极谱分析的基本原理(精)
第六章 极谱法

第六章 极谱法及伏安法重点: 基本原理、定量分析方法、干扰电流产生的原因及消除方法. 难点: 仪器结构、极限电流方程式、干扰电流产生的原因.极谱法(Polarography)及伏安法(Voltammetry)是一类特殊的电解分析方法,其特殊性表现在两个电极上,电解池由工作电极和参比电极组成, 工作电极为的面积较小的极化电极,参比电极常则采用面积较大,不易极化的去极化电极。
极谱法是指使用表面积不断更新的滴汞电极作工作电极的方法;伏安法的工作电极既可以是面积固定的悬汞、石墨、铂等电极,也可使用表面作周期性连续更新的滴汞电极。
伏安法和极谱法是根据对试样电解过程中获得的电流—电位曲线进行分析的电化学方法。
§1 普通极谱法的基本原理极谱法是1922年由捷克化学家海洛夫斯基(Heyrovsky)建立起来的。
凡在汞电极上能被还原或氧化的无机和有机物质,一般都可用极谱法测定. 极谱法除用于痕量物质的测定外,还可作为化学反应机理、电极过程动力学及平衡常数测定等基础理论研究的手段. 一. 基本装置和电极极谱分析中,要求两个电极的面积一大一小且溶液保持静止。
大面积的参比电极表现为去极化电极,其电极电位在电解时保持恒定,不随外加电压的变化而改变,而小面积电极则为极化电极, 其电极电位完全受外加电压的控制。
极谱法采用滴汞电极 (dropping mercury electrode, DME) 为工作电极(负极),饱和甘汞电极(saturated calomel electrode ,SCE)为参比电极(正极)。
见图滴汞电极由贮汞瓶下接一厚壁塑料管,再接一内径为0.05mm 的玻璃毛细管构成。
汞在毛细管中周期性地长大滴落,其周期时间为3-5s 。
滴汞电极为极化电极,因为一方面,其电极面积很小,另一方面,主体溶液中反应离子的浓度也很小,所以在极化电极上的电解电流很小,但是,在滴汞电极表面上的电流密度却很大,所以在滴汞电极上会造成很明显的浓差极化,从而引起扩散运动。
极谱分析法

2.影响扩散电流的因素
只有保持扩散电流方程式中的常数项K不变,才能使极 限扩散电流与待测物质的浓度成正比。影响常数项K的 主要因素有毛细管特性m2/3t1/6( m为汞滴流速mg· -1;t s 为滴汞周期s),m和t的任何改变都会引起扩散电流的变化, 而汞滴流速与汞柱高度有一定的关系,因此在测量标准 溶液和未知试样时,应使用同一支毛细管,并且在同样 的汞柱高度下记录极谱图; 扩散电流方程式中除了电子转移数n与温度无关,其它 各项都受温度的影响,但在一般情况下,若将温度变化 控制在±0.5℃范围内,则由于温度变化而引起扩散电流 的误差不大于1%,否则应采用恒温装置; 溶液的组成影响扩散系数D,特别是溶液的粘度影响扩 散系数,因而也影响扩散电流,因此,应保持标准溶液 和试样溶液的组分基本相一致 。
(4)氧电流或氧波
在试液中溶解的少量氧也很容易在滴汞电极上 还原,并产生两个极谱波,由于它们的波形很 倾斜,延伸很长,占据了0~-1.2V极谱分析最 有用的电势区间,重叠在被测物质的极谱波上, 干扰很大,称其为氧电流或氧波。 消除氧电流的方法有①通入惰性气体如N2,驱 除溶解氧,②或在中性和碱性溶液中加入亚硫 酸钠还原氧,③或在酸性溶液中加入还原性铁 粉与酸作用生成氢来驱除氧。
(2)迁移电流:来源于电解池的正极和负极对被测离子的 静电引力或排斥力。在受扩散速度控制的电解过程中, 产生浓差的同时必然产生电位差,使被测离子向电极 迁移,并在电极上还原而产生电流,因此观察到的电 解电流为扩散电流与迁移电流之和,而迁移电流与被 测物质无定量关系,必须消除。 消除方法:一般向电解池加入大量电解质,由于负离 子对溶液中所有正离子都有静电引力,所以用于被测 离子的静电引力就大大地减弱了,从而使由静电引力 引起的迁移电流趋近于零,达到消除迁移电流的目的, 所加入的电解质称为支持电解质,只起导电作用,不 参加电极反应,因此也叫惰性电解质,如KCl、NH4Cl 等
极谱法的基本原理

极谱法的基本原理明确极谱法的基本原理。
理解极谱定量分析的依据和极谱定性分析的依据,掌握半波电位的概念。
资源提供11.主题词:极谱法2.对应知识点:极谱法3.资源形式:讲解4.所属章节:第十章第二节直流极谱法亦可简称为极谱法,是以控制电位的电解过程为基础的极谱法。
其实验装置与一般电解装置大体相似,主要有三个部分:第一部分是提供可变外加电压的装置;第二部分是指示电压改变过程中进行电解时流过电解池电流变化的装置;第三部分是电解池。
极谱分析与电解分析装置的不同之处在于两个电极。
极谱分析使用的两个电极一般都是汞电极,其中一个是电极面积很小的滴汞电极,为工作电极;另一个是面积很大的汞电极,或电位恒定的饱和甘汞电极,为参比电极。
极谱法是通过获得的电流--电压曲线即极谱波或极谱图来进行分析测定的。
在外加电压还未达到被测物质的分解电压时,有一很小的电流通过电解池,此电流称之为残余电流。
电解开始后,随着外加电压增大,电流迅速增大,最后当外加电压增大到一定值时,电解电流不再增加,而达到一个极限电流。
称之为极限扩散电流,也叫波高。
在一定条件下,波高与被测浓度成正比,这是极谱定量分析的基础,1934年尤考维奇导出了扩散电流方程式,即尤考维奇方程:式中:为平均极限扩散电流;n为电极反应中的电子转移数;D为被测物在溶液中的扩散系数;m为汞流速;为滴汞周期(s);c为被测物浓度。
从尤考维奇方程可知,影响极限扩散电流的主要因素有:毛细管特征(称为毛细管常数,它与汞柱压力的平方根成正比)、温度、滴汞电极电位和电解液组成。
在进行极谱分析时,残余电流即杂质产生的电解电流和电容电流干扰测定,需要设法消除,其实降低电容电流已成为极谱分析仪器发展的主流。
迁移电流和极谱极大可分别通过加入大量的支持电解质和极大抑制剂(如表面活性剂)来消除。
溶解氧在滴汞电极上还原,会产生两个极谱干扰测定,可通过惰性气体和加入不影响极谱分析的还原剂除氧。
在极谱电解过程中,由于控制反应速度的关键步骤不同,一般可将极谱波分成可逆波、不可逆波和动力波。
极谱分析的基本原理.

在1mol/L KCl底液中, 不同浓度的Cd2+极谱波
讨论
1. 同一离子在不同溶液中,半波电位不同。金属络离子 比简单金属离子的半波电位要负,稳定常数越大,半波电位 越负; 2. 两离子的半波电位接近或 重叠时,选用不同底液,可有效 分离,如Cd2+和Tl+在NH3和NH4Cl溶 液中可分离( Cd2+生成络离子); 3. 极谱分析的半波电位范围 较窄(2V),采用半波电位定性 的实际应用价值不大; 可逆极谱波:电极反应极快,扩 散控制; 非可逆极谱波:同时还受电极反 应速度控制。氧化波与还原波具 有不同半波电位(超电位影响)。
调节外加电压,使被滴定物 质或滴定剂产生极限扩散电流, 以滴定体积对极限扩散电流作图, 找出滴定终点。 右图为硫酸盐滴定二价铅离 子的极谱滴定曲线
2. 极谱滴定曲线与电位选择
滴定终点前后扩散电流变化分别由试样和滴定剂提供,故 选择不同的电压扫描范围,可获得不同形状的滴定曲线,如 下图所示。 图(b)中,选 择电压在A点, 滴定终点后,过 量的滴定剂不产 生扩散电流,故 滴定曲线变平, 而图(c)中则在滴 定终点后,随滴 定剂的加入,扩 散电流增加。
由于汞齐浓度很稀,aHg不变;则:
c RT EE ln nF c
O
o a a o M M
( 2)
由扩散电流公式:
id = KM cM
o i K M (cM cM )
(3)
在未达到完全浓差极化前, cM不等于零;则:
(4)
(4)-(3) 得:
o id i K M cM ;
id i c KM
o M
( 5)
根据法拉第电解定律:还原产物的浓度(汞齐)与通过电 解池的电流成正比,析出的金属从表面向汞滴中心扩散,则:
第十章极谱分析法-

3
二、极谱分析法的特点
(1)较高的灵敏度:普通极谱法:10-5~10-2 mol/L; 新技术:10-11~10-8 mol/L. (2)分析速度快,易于自动化 (3)重现性好:汞滴不段更新,电极保持干净 (4)应用范围广:有机物质-无机离子分析;溶度积、 解离常数和络合物组成等的测定;电极反应机理研究; 电极过程动力学研究等。
第十章 极谱分析法
分析化学(下) 东北师范大学精品课
东北师范大学分析化学精品课
1
极谱法是一种特殊的电解方法。
(1)电极:滴汞电极,面积很小,电解时溶液浓度变化小 (2)极谱法测量的参数:与电重量法不同,不测量析出物 质的质量,测量回路中电流和工作电极的电位,并绘制电 流-电位曲线(又称极谱图),依据极谱图进行定性、定 量分析。 注:如果采用固体电极(或面积固定的电极)作为工作电 极,则此法称为伏安法。
24
东 北 师 范典大型学的分极析谱化曲学线 精 品 课
25
一、扩散电流方程式
id = KC
1934年,尤考维奇推导出扩散电流的近似公式
1 2 1
i 70n8D 2qm 3 6C
式中:n为电极反应中电子转移数;D为待测组分的扩散系 数 ( m2/s ) ; qm 为 滴 汞 流 速 ( mg/s); 为 滴 汞 生 长 时 间 (s);C为被测物质的浓度(mmol/L);i为任一瞬间 的扩散电流(mA)
id 60n7D 2qm 3t6C
在方程式中,与毛细管有关的项是qm和t, qm2/3t1/6称 为毛细管常数。 qm和t取决于毛细管的直径、长度和汞柱压力。若直径 和长度恒定,汞柱高度为h,压力为P,则
qm=K1P t=K2P qm2/3t1/6=K12/3K21/6P1/2
极谱分析法的基本原理

到1.30V (vs.SCE)还不会有H2析出,这样在酸性溶液
中可对很多物质进行极谱测定。
• 4. 测定范围广
• 汞能与许多金属生成汞齐,使其在滴汞电极上的 析出电位变正,因而在碱性溶液中,极谱可测定碱金 属、碱土金属。
缺点:
• 1. 汞易挥发且有毒,注意通风; • 2. 滴汞电极毛细管易堵塞,制备较麻烦; • 3. 当滴汞电极作阳极时,电位一般不能
超过+0.40V,否则汞将被氧化。 • 4. 滴汞电极上残余电流较大,限制了测定灵敏度
的提高。
4 3
2 1
图8-4
近似处理:
• 由于金属的过电位很小,极谱分析中的电流很小,电
解过程中电阻 R 也不大,则、 iR 都很小,可忽略。
U 外 ESCE Ede
又SCE的电位恒定不变,则:
U外 Ede
(相对于SCE)
重要意义:U外 Ede (相对于SCE)
• (1) 该式说明了从实验中得到的电流-外加电压(iU)曲线与作为理论分析基础的电流-滴汞电极电 位(i-Ede)曲线完全等同(滴汞电极电位可以用外 加电压取负值来表示)。
•
在扩散层内, Pb2+浓度从外向内逐渐减
小,在扩散层外, Pb2+的浓度等于主体溶液
的浓度。
图8-5
• 由于电极反应速度快,而离子扩散速度慢,溶液又 处于静止状态,所以扩散电流的大小决定于扩散速 度,而扩散速度又与扩散层中的浓度梯度成正比。
i [Pb2 ] [Pb2 ]0
i K ([Pb2 ] [Pb2 ]0 )
还原析出,产生持续不断的电解电流。
扩散电流
(2) 扩散电流
• 由于浓差极化,使离子不 断由高浓度向低浓度的电极表 面扩散,因而不断引起电极反 应而产生的电流称~ 。
第二节 极谱分析法的基本原理

此时,电解池开始有电解电流提供, 此时,电解池开始有电解电流提供,并开始上 电极电位: 升。电极电位:
ϕ de= ϕ
o Pb 2+ , Pb
[Pb ]0 0.059 lg + 2 [Pb(Hg)]0
2+
[Pb2+]0: Pb2+在电极表面的浓度。 在电极表面的浓度。 [Pb(Hg)]0: 铅汞齐在电极表面的浓度。 铅汞齐在电极表面的浓度。
近似处理: 近似处理:
由于极谱分析中的电流很小,小于 由于极谱分析中的电流很小,小于100µA, 电解过程中 如果电阻R也不大, 就很小,可以忽略。 如果电阻 也不大,则 iR 就很小,可以忽略。 也不大
U 外 = ϕ SCE − ϕ de
的电位恒定不变, 又SCE的电位恒定不变,则: 的电位恒定不变
3. 防止 +的干扰。 防止H 的干扰。 H2在汞电极上的过电位比较高,滴汞电极电位负 在汞电极上的过电位比较高, 还不会有H 到1.20V(vs.SCE)还不会有 2析出,这样在酸性溶液 还不会有 析出, 中可对很多物质进行极谱测定。 中可对很多物质进行极谱测定。 4. 测定范围广。 测定范围广。 汞能与许多金属生成汞齐, 汞能与许多金属生成汞齐,使其在滴汞电极上的 析出电位变正,因而在碱性溶液中, 析出电位变正,因而在碱性溶液中,极谱可测定碱金 碱土金属。 属、碱土金属。
极谱分析报告

极谱分析报告1. 引言极谱分析是一种用于研究材料中电子能级分布以及与之相关的物理性质的实验技术。
通过测量材料吸收或发射特定能量的光谱,可以推断材料的电子能级结构和跃迁行为。
极谱分析在材料科学、物理学和化学等领域得到广泛应用。
本报告旨在介绍极谱分析的基本原理、实验方法和数据处理。
首先,我们将介绍极谱分析的基本概念和目的。
然后,我们将讨论常用的极谱实验技术和仪器设备。
最后,我们将详细介绍极谱数据的处理方法和分析结果。
2. 极谱分析的原理极谱分析基于原子或分子对特定能量的光吸收或发射现象进行研究。
在吸收过程中,物质吸收光能,使电子从低能级跃迁到高能级;在发射过程中,物质散发出光能,电子从高能级返回到低能级。
通过测量吸收或发射的光谱,可以得到材料的电子能级结构信息。
极谱分析常用的光谱包括紫外-可见吸收光谱、红外光谱和拉曼光谱等。
紫外-可见吸收光谱用于研究物质的电子能级结构和电子跃迁行为;红外光谱用于研究物质的分子结构和振动行为;拉曼光谱用于研究物质的分子结构和转动行为。
3. 极谱实验方法进行极谱分析需要准备样品和仪器设备。
下面介绍常用的极谱实验方法。
3.1 样品准备样品准备要求样品纯度高,并且能够在光谱范围内吸收或发射光。
常用的样品包括溶液样品、固体样品和气体样品。
样品的处理包括溶解、稀释和制备薄膜等步骤。
3.2 仪器设备进行极谱分析需要使用光源、光谱仪和检测器等仪器设备。
光源可以是连续光源或脉冲光源,光谱仪可以是单色仪、激光光谱仪或光栅光谱仪,检测器可以是光电二极管、光电倍增管或光谱仪。
选择合适的仪器设备可以保证实验的准确性和可靠性。
3.3 实验步骤通过合适的实验步骤可以完成极谱分析实验。
一般的实验步骤包括样品测量、参比测量和数据采集等。
在样品测量中,需要将样品放入样品池或样品架中;在参比测量中,需要使用空白溶液或纯溶剂作为参比;在数据采集中,需要设置光谱仪参数并记录光谱数据。
4. 极谱数据处理与分析极谱数据处理与分析是极谱分析的重要环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、干扰电流与抑制
interference current and elimination
1.残余电流
(a)微量杂质等所产生的微弱电流 产生的原因:溶剂及试剂中的微量杂质及微量氧等。 消除方法:可通过试剂提纯、预电解、除氧等;
(b)充电电流(也称电容电流) 影响极谱分析灵敏度的主要因素。 产生的原因:分析过程中由于汞滴不停滴下,汞滴表面
二、极谱定量分析方法
Quantitative methods of polarography
依据公式: id =K c 可进行 定量计算。
极限扩散电流 由极谱图上量 出, 用波高直接进行计算。
1. 波高的测量
(1) 平行线法 (2) 切线法 (3) 矩形法
2.定量分析方法
(1) 比较法(完全相同条件)
特性常数,用K 表示。则:
(id)平均 = I ·K ·c
2.影响扩散电流的因素
(1)溶液搅动的影响
扩散电流常数
I= 607nD1/2 = id /( K·c )
(n和D取决于待测物质的性质) 应与滴汞周期无关,但与实际
情况不符。原因,汞滴滴落使溶液 产生搅动。加入动物胶(0.005% ),可以使滴汞周期降低至1.5秒。
在溶液静止的情况下进行的 非完全的电解过程。
如果一支电极通过无限小的电流,便引起 电极电位发生很大变化,这样的电极称之为极 化电极,如滴汞电极,反之电极电位不随电流 极谱分析过程:
电压由0.2 V逐渐增加到 0.7 V左右,绘制电流电压曲线。图中①~② 段,仅有微小的电流流 过,这时的电流称为 “残余电流”或背景电 流。当外加电压到达Pb2+ 的析出电位时,Pb2+开始 在滴汞电极上迅速反应。
(2)被测物浓度影响
被测物浓度较大时,汞滴上析出的金属多,改变汞滴表 面性质,对扩散电流产生影响。故极谱法适用于测量低浓度 试样。
(3)温度影响
温度系数+0.013/ C,温度控制在0.5 C范围内,温度引 起的误差小于1%。
3. 极谱波方程式
极谱波方程式: 描述极谱波上电流与电位之间关系。 简单金属离子的极谱波方程式: (可逆;受扩散控制;生成汞齐)
为什么使用两支性能不同的电极? 为什么要采用滴汞电极?
4. 滴汞电极的特点
a. 电极毛细管口处的汞滴很小,易形成浓 差极化; b. 汞滴不断滴落,使电极表面不断更新, 重复性好。(受汞滴周期性滴落的影响,汞 滴面积的变化使电流呈快速锯齿性变化); c. 氢在汞上的超电位较大; d. 金属与汞生成汞齐,降低其析出电位,使 碱金属和碱土金属也可分析。
检测下限一般在10-4~10-5mol/L范围内。这主要是受干 扰电流的影响所致。
如何对经典直流极谱法进行改进? 改进的途径?
调节外加电压,使被滴定物 质或滴定剂产生极限扩散电流, 以滴定体积对极限扩散电流作图, 找出滴定终点。
右图为硫酸盐滴定二价铅离 子的极谱滴定曲线
2. 极谱滴定曲线与电位选择
滴定终点前后扩散电流变化分别由试样和滴定剂提供,故 选择不同的电压扫描范围,可获得不同形状的滴定曲线,如 下图所示。
图(b)中,选 择电压在A点, 滴定终点后,过 量的滴定剂不产 生扩散电流,故 滴定曲线变平, 而图(c)中则在滴 定终点后,随滴 定剂的加入,扩 散电流增加。
e. 汞容易提纯 扩散电流产生过程
中,电位变化很小,电解 电流变化较大,此时电极 呈现去极化现象,这是由 于被测物质的电极反应 所致。被测物质具有去 极化性质:去极剂。 Hg有毒。汞滴面积的变 化导致不断产生充电电 流(电容电流)。
二、扩散电流理论
theory of diffusion current
有机分析方面:醛类、酮类、糖类、醌类、硝基、亚硝 基类、偶氮类
在药物和生物化学方面:维生素、抗生素、生物碱
经典直流极谱的缺点
(1) 速度慢 一般的分析过程需要5~15分钟。这是由于滴汞周期需要 保持在2~5秒,电压扫描速度一般为5~15分钟/伏。获得一 条极谱曲线一般需要几十滴到一百多滴汞。
(2)方法灵敏度较低
E1/ 2
E O
RT ln a KM nF M Ka
常数
(7)
RT i E E1/ 2 nF ln id i
25 C 时
E
E1/ 2
0.059 n
ln
id
i
i
即极谱波方程式;
由该式可以计算极谱曲线上每一点的电流与电位值。
i= id /2 时, E=E 1/2 称之为半波电位,极谱定性的依据。
Applications of polarography
无机分析方面:特别适合于金属、合金、矿物及化学试 剂中微量杂质的测定,如金属锌中的微量Cu、Pb、Cd、Pb、 Cd;钢铁中的微量Cu、Ni、Co、Mn、Cr;铝镁合金中的微 量Cu、Pb、Cd、Zn、Mn;矿石中的微量Cu、Pb、Cd、Zn、 W、Mo、V、Se、Te等的测定。
由于溶液静止,电极附近的铅离子在电极表面迅速反应, 此时,产生浓度梯度 (厚度约0.05mm的扩散层),电极反 应受浓度扩散控制。在④处,达到扩散平衡。
2. 极限扩散电流id
平衡时,电解电流仅受扩散运动控制,形成:极限扩散
电流id。(极谱定量分析的基础)
图中③处电流随电压 变化的比值最大,此点对 应的电位称为半波电位。
伏安分析法
Voltammetry
极谱分析的基本原理
一、极谱分析的原理与过程
principle and process polarography
伏安分析法:
以测定电解过程中的电流-电压曲线为基础的电化学分析 方法; 极谱分析法(polarography):
采用滴汞电极的伏安分析法;
1.极谱分析过程
极谱分析:在特殊条件下进 行的电解分析。
讨论
1. 同一离子在不同溶液中,半波电位不同。金属络离子 比简单金属离子的半波电位要负,稳定常数越大,半波电位 越负;
2. 两离子的半波电位接近或 重叠时,选用不同底液,可有效 分液离中,可如分离Cd(2+和CTdl2++在生N成H3络和离NH子4C)l溶;
3. 极谱分析的半波电位范围 较窄(2V),采用半波电位定性 的实际应用价值不大; 可逆极谱波:电极反应极快,扩 散控制; 非可逆极谱波:同时还受电极反 应速度控制。氧化波与还原波具 有不同半波电位(超电位影响)。
在扩散场中,浓度的分布是时间t 和距电极表面距离X 的函数 c = (t, X )
c
c
( X
)X 0,t
π Dt
(3)
(3)代入(2),得:
c
(id )t nFAD π D t
(4)
由于汞滴呈周期性增长,使其有效扩散层厚度减小,线性扩散 层厚度的
c
(id )t nFAD π D t 3 / 7
3. 极谱滴定曲线类型
电位变化范围A-B
(1)测定物质X发生电极反应, 滴定剂T不发生电极反应,图(a)
(2)测定物质X与滴定剂T都发
生电极反应,图(b)
(3)滴定剂T发生电极反应,测 定物质X不发生电极反应,图(c)
(4)测定物质X不发生电极反应, 滴定剂T发生氧化反应,图(d)
四、经典直流极谱法的应用
i Ka (cao 0) Kacao ;
cao i / Ka
(6)
将(6)和(5)代入(2)
E
E O
RT nF
ln
acao McMo
E EO RT ln a KM RT ln i nF M Ka nF id i
在极谱波的中点,即: i =id / 2 时,代入上式,得:
(5)
考虑滴汞电极的汞滴面积是时间的函数,t 时汞滴面积,:
At=8.4910-3m2/3t2/3 (cm2)
(6)
将(6)代入(5),得:
(id)t=706nD1/2m2/3t1/6c
(7)
扩散电流的平均值:
1τ
(id )平均 τ
(id )tdt
0
(8)
扩散电流方程:
(id)平均=706nD1/2m2/3 t 1/6c
一、极谱定性方法
qualitative methods of polarography
由极谱波方程式:
E
E1/ 2
RT nF
ln
id
i
i
当i=id时的电位即为半波电
位,极谱波中点。
E1/ 2
E O
RT nF
ln a KM MKa
常数
在1mol/L KCl底液中, 不同浓度的Cd2+极谱波
Mn+ +ne +Hg = M(Hg)(汞齐)
E
EO
RT nF
ln
acao aHg McMo
(1)
ca 滴汞电极表面上形成的汞齐浓度; cM可还原离子
在滴汞电极表面的浓度;a, M活度系数;
由于汞齐浓度很稀,aHg不变;则:
E
E O
RT nF
ln
acao McMo
(2)
1.扩散电流方程
设:平面的扩散过程 费克扩散定律:单位时间内通过单位平 面的扩散物质的量与浓差梯度成正比:
f dN D c
(1)
Adt X
根据法拉第电解定律:
c
(id )t
nFAfX 0,t
nFAD( X
)X 0,t
(2)
A:电极面积;D 扩散系数