自动增益控制电路的设计实现分析

合集下载

自动增益控制(AGC)

自动增益控制(AGC)

自动增益控制(AGC)电路自动增益控制(AGC)电路是无线电接收设备中的重要电路,用来保证接收幅度的稳定。

自动增益控制(AGC)电路的作用是能根据输入信号的电压的大小,自动调整放大器的增益,使得放大器的输出电压在一定范围内变化。

它一般由电平检测器(峰值检波电路)、低通滤波器、直流放大器、电压比较器、控制电压产生器和可控增益放大器组成。

其中可控增益放大器是实现增益控制的关键。

一、自动增益控制电路(AGC)的工作原理(一)AGC的作用自动增益控制电路的作用,是在输入信号幅度变化很大的情况下,自动保持输出信号幅度在很小范围内变化的一种自动控制电路。

自动增益控制电路可以看成由反馈控制器和(控制)对象两部分组成,其中反馈控制器由电平检测器、低通滤波器、直流放大器、电压比较器和控制电压产生器组成,被控对象是可控增益放大器。

可控增益放大器的输入信号就是AGC电路的输入信号.(二)AGC各单元电路的功能与基本工作原理1.电平检测器电平检测器的功能是检测出输出信号的电平值,通常由振幅检波器实现,它的输出与输入信号电平成线性关系,其输出电压为。

2.低通滤波器环路中的低通滤波器具有非常重要的作用。

由于发射功率变化、距离远近变化、电波传播衰落等引起信号强度的变化是自动增益控制电路需要进行控制的范围,这些变化比较缓慢,而当输入为调幅信号时,调幅波的幅值变化是传递信息的有用幅值变化.这种变化不应被自动增益控制电路的控制作用减弱或抵消(此现象称为反调制),由于两类信号的变化频率不同,就可以恰当选择环路的频率响应特性,适当地选择低通滤波器的传输特性,使环路对高于某一频率的调制信号的变化无响应,而对低于这一频率的缓慢变化具有抑制作用。

3.直流放大器直流放大器将低通滤波器输出的电平值进行放大后送至电压比较器,由于电平检测器输出的电平信号的变化频率很低,例如几赫左右,所以一般均采用直流放大器进行放大。

4.电压比较器经直流放大器放大后的输出电压与给定的基准电压进行比较,输出误差信号电压,当电压比较器增益为时,服从下列关系式5.控制电压产生器控制电压产生器的功能是将误差电压变换为适合可变增益放大器需要的控制电压,这种变换可以是幅度的放大或电压极性的变换。

自动增益控制(AGC)电路

自动增益控制(AGC)电路
一、控制的原理框图
二、电视机自动增益控制电路
1、工作原理:
V1、V2构成差分射级输出器,实现隔离作用;V3、V4构成差分放大器,提高共模抑制比;V5是V3、V4的多发射级恒流源,稳定直流工作点。
三级中放总增益为80dB,均可自动增益控制。
控制过程:当AGC不起控时信号最弱,则V6饱和导通,V5发射级电流最大,等效为V3、V4的发射级电阻最小,则V3、V4的增益最大;当AGC起控时,V6退出饱和,V5发射级电流减小,负反馈作在深度饱和状态,V7工作在中饱和状态,V8因V9、V10恒流源的分流作用工作在浅饱和状态。
当信号最弱时,UAGC很高,增益在最大状态
当信号增强时,UAGC减小,V8首先进入放大状态,然后是V7,最后才是V6。
当信号最强时,UAGC很小,V8、V7、V6、都在截止状态,增益在最小状态。
自动增益(AGC)电路
在放大电路的应用中,经常会碰到一些要求增益会自动调节的电路。
自动增益电路的目的:无论信号的强弱、天气的变化和距离的远近,输出端输出的信号都能保证在稳定的状态。
应用在目标检测(机器人技术)、自动跟踪(军事领域)和稳定输出(电视机)
控制方式:在保证输出的信号稳定的前提下,应考虑的问题是——如何提高信噪比——所以控制方式是后级逐渐向前级控制。

自动增益控制电路的设计与实现_图文.

自动增益控制电路的设计与实现_图文.

自动增益控制电路的设计与实现实验报告北京邮电大学信息与通信工程学院一:课题名称自动增益控制电路的设计与实现二:摘要及关键词1、摘要:在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况;另外,在其他应用中,如监控系统中的多个相同传感器返回的信号中,频谱结构和动态范围大体相似,而最大波幅却相差甚多的现象。

很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。

此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。

本实验在介绍了AGC电路的基础上,采用了一种相对简单而有效实现预通道AGC的方法,电路中使用了一个短路双极晶体管直接进行小信号控制的方法。

2、关键词:驱动缓冲可变衰减自动增益控制电压跟随器反馈三:设计任务要求1、基本要求:1)设计实现一个AGC电路,设计指标以及给定条件为:输入信号0.5~50mVrms;输出信号:0.5~1.5Vrms;信号带宽:100~5KHz;2)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)及印制电路板图(PCB)2、提高要求:1)设计一种采用其他方式的AGC电路;2)采用麦克风作为输入,8Ω喇叭作为输出的完整音频系统。

3、探究要求:1)如何设计具有更宽输入电压范围的AGC电路;2)测试AGC电路中的总谐波失真(THD)及如何有效的降低THD。

四:设计思路及总体结构框架1、设计思路①该实验电路中使用了一个短路双极晶体管直接进行小信号控制的方法,从而相对简单而有效实现预通道AGC的功能。

如下图,可变分压器由一个固定电阻R1和一个可变电阻构成,控制信号的交流振幅。

可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改变Q1电阻,可从一个由电压源和大阻值电阻R2组成的直流源直接向短路晶体管注入电流。

为防止R2影响电路的交流电压传输特性。

R2的阻值必须远大于R1.DetetorVGAInput Output反馈式AGC由短路三极管构成的衰减器电路②对正电流的I所有可用值(一般都小于晶体管的最大额定设计电流),晶体管Q1的集电极-发射极饱和电压小于它的基极-发射极阈值电压,于是晶体管工作在有效状态。

自动增益控制电路设计书课案

自动增益控制电路设计书课案

2019届课程设计《自动增益控制电路》课程设计说明书学生姓名武振旺、孙亚荣学号5081215020、5081215032所属学院信息工程学院专业物联网工程班级物联网工程19指导教师杨全丽、丛申教师职称讲师塔里木大学教务处制塔里木大学课程设计任务书课程名称:现代电子技术Ⅰ课程所属教研室:计算机系指导教师:杨全丽、丛申学号5081215020 学生姓名武振旺(专业)班级物联网19 学号5081215032 学生姓名孙亚荣设计题目自动增益控制电路的设计与实现设计技术内容本设计主要在Multisim的工作环境下设计自动增益控制电路,应做以下设计内容:1、软件仿真,设计实现一个简单的AGC电路。

2、以模拟集成电路为核心器件,通过电路增益的自动调节,对于不同幅值的正弦波u1,u的幅值可基本不变。

设计要求本次课程设计需要完成以下要求:1、设计实现AGC电路,测试AGC电路中的总谐波失真(THD)及如何有效的降低THD。

2、整体电路布局合理,线路清晰3、课程设计说明书条理清晰,结构合理,格式规范参考资料[1]电子线路第四版.谢嘉奎.北京.高等教育出版社.1999。

[2]电子电路基础.解月珍.北京.人民邮电出版社.1999。

[3]基础电子技术.蔡惟铮.北京.高等教育出版社.2004。

[4]半导体集成电路.朱正涌.北京.清华大学出版社.2001。

周次第一周应完成内容1、查阅资料进行选题2、学习设计软件的使用3、利用软件进行设计的一个简单的AGC电路自动增益的功能。

4、撰写课程设计说明书5、课程设计答辩指导教师签字教研室主任签字说明:1、此表一式三份,院、学科组、学生各一份。

2、学生那份任务书要求装订到课程设计报告前面。

目录1自动增益控制电路的背景与意义 (1)1.1自动增益控制电路的背景 (1)1.2自动增益控制电路的意义 (1)2.Rb变化对Q点和电压放大倍数的影响 (2)2.1原理图 (2)2.2仿真模拟 (2)2.3仿真数据 (6)2.4实验结论: (6)3两级直接耦合放大电路的调试 (6)3.1实验目的 (6)3.2原理 (6)3.3仿真电路 (7)3.4仿真内容 (9)3.5仿真数据结果 (10)3.6结论 (10)4.自动增益控制电路的设计与实现 (10)4.1原理 (10)4.2分块电路和总体电路的设计 (11)4.3所实现功能说明 (14)4.4实验故障及问题分析 (16)总结和结论 (17)致谢 (18)塔里木大学信息工程学院课程设计自动增益控制电路的设计与实现摘要:自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小范围内变化的特殊功能电路,简称为 AGC 电路。

《高频电子线路》自动增益控制实验(AGC)

《高频电子线路》自动增益控制实验(AGC)

《高频电子线路》自动增益控制实验(AGC)一、实验目的1、掌握AGC工作原理。

2、掌握AGC主放大器的增益控制范围。

二、实验内容1、比较没有AGC和有AGC两种情况下输出电压的变化范围。

2、测量AGC的增益控制范围。

三、实验仪器1、1号模块 1块2、6号模块 1块3、2号模块 1块4、双踪示波器 1台四、实验原理图15-1是以MC1350作为小信号选频放大器并带有AGC的电路图,F1、F2为陶瓷滤波器(中心频率分别为4.5MHz和10.7MHz),选频放大器的输出信号通过耦合电容连接到输出插孔P4。

输出信号另一路通过检波二极管D1进入AGC反馈电路。

R14、C18为检波负载,这是一个简单的二极管包络检波器。

运算放大器U2B为直流放大器,其作用是提高控制灵敏度。

检波负载的时间常数C18•R14应远大于调制信号(音频)的一个周期,以便滤除调制信号,避免失真。

这样,控制电压是正比于载波幅度的。

时间常数过大也不好,因为那样的话,它将跟不上信号在传播过程中发生的随机变化。

跨接于运放U2B的输出端与反相输入端的电容C17,其作用是进一步滤除控制信号中的调制频率分量。

二极管D3可对U2B输出控制电压进行限幅。

W4提供比较电压,反相放大器U2A的2、3两端电位相等(虚短),等于W4提供的比较电压,只有当U2B输出的直流控制信号大于此比较电压时,U2A才能输出AGC控制电压。

图15-1 自动增益控制电路原理图(AGC)对接收机中AGC的要求是在接收机输入端的信号超过某一值后,输出信号几乎不再随输入信号的增大而增大。

根据这一要求,可以拟出实现AGC控制的方框图,如图15-2所示。

图15-2自动增益控制方框图图中,检波器将选频回路输出的高频信号变换为与高频载波幅度成比例的直流信号,经直流放大器放大后,和基准电压进行比较放大后作为接收机的增益调节电压。

不超过所设定的电压值时,直流放大器的输出电压也较小,加到比较器上的电压低于基准电压,此时环路断开,AGC电路不起控。

低频接收机自动增益控制电路的分析与设计

低频接收机自动增益控制电路的分析与设计
上 升 3 B时必对 应某 一 频 率 _ , 常称 ^ 为 低频 d 厂 通 L 噪声 拐 角频 率 , 频段 即是 低 ^ 的区域 。中频 段
内仅 含 热噪声 和散 粒噪 声 , 由于热 噪声 和散 粒 噪声
均属 白噪声 , 因此 中频段 又称 为 白噪声 区 。
电路 而言 , 其本 级噪声 主要有 运算 放大 器 的 电压 输 入 噪声 , 电流 输 人 噪声 以及 电阻 的热 噪声 。 中 电 其
制 电路 的设 计 。
关键词 中 图分 类 号
An y i nd De i n o al s s a s g fAG e r ui o w e ue c c i e Ci c tf r Lo Fr q n y Re e v r
Zh u Zh y An Zh h n Lu u h i Ch n n in o iu io g o Ch n u e g Ha q a g
乎 不 变 。图 4中 , 通 滤波 器 的作 用是 决 定 反馈 支 低 路 的反应 速度 , 因此 , 通 滤 波 器 时 问常 数 是 整 个 低 自动增 益控 制 环路 的重 要参 数 。时 间常数 小 , 带 通 宽 , 应速 度快 , 反 即在输 入端 信 号起 伏 频 率较 高 时 , 自动增 益控 制 系统 的反 馈支 路 也 能及 时 地反 应 , 使 输 出的信 号基 本保 持 不变【 。 5 ]
收 稿 日期 :0 0 1 2 1 年 2月 1 日, 回 日期 :0 1年 1 1 5 修 21 月 4日 作 者 简 介 : 志 宇 , , 士 研 究 生 , 程 师 , 究 方 向 : 频通 信技 术 。安 志 鸿 , , 程 师 , 究 方 向 : 频 通信 技 术 。 周 男 硕 工 研 低 男 工 研 低

雷达自动增益控制电路硬件设计与实现

雷达自动增益控制电路硬件设计与实现
2 2
开 发应用
雷达 自动增益控制 电路硬件设计 与实现
余 立
( 中国电子科技 集 团公 司第二十研 究所,陕西 西安 7 1 0 0 6 8) 摘 要 :雷达 自动增益控制 电路 的主要作用是对接收到的回波信 号进行增益控制 ,当回波信号弱时,接收机工作于 高增益状
态;当回波信 号强时,接收机工作于低增 益状 态。本文介绍 了一种基于 F P G A 的闭环 AG C电路 的软硬件设计 ,该 电路 一方
面作为雷达接收机 跟 中心机通信 的一个接 口,负责接收 中心机下发 的数据 ,并上传接 收机 的 自 检信息给 中心机;另一方面,
该 电路还接收 中频接收机传 输过来的中频信号 的检 波电平 , 并以此计算接 收通道的数控衰减量 ,然后将衰减量反馈给接收前
端和 中频 接 收 机 进 行 增 益 控 制 。
所有C P L D / F P G A 产 品 。基 于 Q u a r t u s I I 的C P L D / F P G A设 计 开
本 设 计 选 用 的 电源 芯 片 是 L i n e a r T e c h n o l o g y的 L T M4 6 1 5 ,该芯 片 效率 高 达 9 5 %, 可 提 供 双 路 4 ADC ( 0 . 8 V 至5 V) 以及 一 路 1 . 5 A ( 1 . 1 4 V至 3 . 5 V) 的L D O输 出 。其 输 入
为Al t e r a 公 C y c l o n e I V系列 的E P 4 C E 1 5 。 由于系统对于A D采样 的速率要求 并不高,所 以本设计
选 用 的 是A D公司 的A D9 2 2 5 。该 A D是~ 片单 通道 的1 2 位 A D,最高采样率为2 5 Ms p s ,本设计使用的采样率为5 Ms p s 。 通过改变S E N S E ̄ I 脚 、R E F C O M ̄ l 脚 、C ML 引脚 的接法可 以改变其输 入信 号的范 围。经实测 ,本设计的检波 电平输入 范围2 ~3 V,因此 ,将AD的S E N S E引脚与v I F 引脚相连, R E F C OM ̄ I 脚 接地 ,C ML 引脚 与vI N B引脚相连 ,此 时AD 的输入范围为2 . 5 V~3 . 5 V。

自动增益控制电路的设计与实现计划书

自动增益控制电路的设计与实现计划书

自动增益控制电路的设计与实现计划书1自动增益控制电路的背景与意义1.1自动增益控制电路的背景随着微电子技术、计算机网络技术和通信技术等行业的迅速发展,自动增益控制电路越来越被人们熟知并且广泛的应用到各个领域当中。

自动增益控制线路,简称AGC 电路。

它是限幅装置的一种,是利用线性放大和压缩放大的有效组合对输出信号进行调整。

当输入信号较弱时,线性放大电路工作,保证输出声信号的强度;当输入信号强度达到一定程度时,启动压缩放大电路,使声输出幅度降低,满足了对输入信号进行衰减的需要。

也就是说,AGC功能可以通过改变输入输出压缩比例自动控制增益的幅度,扩大了接收机的接受范围,它能够在输入信号幅度变化很大的情况下,使输入信号幅度保持恒定或仅在较小范围内,不至于因为输入信号太小而无法正常工作,也不至于因为输入信号太大而使接收机发生饱和或堵塞。

在电路设计中,这种线路被大量的运用,从尖端的雷达技术到日常的广播电视系统,自动增益控制无疑很好的解决了各种技术中存在的信号强度问题。

1.2自动增益控制电路的意义当输入信号电压变化很大时,保持接收机输出电压恒定或基本不变。

具体地说,当输入信号很弱时,接收机的增益大,自动增益控制电路不起作用;当输入信号很强时,自动增益控制电路进行控制,使接收机的增益减小。

这样,当接收信号强度变化时,接收机的输出端的电压或功率基本不变或保持恒定。

因此对AGC电路的要求是:在输入信号较小时,AGC电路不起作用,只有当输入信号增大到一定程度后,AGC电路才起控制作用,使增益随输入信号的增大而减少。

为实现上述要求,必须有一个能随外来信号强弱而变化的控制电压或电流信号,利用这个信号对放大器的增益自动进行控制。

由上述分析可知,调幅中频信号经幅度检波后,在它的输出中除音频信号外,还含有直流分量。

直流分量大小与中频载波的振幅成正比,也即与外来高频信号成正比。

因此,可将检波器输出的直流分量作为AGC控制信号。

2.Rb变化对Q点和电压放大倍数的影响2.1原理图图 2-12.2仿真模拟1.当Rb=3MΩ时电路图如下图2-2所示图 2-2UCEQ和Au仿真结果如下图2-3所示图 2-3 2.当Rb=3.2MΩ时电路图如下图2-4所示图 2-4 UCEQ和Au仿真结果如下图2-5所示:图 2-5 3.当信号源V1=10mv时,输出波形如下图2-6所示图 2-6 4.当信号源V1=20mv时,输出波形如下图2-7所示图 2-72.3仿真数据Rb=3MΩ和3.2MΩ时的UCEQ和Au仿真结果如下表2-1所示:表2-1 仿真数据2.4实验结论:(1)Rb增大时,ICQ减小,UCEQ增大,|Au |减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动增益控制电路的设计与实现实验报告邮电大学信息与通信工程学院一:课题名称自动增益控制电路的设计与实现二:摘要及关键词1、摘要:在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况;另外,在其他应用中,如监控系统中的多个相同传感器返回的信号中,频谱结构和动态围大体相似,而最大波幅却相差甚多的现象。

很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。

此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。

本实验在介绍了AGC电路的基础上,采用了一种相对简单而有效实现预通道AGC的方法,电路中使用了一个短路双极晶体管直接进行小信号控制的方法。

2、关键词:驱动缓冲可变衰减自动增益控制电压跟随器反馈三:设计任务要求1、基本要求:1)设计实现一个AGC电路,设计指标以及给定条件为:输入信号0.5~50mVrms;输出信号:0.5~1.5Vrms;信号带宽:100~5KHz;2)设计该电路的电源电路(不要际搭建),用PROTEL软件绘制完整的电路原理图(SCH)及印制电路板图(PCB)2、提高要求:1)设计一种采用其他方式的AGC电路;2)采用麦克风作为输入,8Ω喇叭作为输出的完整音频系统。

3、探究要求:1)如何设计具有更宽输入电压围的AGC电路;2)测试AGC电路中的总谐波失真(THD)及如何有效的降低THD。

四:设计思路及总体结构框架1、设计思路①该实验电路中使用了一个短路双极晶体管直接进行小信号控制的方法,从而相对简单而有效实现预通道AGC的功能。

如下图,可变分压器由一个固定电阻R1和一个可变电阻构成,控制信号的交流振幅。

可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改变Q1电阻,可从一个由电压源和大阻值电阻R2组成的直流源直接向短路晶体管注入电流。

为防止R2影响电路的交流电压传输特性。

R2的阻值必须远大于R1.Input Output反馈式AGC由短路三极管构成的衰减器电路②对正电流的I所有可用值(一般都小于晶体管的最大额定设计电流),晶体管Q1的集电极-发射极饱和电压小于它的基极-发射极阈值电压,于是晶体管工作在有效状态。

短路晶体管的V-I特性曲线非常类似与PN二极管,符合肖特基方程,除了稍高的直流电压值外,即器件电压的变化与直流电流变化的对数成正比。

③输入信号VIN驱动输入缓冲极Q1,中间互补级联放大电路Q2、Q3提供大部分电压增益,通过负反馈网络回到放大级的输入端。

R4构成可变衰减器的固定电阻,Q6构成衰减器的可变电阻部分,D1、D2构成一个倍压整流器。

它从输出级Q4提取信号的一部分并为Q5生成控制电压,这种构置可以容纳非对称信号波形的两极性的大峰值振幅。

电阻R15决定AGC的开始时间(若与C6组合的R15过小,则使反馈传输函数产生极点,导致不稳定),电阻R17决定AGC的释放时间。

R14是1KΩ电阻,将发射极输出跟随器Q4与信号输出端隔离开。

2、总体结构框图五:分块电路和总体电路的设计1、9V稳压源电路2、信号缓冲输入级电路3、直流耦合互补级联电路(提供大部分增益):330R18100R12390R131KR141000uFC910uFC812OutputJP2Q412Header 2JP39V六、所实现功能说明1、基本功能:输入的信号围在0.5~50mVrms时,经过输入缓冲级,直流耦合互补级联放大信号(提供大部分增益),经过射极跟随器,接输出端同时引反馈回去到放大级前端,反馈由具有倍压整流作用的D1、D2和可变衰减器,对不同的输入信号,反馈信号大小不一样,使经输入缓冲级放大电路放大的信号与反馈信号叠加,叠加后的信号幅度在很小的围波动,再经过放大,使输出电压0.5~1.5Vrms,信号带宽满足覆盖100Hz~5KHz的要求,实现了自动增益控制。

2、直流电源:Vcc=9V3、主要测试数据:4、测量方法:(1)输入端接输入信号,电压有效值0.5~50mV,频率在100Hz~5KHz,为得到不同频率不同电压下的增益数据,采取单变量法测试,用示波器观察输入输出信号,使用交流毫伏表测量输入输出的信号电压的有效值,计算增益;(2)具体测试过程如下:保持输入电压有效值0.5mV,改变信号频率从100Hz变化到5KHz(为取得更多的数据,可以每次增大500Hz,多测数据),测量记录如上表格所示;(3)由测出的数据可以计算出增益,同时可见,再输入电压在规定的围大幅波动时,输出电压在规定的围以很小幅度波动,即可认为输入在规定围变化时,输出不变,实现了自动增益控制的功能;(4)为了解反馈网络在自动增益控制电路中的作用,可以在反馈输出端接示波器通道来观察测量反馈输出信号,亦可把反馈引回的线去掉,用示波器观察测量没有反馈时的输出信号,记录测量的数据,分析可以看出反馈网络在该电路中举足轻重的地位,这也是该电路称为反馈式AGC的原因。

(5)用示波器观察输入缓冲级(该实验中注释为Q1)的集电极输出波形,记录测量数据;把反馈去掉,同样观察测量Q1集电极的波形,对比可见,有反馈的时候Q1的集电极输出信号幅值基本为2mV,而无反馈的时候,Q1的集电极输出信号幅值为伏级上的,比有反馈的时候大的多,可见自动衰减的负反馈信号与经缓冲级放大的信号叠加,使信号维持在一个比较稳定的值。

(6)测量倍压整流电路(D1、D2构成)的输出信号波形,增进对倍压整流器的工作原理的理解。

七、故障及问题分析做PCB板时,由于刚开始对于软件不熟悉,所以走了不少弯路。

首先,将原理图画好后,运行总是出错,最后发现是未将原理图放入工程,其次将原件导入PCB板时,没有画禁布线区,并且未放置焊盘,导致无法布线。

后经调整,并查阅相关资料完成了PCB板。

首先,连接电路用了较长时间。

第一次连接完毕,发现地线和电源线接的太乱,并且导线过多。

第二次连接完成后,却无法得到预期的输出波形,而是在电源接通后会出现方波,检查电路并未发现错误,于是又进行了第三次连接,但还是未得到预期效果,经过检查,应对各级参数进行对比发现R13忘记接地,改正过后得到了满意的波形。

八、总结和结论1、本实验综合性较强,考察了理论分析与动手实践的综合能力,让我们通过实验,加深了对模电的认识。

2、本实验采用了反馈式自动增益控制电路,主要由输入缓冲级、直流耦合互补级联、信号输出级、倍压整流与反馈几个部分组成。

倍压整流与反馈实现了自动增益控制的功能。

3、由于自动增益控制电路比较复杂,我们在实验中应该学会部分分析的方法。

当电路的输出电压波形不符合预期时,要根据实际的输出与理论分析的输出之间的差距来分析故障发生在哪里,这样可使我们缩小排查的围,提高实验效率,同时加深理解了电路每一部分的具体功能。

4、在连接电路之前,应该先设计好具体的电路布局,使得整体清晰美观,这样可以避免不必要的返工。

5、输出的信号电压基本为 1.35Vrms,以很小幅度波动,在实验要求的围,输出信号带宽为50Hz~225KHz,覆盖要求的频率宽度,可以处理很宽频带的信号,说明该电路对信号处理能力强,但同时带来一个问题,通频带宽,选择性差。

6、该自动增益控制电路,输入信号围为0.5~50mVrms输出信号为0.5~1.5Vrms信号带宽:100~5KHz,适合应用于低频段小信号处理的系统中。

九、PROTEL绘制的原理图1、PROTEL绘制的AGC电路原理图:该电路主要有几部分组成:输入前级、中间直流互补级联放大级、倍压整流电路、反馈网络、输出级。

其中反馈网络跨在直流互补耦合级联放大级的前端与输出级的前端之间,使信号自动衰减为一定的值,实现自动增益控制。

2、用PROTEL生成的PCB板3、9V稳压源电路原理图:4、9V稳压源生成PCB板5、实物效果十、所用元器件及测试仪表清单1、元器件清单Polarized Capacitor(Radial) C1 RB7.6-15 Cap Pol1 1 Polarized Capacitor(Radial) C2 RB7.6-15 Cap Pol1 1 Polarized Capacitor(Radial) C3 RB7.6-15 Cap Pol1 1 Polarized Capacitor(Radial) C4 RB7.6-15 Cap Pol1 1 Polarized Capacitor C5 RB7.6-15 Cap Pol1 12、测试仪器清单(1)信号发生器;(2)示波器;(3)交流毫伏表;(4)万用表;(5)直流稳压电源;十一、参考文献[1]《电子电路综合设计实验教程》邮电大学电路实验中心[2]《Protel DXP 电子设计使用教程》袁鹏平付刚罗开玉化学工业一种新能优良结构简单的AGC电路发布: | 作者:--| 来源: --| 查看:292次| 用户关注:.hqew./tech/circuit/许多应用类电子装置中都需要自动增益控制电路。

自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小围变化的特殊功能电路,简称为AGC电路。

AGC电路的基本原理是随着输入信号幅度的变化产生一个相应变化的直流电压(AGC电压),利用这一电压去控制一种可变增益放大器的放大倍数(或者控制一种可变衰减电路的衰减量):当输入信号幅度较大时AGC电压控制可变增益放大许多应用类电子装置中都需要自动增益控制电路。

自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小围变化的特殊功能电路,简称为AGC电路。

AGC电路的基本原理是随着输入信号幅度的变化产生一个相应变化的直流电压(AGC电压),利用这一电压去控制一种可变增益放大器的放大倍数(或者控制一种可变衰减电路的衰减量):当输入信号幅度较大时AGC电压控制可变增益放大器的放大倍数减小(或者增大可变衰减电路衰减量),当输入信号幅度较小时AGC电压控制可变增益放大器的放大倍数增加(或者减小可变衰减电路衰减量)。

显然,这种自动增益控制可以达到输出信号幅度基本稳定的目的。

增益可调的运算放大器(如AD603)常被用在AGC电路中,但是这一类器件不仅价格高,而且市面上难以买到。

经过多次试验,笔者使用普通元件设计出了一种成本低廉、性能优良、结构简单的AGC电路。

原理见下图。

上图中,输入信号经电阻R1、R2分压后送往运放F1的同相输入端,二极管VD对运放F1的输出信号整流后,经过一个π形滤波电路得到一个负向的AGC电压,这一电压经运放F2放大后送往场效应管3DJ6的栅极。

当输入信号的幅值较大时,相应地得到了较大的AGC电压,运放F2输出较大的负压至场效应管3DJ6的栅极,增大了场效应管3DJ6的源漏极问的电阻,从而减小了运放F1的放大倍数;输入信号的幅度进一步加大时,场效应管3DJ6的源漏极问的电阻也会进一步加大,使运放Fl的放大倍数进一步减小……直至场效应管3DJ6的源漏极被完全夹断,这时运放F1失去放大能力成了电压跟随器。

相关文档
最新文档