分式方程知识点复习总结大全
八年级数学《分式方程》知识点

八年级数学《分式方程》知识点八年级数学:分式方程一、理解定义分式方程是指含有分式且分母中含有未知数的方程。
解分式方程的思路是:首先在方程两边都乘以最简公分母,约去分母,将其化为整式方程,然后解这个整式方程。
接着,将整式方程的根带入最简公分母,看结果是否为零,如果是,则该根为原方程的增根,必须舍去。
最后,写出原方程的根。
这一思路可以概括为“一化二解三检验四总结”。
增根是指分式方程的增加的根,必须满足两个条件:一是最简公分母为零,二是增根是分式方程化成的整式方程的根。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为零,这样就会产生增根,因此分式方程一定要验根。
分式方程的验根方法是将整式方程的解带入最简公分母,如果最简公分母的值不为零,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
分式方程可以应用于实际问题的解决。
解决实际问题的步骤是:审题,设未知数,列方程,解方程,检验,写出答案。
在检验时,要注意从方程本身和实际问题两个方面进行检验。
应用题的基本类型有:二、例题讲析例1:解方程x+14)/2-(1/(x-1)(x-1))=11)增根是使最简公分母值为零的未知数的值。
2)增根是整式方程的根但不是原分式方程的,所以解分式方程一定要验根。
例2:解关于x的方程2ax^3+2)/(x-2)(x-4)(x+2)=2有增根,则常数a的值。
解:化整式方程的(a-1)x=-10.由题意知增根x=2或x=-2是整式方程的根,把x=2代入得2a-2=-10,解得a=-4.把x=-2代入得-2a+2=-10,解得a=6.所以a=-4或a=6时,原方程产生增根。
例3:解关于x的方程2ax^3+2)/(x-2)(x-4)(x+2)=无解则常数a的值。
解:化整式方程的(a-1)x=-10.当a-1=0时,整式方程无解。
解得a=1.当a-1≠0时,整式方程有解。
当它的解为增根时,原分式方程无解。
把增根x=2或x=-2代入整式方程解得a=-4或a=6.综上所述,当a=1或a=-4或a=6时,原分式方程无解。
初中数学之分式方程知识点汇总

初中数学之分式方程知识点汇总
分式方程的概念
分母中含有未知数的方程叫分式方程.
要点诠释:
(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 初中数学分式方程的解法
解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。
在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。
因为解分式方程时可能产生增根,所以解分式方程时必须验根。
解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.。
八年级分式方程数学知识点

八年级分式方程数学知识点一、基本概念分式方程是指未知量中包含分数表达式的方程,可用一组数值解求出未知量的值。
如:\frac{x+1}{2}=3,其中x为未知量。
二、分式方程的解法1. 化简分式,使其成为整式方程。
如:\frac{x+1}{2}=3化简为x+1=6。
2. 通分,消去分母。
如:\frac{3}{x-2}=\frac{1}{x+1}通分后为3(x+1)=x-2。
3. 变形化简后求解。
如:\frac{2}{2x+3}-\frac{3}{x-1}=\frac{4}{x^2-x-3}变形化简后得到x=-1或x=\frac{5}{2}。
三、分式方程的注意事项1. 化简前应检查分母是否有值为0的情况。
如:\frac{x}{x^2-4x+4}=1化简前需考虑x^2-4x+4=0的情况,即x=2。
2. 通分时应注意分母因式分解。
如:\frac{x}{2x-4}-\frac{2}{x+1}=\frac{3x}{x^2-3x+2}通分前需分解(x-1)(x-2)。
3. 将解代回原分式方程检验。
如:\frac{4}{x+3}-\frac{5}{x-1}=\frac{1}{x-2}解得x=5/2,代入原式验证是否成立。
四、分式方程的应用例题1. 甲、乙两地的距离为480km,两地之间有一辆车和一辆自行车相向而行,行至中途时,车停下了,自行车继续前进,最后到达乙地时,车和自行车的距离为40km。
已知车行驶的速度比自行车快20km/h,求车和自行车的速度各是多少。
设自行车的速度为x km/h,车的速度为x+20 km/h,时间为t,车行驶的距离为(x+20)×t,自行车行驶的距离为x×(t+2)。
由题意可得(x+20)t+x(t+2)=480及(x+20)t-x(t+2)=40,解得x=20,车速为40km/h,自行车速度为20km/h。
2. 一条河流的宽度为200m,在河岸的A、B两处浅滩的位置分别离河口12km、18km处。
分式及分式方程知识点总结

分式及分式方程 聚焦考点☆温习理解一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n n n = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
名师点睛☆典例分类考点典例一、分式的值【例1】(2015·黑龙江绥化)若代数式6265x 2-+-x x 的值等于0 ,则x=_________.【点睛】分式6265x 2-+-x x 的值为零则有x 2-5x+6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】1.要使分式x 1x 2+-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=-2.(2015·湖南常德)若分式211x x -+的值为0,则x = 考点典例二、分式的化简【例2】化简:2x x x 1x 1---=( ) A 、0 B 、1 C 、x D 、1x x -【点睛】观察所给式子,能够发现是同分母的分式减法。
分式方程知识点复习总结大全

分式方程知识点复习总结大全分式及其基本性质1.分式的概念形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母整式和分式统称有理式, 即有有理式整式,分式.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 与分数类似,根据分式的基本性,可以对分式进行约分和通分.分析 分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.分式的通分,即要求把几个异分母的分式分别化为原来的分式相等的同分母的分式.通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).§ 分式的运算1. 分式的乘除法分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得到的不是最简分式,应该通过约分进行化简.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.2.分式的加减法同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.§ 可化为一元一次方程的分式方程概念:方程中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验例2 解方程:730100-=x x. 解 方程两边同乘以x(x-7),约去分母,得 100(x-7)=30x. 解这个整式方程,得 x=10.检验:把x=10代入x(x-7),得 10×(10-7)≠0所以,x=10是原方程的解.§ 零指数幂与负整指数幂任何不等于零的数的零次幂都等于1任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数.小结一、知识结构二、注意事项1.分式的基本性质及分式的运算与分数的情形类似,因而在学习过程中,要注意不断地与分数情形进行类比,以加深对新知识的理解.2.解分式方程的思想是把含有未知数的分母去掉,从而将分式方程转化为整式方程来解,这时可能会出现增根,必须进行检验.学习时,要理解增根产生的原因,认识到检验的必要性,并会进行检验.3.由于引进了零指数幂与负整指数幂,绝对值较小的数也可以用科学记数法来表示.。
分式和分式方程知识点总结及练习(供参考)

分式和分式方程知识点总结一、分式的基本概念 1、分式的定义 一般地,我们把形如BA的代数式叫做分式,其中 A ,B 都是整式,且B 含有字母。
A 叫做分式的分子,B 叫做分式的分母。
分式也可以看做两个整式相除(除式中含有字母)的商。
2.分式的基本性质分式的分子和分母同乘(或除以)一个不为0的整式,分式的值不变。
MB M A M B M A B A ÷÷=⨯⨯=。
其中,M 是不等于0的整式。
3.分式的约分把分式中分子和分母的公因式约去,叫做分式的约分。
4.最简分式分子和分母没有公因式的分式叫做最简分式。
利用分式的基本性质可以对分式进行化简 二、分式的运算 1、分式的乘除 分式的乘法法则分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
分式的除法法则分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。
2、分式的加减同分母的分式加减法法则同分母的两个分式相加(减),分母不变,把分子相加(减)。
异分母的分式加减法法则异分母的两个分式相加(减),先通分,化为同分母的分式,再加(减)。
分式的通分把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个相同的分母叫做这几个分式的公分母。
几个分式的公分母不止一个,通分时一般选取最简公分母分式的混合运算分式的混合运算,与数的混合运算类似。
先算乘除,再算加减;如果有括号,要先算括号里面的。
三、分式方程1、分式方程的定义分母中含有未知数的方程叫做分式方程。
2、分式方程的解使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根)。
3、解分式方程的步骤1.通过去分母将分式方程转化为整式方程,2.解整式方程3.将整式方程的根代入分式方程(或公分母)中检验。
4、分式方程的应用。
典型例题1.(2014•温州,第4题4分)要使分式有意义,则x 的取值应满足( ) A . x ≠2B . x ≠﹣1C . x =2D . x =﹣12.(2014•毕节地区,第10题3分)若分式的值为零,则x 的值为( ) A . 0B . 1C . ﹣1D . ±13. ( 2014•福建泉州,第10题4分)计算:+= .4. (2014•泰州,第14题,3分)已知a 2+3ab +b 2=0(a ≠0,b ≠0),则代数式+的值等于 . 5.(2014年山东泰安,第21题4分)化简(1+)÷的结果为 .6.(2014•襄阳,第13题3分)计算:÷= .7. ( 2014•广东,第18题6分)先化简,再求值:(+)•(x 2﹣1),其中x =.8. ( 2014•珠海,第13题6分)化简:(a 2+3a )÷.9. ( 2014•广西贺州,第19题(2)4分)(2)先化简,再求值:(a 2b +ab )÷,其中a =+1,b =﹣1.10 解方程: 730100-=x x. 11.解分式方程:+=1.12.解方程:=1.13. ( 2014•广东,第21题7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%. (1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?14( 2014•广西贺州,第23题7分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度. 课后练习1.(2013湖北孝感,6,3分)化简xy x yy x x⎛⎫--÷⎪⎝⎭的结果是( ) A.1y B. x y y + C. x yy- D. y 2. (2013山东威海,8,3分)计算:211(1)1mm m+÷⋅--的结果是( ) A .221m m ---B .221m m -+-C .221m m --D .21m -3. (2013四川南充市,8,3分) 当8、分式21+-x x 的值为0时,x 的值是( ) (A )0 (B )1 (C )-1 (D )-2 4. (2013浙江丽水,7,3分)计算1a -1 – aa -1的结果为( ) A. 1+aa -1B. -a a -1C. -1D.1-a5. (2013江苏苏州,7,3分)已知2111=-b a ,则b a ab-的值是 A.21 B.-21C.2D.-2 6. ( 2013重庆江津, 2,4分)下列式子是分式的是( ) A.2x B.1+x x C. y x +2 D. 3x 7. (2013江苏南通,10,3分)设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于A. 336D. 38. (2013山东临沂,5,3分)化简(x -x 1-x 2)÷(1-x 1)的结果是( ) A .x1B .x -1C .x 1-xD .1-x x9. (2013广东湛江11,3分)化简22a b a b a b---的结果是 A a b + B a b - C 22a b - D1 10.(2013浙江金华,7,3分)计算1a -1 – aa -1的结果为( ) A.1+a a -1 B. -aa -1C. -1D.1-a 二、填空题1. (2013浙江省舟山,11,4分)当x 时,分式x-31有意义. 2. (2013福建福州,14,4分)化简1(1)(1)1m m -++的结果是 . 3. (2013山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷xx 2-4的结果为 。
(完整)第十五章--分式方程(知识点+题型分类练习),推荐文档

.
2x a
6.(2013•牡丹江)若关于 x 的分式方程 x 1 =1 的解为正数,那么字母 a 的取值范围是
.
x 3a
7.(2013•齐齐哈尔)若关于 x 的分式方程 x 1 2x 2 -2 有非负数解,则 a 的取值范围是
.
8.若分式方程 x 2 a 有增根,则 a 的值为
x4
x4
()
(m≠0)
3、 约分:根据
把一个分式分子和分母的
约去叫做分式的约分。
约分的关键是确保分式的分子和分母中的
,约分的结果必须是
分式。
4、通分:根据
把几个异分母的分式化为
分母分式的过程叫做分式的通分,通分的
关键是确定各分母的
提醒:①最简分式是指
② 约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的
1
0
的根.
2.(2012•遵义)先化简
(
x
x 1
x
x2
) 1
x2
x2
x 2x
1
,并从-1≤x≤3
中选一个你认为合适的整数
x
代入求
值.
3.先化简,再求值:
2
4 x
x2 x
4
,其中
x=﹣4.
4 x2
x
x
22
4.先化简,再求值: x 1
,其中 x=
7.
第 5 页 共 10 页
5.先化简,再求值:
.
x 1 m
16.(2013•威海)若关于 x 的方程 x 5 10 2x 无解,则 m=
.
考点二、解分式方程
1.解下列分式方程
(完整版)分式和分式方程知识点总结大全

分式和分式方程知识点总结1、分式一般地,我们把形如A的代数式叫做分式,其中A, B都是整式,且BB含有字母。
A叫做分式的分子,B叫做分式的分母。
分式的分母必须含有字母。
分式也可以看做两个整式相除(除式中含有字母)的商在分数中,分母不能等于0.同样,在分式中,分母也不能等于0,即当分式的分母等于0时,分式没有意义。
分数的分子和分母同乘(或除以)一个不等于0的数,其值不变。
分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不其中,M是不等于0的整式利用分式的基本性质可以对分式进行化简把分式中分子和分母的公因式约去,叫做分式的约分。
分子和分母没有公因式的分式叫做最简分式。
2、分式的乘除分式的乘法法则分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
AM A?CB ' D B?D分式的除法法则分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。
A C AD A?D__ __ ______ Q ____ ________B D B 'C B?C3、分式的加减同分母的分式加减法法则同分母的两个分式相加(减),分母不变,把分子相加(减)。
A C A CB B B把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个相同的分母叫做这几个分式的公分母。
几个分式的公分母不止一个,通分时一般选取最简公分母异分母的分式加减法法则异分母的两个分式相加(减),先通分,化为同分母的分式,再相加(减)。
A C AD BC AD BCB D BD BD BD分式的混合运算,与数的混合运算类似。
先算乘除,再算加减;如果有括号,要先算括号里面的。
4、分式方程分母中含有未知数的方程叫做分式方程。
使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根)。
在解分式方程时,首先是通过去分母将分式方程转化为整式方程,并解这个整式方程,然后要将整式方程的根代入分式方程(或公分母)中检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程知识点复习总结大全重点:1理解分式的概念、有意义的条件,分式的值为零的条件。
2理解分式的基本性质.3会用分式乘除的法则进行运算.4熟练地进行分式乘除法的混合运算.5熟练地进行分式乘方的运算.6熟练地进行异分母的分式加减法的运算.7熟练地进行分式的混合运算.8掌握整数指数幂的运算性质.9会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.10利用分式方程组解决实际问题.难点: 1能熟练地求出分式有意义的条件,分式的值为零的条件.2灵活应用分式的基本性质将分式变形.3灵活运用分式乘除的法则进行运算4熟练地进行分式乘除法的混合运算.5熟练地进行分式乘、除、乘方的混合运算.6熟练地进行异分母的分式加减法的运算.7熟练地进行分式的混合运算.8会用科学计数法表示小于1的数.9会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.10会列分式方程表示实际问题中的等量关系.16.1分式及其基本性质1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式。
其中A 叫做分式的分子,B叫做分式的分母。
分母,分式才有意义整式和分式统称有理式, 即有有理式=整式+分式.分式值为0的条件:分子等于0,分母不等于0(两者必须同时满足,缺一不可)例1:( 2011重庆江津)下列式子是分式的是( )A. B. C. D.【答案】B.注意:不是分式例2:已知,当x为何值时,分式无意义? 当x为何值时,分式有意义? 例3:(2011四川南充市)当分式的值为0时,x的值是()(A)0(B)1(C)-1(D)-2【答案】B2.分式的基本性质(1)分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.,,且均表示的是整式。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
符号法则:A,B或同时改变其中两个的符号,分式的值不变例:不改变分式的值,使下列分式的分子和分母都不含“-”号。
(3)分式约分与通分:与分数类似,根据分式的基本性,可以对分式进行约分和通分.①分式的约分:即要求把分子与分母的公因式约去.,是一个恒等变形。
为此,首先要找出分子与分母的公因式.找公因式的方法:(1)分子分母是单项式时,先找分子分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式(2)分子分母是多项式时,先把多项式因式分解,再按(1)中的方法找公因式例:确定公因式并约分:②分式的通分:把几个异分母分式分别化为与原分式相等的同分母分式的变形过程叫通分。
通分前后分式的值不变;找最简公分母是通分的关键找最简公分母到方法(分母均为单项式)1、各分母系数的最小公倍数。
2、各分母所含所有因式或字母的最高次幂。
3、所得的系数与各字母(或因式)的最高次幂的积(其中系数都取正数)找最简公分母到方法(分母均为多项式)1、先把分母因式分解。
2、各分母系数的最小公倍数。
3、各分母所含所有因式的最高次幂。
4、所得的系数与各字母(或因式)的最高次幂的积(其中系数都取正数)例:§16.2 分式的运算1分式的乘除法分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得到的不是最简分式,应该通过约分进行化简。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
2.分式的加减法同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.(n为正整数)3.分式的乘方:分式的乘方需要把分子、分母分别乘方。
,4.正整数指数幂、零指数幂与负整数指数幂(1)同底数的幂的乘法:(m,n是正整数);(2)幂的乘方:(m,n是正整数);(3)积的乘方:(n是正整数);(4)同底数的幂的除法:( a≠0,m,n是正整数,m>n);(5)商的乘方:(n是正整数);(6)由分式的约分可知,当,。
又一般地,当n是正整数时,这就是说,是的倒数。
像上面这样引入负整数指数幂后,指数的取值范围就推广到全体整数。
5.科学计数法由于引进了零指数幂与负整指数幂,绝对值较小的数也可以用科学记数法来表示.(1)小于1的正数可以用科学计数法表示为的形式,其中是整数数位只有一位的正数,n是正整数,n=原数中左起第一个非零数字前0的个数(含整数位上的0)。
这种形式更便于比较数的大小。
例:(2)大于1的正数可以用科学计数法表示为的形式,其中是整数数位只有一位的正数,n是正整数,n=原数的正数位数减1。
例:。
繁分式:①定义:分子或分母中又含有分式的分式,叫做繁分式.②化简方法(两种)通常把繁分式写成分子除以分母的形式,再利用分式的除法法则进行化简.例:1.(2010湖北孝感)化简的结果是()A. B. C. D. y【答案】B2. (2011广东湛江11,3分)化简的结果是A B C D1【答案】A3. (2011福建福州,14,4分)化简的结果是 . 【答案】4.(2011安徽,15,8分)先化简,再求值:,其中x=-2.【答案】解:原式=.5. (2011湖南邵阳,18,8分)已知,求的值。
【答案】解:∵,∴x-1=1.故原式=2+1=36、(2011广西来宾,10,3分)计算的结果是()A. B. C. D.【答案】A7、2011内蒙古包头,17,3分)化简,其结果是 .【答案】与分式有关的变形求值题1. (2011江苏苏州,7,3分)已知,则的值是A. B.- C.2 D.-2【答案】D2. (2011江苏南通,10,3分)设m>n>0,m2+n2=4mn,则的值等于A.2B.C.D. 3【答案】A3.(2011四川乐山15,3分)若m为正实数,且,=【答案】§16.3分式方程1分式方程概念:方程中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.2解分式方程:基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应做如下检验:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
理解分式方程的有关概念例1 指出下列方程中,分式方程有()①=5 ②=5 ③x2-5x=0 ④+3=0A.1个 B.2个 C.3个 D.4个【点评】根据分式方程的概念,看方程中分母是否含有未知数.掌握分式方程的解法步骤例2 解方程:.解方程两边同乘以x(x-7),约去分母,得100(x-7)=30x.解这个整式方程,得x=10.检验:把x=10代入x(x-7),得10×(10-7)≠0所以,x=10是原方程的解.【点评】注意分式方程最后要验根。
(易错点)例3.(2011安徽芜湖,5,4分)分式方程的解是().A.B.C.D.【答案】C例4. (2011湖北荆州,6,3分)对于非零的两个实数、,规定,若,则的值为A.B.C.D.【答案】D例5. (2011四川成都,13,4分)已知是分式方程的根,则实数=___________.【答案】.分式方程的增根问题1.(2011黑龙江绥化,18,3分)分式方程有增根,则的值为()A、0和1B、1C、1和-2D、3【答案】D2. (2011湖北襄阳,16,3分)关于x的分式方程的解为正数,则m的取值范围是.【答案】m>2且m≠3分式方程的应用例1(2006年长春市)某服装厂装备加工300套演出服,在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务,•求该厂原来每天加工多少套演出服.【点评】要用到关系式:工作效率=。
例2. (2011山东济宁,21,8分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.【答案】(1)设甲工程队每天能铺设米,则乙工程队每天能铺设()米.根据题意得:. 2分解得.检验:是原分式方程的解.答:甲、乙工程队每天分别能铺设米和米. 4分(2)设分配给甲工程队米,则分配给乙工程队()米.由题意,得解得. 6分所以分配方案有3种.方案一:分配给甲工程队米,分配给乙工程队米;方案二:分配给甲工程队米,分配给乙工程队米;方案三:分配给甲工程队米,分配给乙工程队米.………………8分小结一、知识结构二、注意事项1.分式的基本性质及分式的运算与分数的情形类似,因而在学习过程中,要注意不断地与分数情形进行类比,以加深对新知识的理解.2.解分式方程的思想是把含有未知数的分母去掉,从而将分式方程转化为整式方程来解,这时可能会出现增根,必须进行检验.学习时,要理解增根产生的原因,认识到检验的必要性,并会进行检验.3.由于引进了零指数幂与负整指数幂,绝对值较小的数也可以用科学记数法来表示.。