2 PLC CPU的选择S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。

S7-200PLC 硬件系统的组成采用整体式加积木式,即主机中包括定数量的I/O端口,同时还可以扩展各种功能模块。

S7-200PLC由基本单元(S7-200 CPU模块)、扩展单元、个人计算机(PC)或编程器,STEP 7-Micro/WIN编程软件及通信电缆等组成。

表2.1 S7-200系列PLC中CPU22X的基本单元本设计采用的是CUP226。

它具有24输入/16输出共40个数字量I/O点。

基于plc温度控制系统的设计论文

基于plc温度控制系统的设计论文

基于plc温度控制系统的设计论文摘要:本设计论文基于PLC温度控制系统,旨在设计一个可靠、稳定、高效、精确的温度控制系统,应用于实际工业生产中。

通过研究传感器、执行器、控制器等硬件设备的特性和功能,并结合PID控制算法和PLC编程技术,实现对温度的自动控制和实时监测。

关键词:PLC、温度控制系统、PID控制、编程技术Abstract:This design paper is based on the PLC temperature control system with the aim of designing a reliable, stable, efficient, precise temperature control system that can be applied in industrial production. Through research of the characteristics and functions of hardware equipment such as sensors, actuators, and controllers, combined with PID control algorithms and PLC programming technology, we will achieve automatic control and real-time monitoring of temperature.Keywords: PLC, temperature control system, PID control, programming technology一、引言随着科技和工业的进步,现代化工业生产中需要用到大量的自动化控制系统来实现对生产过程的智能控制,提高生产效率和品质,还能有效地降低生产成本。

其中,温度控制系统是工业生产中最常用的自动化控制系统之一。

基于PLC的温度控制系统设计

基于PLC的温度控制系统设计

基于PLC的温度控制系统设计作者:曹建军李洋胡明张建王红美来源:《中国新技术新产品》2013年第11期摘要:本文从整体上分析和研究了控制系统的硬件配置、电路图的设计、程序设计、控制对象数学模型的建立、人机界面的设计等,并基于西门子可编程控制器和组态软件开发了温度控制系统,实现了控制系统的实时监控、数据的实时采样与处理。

实验证明,此系统具有快、准、稳等优点,在工业温度控制领域能够广泛应用。

关键词:温度控制;可编程控制器;人机界面;组态王中图分类号:V23 文献标识码:B1 概述温度控制在电子、冶金、机械等工业领域应用非常广泛。

特别是随着计算机技术的发展,对温度控制的要求也越来越趋向于智能化、自适应、参数自整控制等方向发展。

可编程控制器是一种应用很广泛的自动控制装置,PLC 不仅具有传统继电器控制系统的控制功能,而且能扩展输入输出模块,特别是可以扩展一些智能控制模块,构成不同的控制系统,将模拟量输入输出控制和现代控制方法融为一体,实现智能控制、闭环控制、多控制功能一体的综合控制。

具有控制能力强、操作灵活方便、可靠性高、适宜长期连续工作的特点,在传统工业的现代化改造中发挥越来越重要的作用,尤其适合温度控制的要求。

2 系统设计及模型建立本论文通过德国西门子公司的S7-200系列PLC控制器,温度传感器将检测到的实际炉温转化为电压信号,经过模拟量输入模块转换成数字量信号并送到PLC中进行PID调节,PID 控制器输出量转化成占空比,通过固态继电器控制炉子加热的通断来实现对炉子温度的控制。

同时利用亚控公司的组态软件“组态王”设计一个人机界面(HMI),通过串行口与可编程控制器通信,对控制系统进行全面监控,从而使用户操作更方便。

总体上包括的技术路线:硬件设计、软件编程、参数整定等。

控制器的设计是基于模型控制设计过程中最重要的一步。

首先要根据受控对象的数学模型和它的各特性以及设计要求,确定控制器的结构以及和受控对象的连接方式。

基于欧姆龙PLC温度控制系统设计

基于欧姆龙PLC温度控制系统设计

基于欧姆龙PLC温度控制系统设计一、设计目的和要求(一)目的设计锅炉温度电加热控制系统,温度设定在30—60℃可调,超调≤±1℃,稳态误差≤±0.5℃,用组态软件实现温度曲线监控。

通过本次设计,掌握过程控制工程设计技术。

(二)要求1、综合运用计算机、PLC、单片机、智能仪表、温度传感器等组成控制系统对模拟工业对象的电加热锅炉进行控制。

2、掌握温度对象数学模型测试技术。

3、掌握PID、PWM算法程序设计技术。

4、掌握控制参数整定技术。

5、掌握组态软件监控设计技术。

6、提高要求:设计程序控温算法程序,实现锅炉温度升温—保温曲线控制。

二、设计内容及步骤1、设计温度检测和变送电路,包括热电阻、热电偶安装设计。

2、设计电加热主回路,包括防干烧联锁、导线线径计算、空开、继电器、接触器选用等。

3、设计力控组态软件程序,实现温度曲线监控。

4、设计PLC控制程序。

5、测试温度对象的数学模型,写出传递函数。

6、认真学习欧姆龙PLC的PID控制算法,针对自己的控制对象,选择合适的PID控制规律,整定PID参数。

主要包括:控制周期、P、I、D参数。

7、在力控组态软件中用脚本语言自主编写位置式PID、PWM算法程序进行温度控制。

8、撰写设计说明书,主要包含:系统设计思想控制系统电气设计系统运行监控曲线和技术数据(温控曲线、调节时间、超调量、稳态误差)程序清单和说明PID/PWM控制参数设置画出PLC硬件配置图或单片机电路图、程序流程图、实验台安装图(含锅炉和传感器)、管道仪表流程图、控制回路接线图等。

三、设计方案论证(一)主要设备CQM1H 温度传感器智能仪表AI808 加热丝继电器手动给定阀门开度接触器继电器(二)设计思路确立锅炉温度为被控变量;热电阻配合AI818仪表作为温度采集及变送装置;欧姆龙CQM1H PLC为调节器;“继电器+接触器+加热丝”作为执行器。

由于被控变量为模拟量,而执行器要接收的信号为开关量,这就要求我们控制算法不能只是单一的PID调节,还需要加入PWM脉宽调制运算,之后方可输出。

基于PLC的温度控制系统的设计

基于PLC的温度控制系统的设计

1 引言1.1 设计目的温度的测量和控制对人类平常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。

在许多场合,及时准确获得目的的温度、湿度信息是十分重要的。

近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,可以在工业、农业等各领域中广泛使用。

1.2 设计内容重要是运用PLC S7-200作为可编程控制器,系统采用PID控制算法,手动整定或自整定PID参数,实时计算控制量,控制加热装置,使加热炉温度为为一定值,并能实现手动启动和停止,运营指示灯监控实时控制系统的运营,实时显示当前温度值。

1.3 设计目的通过对温度控制的设计,提高在电子工程设计和实际操作方面的综合能力,初步培养在完毕工程项目中所应具有的基本素质和规定。

培养团队精神,科学的、实事求是的工作方法,提高查阅资料、语言表达和理论联系实际的技能。

2 系统总体方案设计2.1 系统硬件配置及组成原理2.1.1 PLC型号的选择本温度控制系统采用德国西门子S7-200 PLC。

S7-200 是一种小型的可编程序控制器,合用于各行各业,各种场合中的检测、监测及控制的自动化。

S7-200系列的强大功能使其无论在独立运营中,或相连成网络皆能实现复杂控制功能。

因此S7-200系列具有极高的性能/价格比。

2.1.2 PLC CPU的选择S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。

S7-200PLC 硬件系统的组成采用整体式加积木式,即主机中涉及定数量的I/O端口,同时还可以扩展各种功能模块。

S7-200PLC由基本单元(S7-200 CPU模块)、扩展单元、个人计算机(PC)或编程器,STEP 7-Micro/WIN编程软件及通信电缆等组成。

表2.1 S7-200系列PLC中CPU22X的基本单元本设计采用的是CUP226。

它具有24输入/16输出共40个数字量I/O点。

基于PLC控制的加热炉温度控制系统设计

基于PLC控制的加热炉温度控制系统设计

基于PLC控制的加热炉温度控制系统设计概述加热炉是工业生产中常见的设备之一,其主要作用是提供高温环境用于加热物体。

为了确保加热炉的稳定性和安全性,需要设计一个可靠的温度控制系统。

本文将介绍一个基于PLC(可编程逻辑控制器)控制的加热炉温度控制系统设计方案。

系统设计原理在加热炉温度控制系统中,PLC作为核心控制器,通过监测温度传感器的输出信号,根据预设的温度设定值和控制策略,控制加热炉的加热功率,从而实现对加热炉温度的稳定控制。

以下是系统设计的主要步骤:1.硬件设备选择:选择适合的温度传感器和控制元件,如热电偶、温度控制继电器等。

2.PLC选型:根据实际需求,选择合适的PLC型号。

PLC需要具备足够的输入输出点数和计算能力。

3.传感器连接:将温度传感器接入PLC的输入端口,读取实时温度数据。

4.温度控制策略设计:根据加热炉的特性和工艺需求,设计合适的温度控制策略。

常见的控制策略包括比例控制、积分控制和微分控制。

5.控制算法实现:根据温度控制策略,编写PLC程序,在每个采样周期内计算控制算法的输出值。

6.加热功率控制:使用控制继电器或可调功率装置,控制加热炉的加热功率。

7.温度反馈控制:通过监测实际加热炉温度和设定值之间的差异,不断修正加热功率控制,使加热炉温度稳定在设定值附近。

系统硬件设计基于PLC控制的加热炉温度控制系统的硬件设计主要包括以下几个方面:1.温度传感器:常用的温度传感器有热电偶和热敏电阻。

根据加热炉的工艺需求和温度范围,选择适合的温度传感器。

2.PLC:选择适合的PLC型号,根据实际需求确定PLC的输入输出点数和计算能力。

3.控制继电器或可调功率装置:用于控制加热炉的加热功率。

根据加热炉的功率需求和控制方式,选择合适的继电器或可调功率装置。

4.运行指示灯和报警器:用于显示系统的运行状态和报警信息。

PLC程序设计PLC程序是基于PLC的加热炉温度控制系统的关键部分,其主要功能是实现温度控制算法。

《基于PLC的环形炉温度控制系统设计与应用》范文

《基于PLC的环形炉温度控制系统设计与应用》范文

《基于PLC的环形炉温度控制系统设计与应用》篇一一、引言随着工业自动化技术的不断发展,温度控制系统的设计与应用在工业生产中显得尤为重要。

环形炉作为许多工业生产过程中的关键设备,其温度控制系统的稳定性和精确性直接影响到产品的质量和生产效率。

因此,基于PLC的环形炉温度控制系统应运而生,本文将介绍其设计思路和应用效果。

二、系统设计1. 系统构成基于PLC的环形炉温度控制系统主要由PLC控制器、温度传感器、执行机构、人机界面等部分组成。

其中,PLC控制器作为系统的核心,负责接收温度传感器的信号,根据设定的控制算法输出控制信号,驱动执行机构进行温度调节。

2. PLC控制器设计PLC控制器是整个系统的“大脑”,其设计应考虑到系统的实时性、稳定性和可扩展性。

首先,应选择合适的PLC型号,根据环形炉的规模和工艺要求,确定I/O点的数量和类型。

其次,编写控制程序,实现温度的实时监测、报警、自动调节等功能。

此外,还应考虑到系统的故障诊断和保护功能,确保系统的稳定运行。

3. 温度传感器和执行机构的选择温度传感器是测量环形炉温度的关键部件,应选择具有高精度、高稳定性的传感器。

执行机构则是根据PLC控制器的指令进行温度调节的部件,常见的有电动调节阀、电动执行器等。

在选择时,应考虑到其响应速度、调节精度和可靠性等因素。

4. 人机界面设计人机界面是操作人员与系统进行交互的界面,应设计得简洁、直观、易操作。

通过人机界面,操作人员可以实时监测环形炉的温度、设定温度目标值、查看报警信息等。

此外,还应具备历史数据查询、报表生成等功能,方便操作人员进行生产管理和数据分析。

三、系统应用基于PLC的环形炉温度控制系统在实际应用中取得了显著的效果。

首先,该系统具有较高的控制精度和稳定性,能够实时监测环形炉的温度,并根据设定的控制算法自动调节执行机构,使温度保持在设定范围内。

其次,该系统具有丰富的功能,如温度报警、历史数据查询、报表生成等,方便操作人员进行生产管理和数据分析。

基于PLC的温度控制系统设计

基于PLC的温度控制系统设计

基于PLC的温度控制系统设计
随着模拟及数字技术水平的不断提升,智能温度控制技术得以蓬勃发展。

基于PLC (程序控制器)的温度控制系统具有灵活性高、控制精度高、可靠性强等优点。

因此,基于PLC的温度控制系统已被广泛采用于电子产品、食品加工、医药制造等行业。

基于PLC的温度控制系统包括输入模块、PLC控制器、I/O模块、输出设备及其它组成部分,以及相应的软件系统。

输入模块负责采集温度数据,采用温度传感器或者比调剂测量温度变化,然后将其传输到PLC控制器中。

PLC控制器将采集到的温度数据转换为控制信息,并且根据设定的参数进行调节,以完成温度控制任务。

I/O模块用于接收PLC控制器输出的控制信号,将控制信号转换为电信号,向输出设备传送控制信号,从而实现温度控制任务的目的。

输出设备是根据输入的电信号控制负责调节温度的设备,比如冷气机、空调机等,以调整房间温度。

最后,软件系统在整个系统中起着至关重要的作用,它主要功能有温度数据记录、参数设定、报警处理、远程监控等。

综上所述,基于PLC的温度控制系统可以实现安全精确的温度控制,极大提高了传统温控系统的效率,为企业带来了良好的经济效益。

此外,基于PLC的温度控制系统还具备了良好的防范性能,有效地防止了因温度控制失常而发生的问题,具有重要的实际意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号: 毕业论文(设计)题目基于PLC温度控制系统的设计指导教师学生姓名学号专业自动化教学单位机电工程学院毕业论文(设计)开题报告书德州学院毕业论文(设计)中期检查表院(系):机电工程学院专业:自动化 2014 年 4月 7日目录1引言 (2)1.1课题背景以及研究的目的、意义 (2)1.2温控系统的现状 (2)1.3项目研究内容 (3)2系统硬件设计 (4)2.1 PLC选择 (4)2.2 硬件电路设计 (7)3 系统软件设计 (13)3.1 编程与通信软件的使用 (14)3.2 程序设计 (14)3.3 系统程序流程图 (15)3.4 控制系统控制程序的开发 (16)4系统的仿真和运行测试 (25)4.1 组态王的运行 (25)4.2 实时曲线的观察 (26)4.3 分析历史趋势曲线 (27)4.4 编辑数据的报表 (27)4.5系统稳定性测试及最终评估 (27)参考文献 (29)谢辞 (30)附录一三菱FX系列PLC指令一览表 (30)附录二系统程序(梯形图) (32)基于PLC温度控制系统的设计(德州学院机电工程学院,山东德州253023)摘要:本文主要介绍了基于日本三菱公司FX2N系列的可编程控制器从而进行硬件设计和软件设计,进而完成了一个完整的关于炉温控制系统的设计方案。

该设计编程时调用了PID控制模块,使得程序更为简洁,运行速度更为理想。

在软件上,则是通过利用比较新型的三菱专用软件三菱(PLC)GX Developer 8.86Q,实现控制系统的实时监控、数据的实时采样与处理。

实验证明,此系统具有快、准、稳等优点,在工业温度控制领域能够广泛应用。

关键词:温度控制;可编程控制器;三菱FX2N;PID控制模块1引言1.1课题背景以及研究的目的、意义进入21世纪后,我国社会的各项发展突飞猛进,世界的技术更是日新月异,竞争也愈演愈烈,传统的人工的操作已不能满足于目前的制造业前景,也无法保证高质量的要求,更不能提升高新技术企业的形象。

在各种控制领域中,温度控制在电子业、机械业、冶金业等工业领域应用非常广泛。

由于其具有工况复杂、参数多变、运行惯性大、控制滞后等特点,它对控制调节器要求极高。

近年来,温度测控领域发展迅速,并且随着数字技术的发展,温度的测控芯片也相应的登上历史的舞台,能够在工业、农业等各领域中广泛使用。

目前,仍有部分工业和企业生产线,存在着控制精度不高、炉内温度均匀性差等问题,造成工艺要求不达标、装备运行成本费用高、产品品质低下,严重影响企业的经济效益,急需进行技术的改造。

目前,在我国的工业控制自动化领域中,可编程控制器(PLC)则在社会的发展中以其拥有可靠性高、抗干扰能力强、编程简单、功能强大、性价比高、体积小、能耗低等各种优点获得了广大的好评,因此被各种自动控制设计者应用于现代工业的自动控制之中。

在现代的各种工业控制中,设计者通常会选用可编程控制器(PLC)作为自动设备的控制系统,用该系统进行相应的数据采集与处理、逻辑判断、输出控制等。

可编程控制器(PLC)在控制中还能够根据设计要求的需求进行一定的扩展输入输出模块,最终能够组成不同的控制系统,并且可以最终将模拟量输入输出的控制和现代控制的方法互相融为一体,实现各种功能一体的综合控制。

现代社会的发展可编程控制器(PLC)正在以集成度高、功能强、抗干扰能力强、组态灵活、工作稳定受到广大社会的普遍欢迎,在各种的工业的现代化控制中发挥着其独有的重要作用,并且对温度控制尤其适合。

1.2温控系统的现状在我国,自改革开放以来,我国的工业由于飞速的发展,各种工业过程控制急需发展,同时,面对世界的控制发展,尤其是在电子技术和计算机技术的迅猛发展下,对自动控制和自动设计的方面都有了重大的推动。

对于我国的国内温度控制系统的发展方面,也有了重大的突破。

当然相对于在自适应、参数自整定等方面面对一些发达国家还是有很大的差距,在这几个方面,则以美国、德国、瑞典等国的技术比较领先,都自主的生产出了一批性能优越,操作简便的温度控制器及仪器仪表,并在世界的各行有了广泛的应用。

目前,我国发展的比较成熟的产品其实主要以“点位”控制及很普通的PID控制器为主,这种控制系统的性能很低,在一些温度控制中,其只能适应很普通的温度控制。

对于一些复杂、控制滞后、时变温度系统的控制,我国的产品就会感觉很乏力。

在许多的工业控制中,更需要一些智能化,自适应控制仪表等高性能的控制器。

但是随着我国经济的快速发展,控制能力的不足已经引起了我国政府及一些大企业的重视,并不断地进行自主更新,并且取得一些良好的产品效应。

通过一系列的有力措施,目前看来我国在一些温度仪表,温度控制等重要的工业中已经得到了比较迅速的发展。

随着社会生活的高速的发展,人们在生活和生产中对温度控制系统的要求也变得越来越高,因此,高精度、智能化、人性化的温度控制系统是国内外必然发展趋势。

1.3项目研究内容可编程控制器(PLC)是集计算机技术、自动控制技术和通信技术等三种不同的但有关联的技术为一体的自动控制装置。

可编程控制器(PLC)性能非常的优越,现在已经被广泛的应用到工业控制的多种领域,并且已经成为了工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)之一。

可编程控制器(PLC)的应用已成为工业潮流中不可缺少的一员,随着社会的发展,相信可编程控制器(PLC)技术在我国将得到更为全面的推广和应用。

本篇的论文研究的就是可编程控制器(PLC)技术在锅炉的温度监控系统上的一种比较先进的自动控制应用。

该论文是从整体上分析了、研究了控制系统的硬件的设计、电路图的设计、程序的设计,以及控制算法的选择和参数的整定等各种具体详细的设计。

本篇的论文就是通过三菱FX2N PLC控制器,运用这种温度传感器将检测到的实际炉温转化为电压信号,然后会经过模拟量的输入模块转换成为数字量信号并送到PLC中进行PID 调节,然后PID的控制器输出量会转化成占空比,通过固态继电器控制炉子的加热的通断来实现对炉子最终的温度的控制。

同时,在通过串行口与可编程控制器通信,对控制系统进行全面的监控,从而会让使用的用户操作更为方便。

2系统硬件设计2.1 PLC选择我们设计方案的要求,可以分析得出:该设计以开关量控制为主,同时具有部分模拟量控制的应用系统。

系统设计需要使用13个输入端口和17个输出端口,另外还需要一个A/D转换器来完成温度采样,所以应该选用一个控制系统功能比较稳定的控制器。

经过多重考虑和比较,我们最终决定选用三菱的FX系列可编程控制器中的FX2N-48MR-001(基本I/O点数为24),同时还选用了一个A/D转换器来完成温度采样系统。

因为三菱的FX系列可编程控制器既是我们所学所用的PLC,同时三菱FX系列可编程控制器中的FX2N-48MR-001的性价比很高,实施起来也比较方便。

2.1.1三菱的FX系列PLCFX系列PLC具有庞大的发展体系。

主机系列就有:FX0、FX 0S、FX 0N、FX1、 FX2、FX2C、 FX2N、FX2NC共9个系列。

在这9个系列中又分为多种不同的机型。

其中FX2N PLC 是FX系列中功能最强、速度最高的微型可编程序控制器。

根据FX2N系列可编程序控制器的型号和相关数据,我们最终决定选择FX2N-48MR-001型号的控制器。

我们所选用的FX2N系列可编程控制器中的FX2N-48MR-001,它由基本单元、扩展单元、扩展模块等构成。

该用户存储器容量可扩展到16K步。

I/O点最大可扩展到256点。

它有27条基本指令,其基本指令的执行速度超过了很多大型PLC。

三菱FX2N—48MR-D PLC,为继电器输出类型,其输入、输出点数皆为是24点,可扩展模块可用的点数为48-64,内附8000步RAM。

三菱FX2N—48MR-D PLC内部构造数据如下:(1)输入继电器X(X0-X27,24点,八进制)(2)输出继电器Y(Y0-Y27,24点,八进制)(3)辅助继电器M(M0-M8255)[通用辅助继电器(M0-M499)](4)状态继电器(S0-S999)(5)定时器T(T0-T255)(T0-T245为常规定时器)(6)计数器C(C0-C255)(7)指针(P/I)见表1和表2(8)数据寄存器D(D0-D8255)(D0-D199为通用型)表1 定时器中断标号指针表输入编号中断周期(ms)中断禁止特殊辅助继电器M8056I6XX 在指针名称的XX部分中,输入10-99的整数。

I610为每10ms执行一次定时器中断I7XX M8057I8XX M8058表2 输入中断标号指针表输入编号指针编号中断禁止特殊辅助继电器上升中断下降中断X0 I001 I000 M8050X1 I101 I100 M8051X2 I201 I200 M8052X3 I301 I300 M8053X4 I401 I400 M8054X5 I501 I500 M8055注:M8050-M8058=“0”表允许;M8050-M8058=“1”表禁止。

2.1.2 FX2N-4AD 特殊功能模块FX2N-4AD是作为模拟量输入模块, FX2N-4AD有四个模拟量输入通道(分别为CH1、CH2、CH3和CH4),每个通道都可独立进行A/D转换,将模拟量信号转换成数字量信号,其分辨率为12位。

其模拟量输出性能如表3所示。

表3 模拟量输出性能表项目电压输入电流输入电压或电流输入的选择基于对输入端子的选择,一次可使用4个输入点模拟量输入范围DC :-10~+10V(输入电阻200KΩ)(注意:若输入电压超过±15V,单元会被损坏)DC :-20~+20mA(输入电阻250Ω)(注意:若输入电流超过±32mA,单元会被损坏)数字输出12位的转换结果以16位二进制补码方式存储(-2048-+2047)分辨率5mV 20μA总体精度±1%(对于-10~+10V范围)±1%(对于-20~+20mA范围)转换速度15ms/通道(常速)6ms/通道(高速)所有这些数据的转换和参数设置的调整都是可以通过FROM/TO的指令进行的完成。

除此之外的,我们还同时在编程过程中很注意的用到了BFM 数据缓冲存储器,具体分布情况如下表4所示。

表4 BFM 数据缓冲存储器分布表BFM 编号 内容#0 通道初始化,缺省值=H0000#1 通道1 存放采样值(1~4096),用于得到平均结果。

缺省值设为8(正常速度),高速操作可选择1#2 通道2 #3 通道3 #4 通道4 #5 通道1 缓冲器#5~#8独立存储通道CH1~CH4平均输入采样值#6 通道2 #7 通道3 #8 通道4 #9 通道1 这些缓冲区用于存放每个输入通道读入的当前值 #10 通道2 #11 通道3 #12 通道4 #13-#14 保留#15 选择A/D 转换速度 BFM #16-#19 保留#20 复位到缺省值和预设,缺省值=0#21 禁止调整偏差、增益值,缺省值=(0,1)允许 #22 偏移,增益调整 #23 偏移值,缺省值=0 #24 增益值,缺省值=5000 #25-#28 保留 #29 错误状态 #30 识别码 #31不能使用通道的选择:在BFM#0中写入十六进制4位数字HXXXX 进行A/D 模块的初始化,最低位数字控制为CH1,最高位数字控制为CH4,在该通道中的各位数字的具体含义如下: X=0时设定输入范围为-10V ~+10V ;并且当X=1时,设定输入范围为+4mA ~+20mA ;X=2时,设定输入范围为-20mA ~+20mA ;X=3时,关断通道。

相关文档
最新文档