紫外分光光度计测定水中的六价铬

合集下载

紫外分光光度法测定水中铬_的方法研究

紫外分光光度法测定水中铬_的方法研究

969
铬是具有重要生理意义的微量元素,以六价和 三价的形式存在于水中。 六价铬可致癌,其毒性比 三价铬大 100 倍,并 且 铬 (Ⅵ)不 易 降 解 ,易 在 生 物 体和人体内聚积,造成长久的危害。 国家规定排放 废 水 中 铬 (Ⅵ)的 最 大 允 许 质 量 浓 度 为 0.5 mg·L-1, 生活用水中铬(Ⅵ)的含量不得超过 0.05~1.5 mg·L-1。 测 定 铬 的 方 法 很 多 , 常 见 的 有 分 光 光 度 法 [1]、 原 子 吸 收光谱法[2]、电位法[3]、荧光法 等 [4,5] 。 本文采用紫外 分光光度法直接测定微量铬(Ⅵ)。
mL
mol·L-1
mol·L-1
mol·L-1 %
自来水 25
2.6×10-7
2×10-7
3.52×10-7 96
河水
25
3.0×10-7
4×10-7 6.90×10-7 97.5
工业废水 25
6.4×10-7
8×10-7 14.0×10-7 95.3
3 小结
从以上试验结果可知,此方法反应灵敏,操作
Determination of Chromium (VI) in Water by Ultraviolet Spectrophotometry
PEI Cui-jin1,YAO Guo-guang2,ZHOU Fu-lin1,ZHANG Wen-chan1 (1.Department of Applied Chemistry, Yuncheng University,Yuncheng 044000,Shanxi,China; 2.Department of Applied Mathematics and Physics, Xi′an University of Post and Telecommunication, Xi′an 710121, China)

水中六价铬检测方法

水中六价铬检测方法

水中六价铬检测方法─比色法一、方法概要在酸性溶液中,六价铬与二苯基二氨(1,5-Diphenylcarbazide)反应生成紫红色物质,以分光光度计在波长540 nm 处,量测其吸光度并定量之。

二、适用范围本方法适用於饮用水水质、饮用水水源水质、地面水体、地下水、放流水及废(污)水中六价铬之检验,采用1公分样品槽时检量线范围为 0.1 ~1.0 mg/L;采用 5 公分样品槽则为 0.01 ~ 0.1 mg/L。

三、干扰(一)当铁离子之浓度大於1 mg/L时,会形成黄色Fe+3,虽然在某些波长下会有吸光值,惟干扰程度不大。

六价钼或汞盐浓度大於200 mg/L、钒盐浓度大於六价铬浓度10倍时,会形成干扰;不过六价钼或汞盐在本方法指定的pH范围内干扰程度不高。

另若有上述干扰的六价钼、钒盐、铁离子、铜离子等水样,可藉氯仿萃取出这些金属生成的铜铁化合物(Cupferrates)而去除之,惟残留在水样的氯仿和铜铁混合物(Cupferron)可用酸分解。

(二)高锰酸钾可能形成之干扰,可使用叠氮化物(Azide)将其还原後消除之。

四、设备及材料(一)p H计。

(二)分光光度计,使用波长540 nm,样品槽光径可选用 1或5或10 公分,以能检测出正确数据为原则。

(三)玻璃器皿∶勿使用以铬酸清洗过的玻璃器皿。

(四)分析天平∶可精秤至0.1 mg。

五、试剂(一)蒸馏水∶二次蒸馏水。

(二)0.2 N硫酸溶液∶以蒸馏水稀释17 mL之6 N硫酸溶液至500 mL。

(三)二苯基二氨溶液∶溶解0.25 g二苯基二氨於50 mL丙酮(Acetone),储存於棕色瓶,本溶液如褪色应弃置不用。

(四)浓磷酸。

(五)浓硫酸∶18 N及6 N。

(六)铬储备溶液∶在1000 mL量瓶内,溶解0.1414 g 重铬酸钾( K2Cr2O7 )於蒸馏水,稀释至刻度∶1.0 mL相当於0.05 mg Cr。

(七)铬标准溶液∶在100 mL量瓶内,稀释10.0 mL铬储备溶液至刻度;1.0 mL相当於0.005 mg Cr。

水中铬的测定步骤

水中铬的测定步骤

水中铬的测定步骤
一、样品处理:
1.采集水样:按照标准方法采集水样,保持样品的原始特性,尽量避免被污染。

2.过滤:将采集到的水样通过0.45μm的微孔过滤器进行过滤,去除固体杂质和悬浮颗粒。

二、六价铬的分析测定:
1.前处理:将适量的过滤后的水样加入酸性条件下,使用还原剂将六价铬还原为三价铬,常用还原剂有亚硫酸钠或氢氧化钨酸钠等。

2.电导测定:将还原后的样品通过电导仪进行测定,六价铬在酸性条件下具有较高的电导性,可以通过测量电导率来确定六价铬的浓度。

3.比色法:利用一些还原剂与六价铬反应生成着色物质,如二苯卡巴肼、二氮咪等,通过比色法来测定六价铬的浓度。

4.原子吸收光谱法:利用原子吸收光谱仪测定六价铬的浓度,该方法灵敏度高,准确性好。

三、总量铬的分析测定:
1.氧化还原反应:将适量的过滤后的水样加入气相二氧化硫SO2或亚硫酸钠溶液等还原剂,将三价铬还原为二价铬,常用还原剂有亚硫酸钠或氢氧化钠等。

2.化学显色法:利用含有显色剂的试剂与二价铬反应,在一定条件下
形成显色化合物,如1,5-二苯卡巴肼等,通过比色法或分光光度法测定
二价铬的浓度。

3.光谱法:利用紫外分光光度法或原子吸收光谱法测定总量铬的浓度。

四、结果处理:
根据测定六价铬和总量铬的实验结果,计算出水样中的六价铬和总量
铬的浓度。

根据水质标准,判断水样的铬含量是否符合规定的要求。

以上就是水中铬的测定步骤,通过合适的前处理方法和测定方法,可
以准确测定出水样中的六价铬和总量铬的浓度。

需要注意的是,在进行实
验过程中要遵守相关实验规范,确保实验操作的安全性和准确性。

紫外可见分光光度法测定水中六价铬的线性范围

紫外可见分光光度法测定水中六价铬的线性范围
Abstract The optimum range of the concentration for determining hexavalent chromium in water by UV–Vis spectrophotometry was discussed. UV-Vis spectrometry was used with diphenylcarbazide as the chromogenic agent in GB 7476–1987 to determine hexavalent chromium in water, and in the range of hexavalent chromium concentration, the detection precision and accuracy did not meet the demand of the standard. By analysizing a lardge amount of test datas, it showed that the optimal linear range for the determination of hexavalent chromium in water by this method was 0.05–0.4 μg/mL.
Keywords diphenylcarbazide; UV Vis spectrophotometry; Cr( Ⅵ ); linear interval
铬在水中一般以六价和三价的形式存在,其中 价铬浓度对紫外可见分光光度法测定水中六价铬的
六价铬为吞入性/吸入性极毒物,毒性极大 ( 为三 精确度有影响,目前国内外对紫外可见分光光度法
紫外可见分光光度计:UV–2600A 型,尤尼柯

水中六价铬的测定实验报告

水中六价铬的测定实验报告

水中六价铬的测定实验报告水中六价铬的测定实验报告摘要:本实验旨在通过分光光度法测定水中六价铬的含量。

首先,通过制备标准曲线,确定了六价铬的吸光度与其浓度之间的关系。

然后,利用该标准曲线,测定了实际水样中六价铬的含量。

实验结果表明,该方法准确、可靠,适用于水中六价铬的测定。

引言:六价铬是一种常见的有害物质,在水体中的存在对环境和人体健康都具有潜在的危害。

因此,准确测定水中六价铬的含量对于环境保护和人体健康具有重要意义。

本实验利用分光光度法,通过测定六价铬溶液的吸光度来确定其浓度,以此方法来测定水中六价铬的含量。

实验方法:1. 实验仪器和试剂本实验使用的仪器有分光光度计、移液器等。

试剂包括六价铬标准溶液、硫酸、硫酸钠、硫酸铬钾等。

2. 标准曲线的制备首先,制备一系列不同浓度的六价铬标准溶液。

然后,分别取不同浓度的标准溶液,用硫酸稀释,并加入硫酸钠和硫酸铬钾反应生成三价铬。

测量各标准溶液的吸光度,并记录下来。

根据吸光度与浓度的关系,绘制出标准曲线。

3. 水样处理从实际水样中取一定量的样品,并加入硫酸稀释。

然后,按照相同的步骤进行硫酸钠和硫酸铬钾的反应,生成三价铬。

测量水样溶液的吸光度,并利用标准曲线计算出水样中六价铬的含量。

结果与讨论:通过实验得到的标准曲线如图1所示。

根据标准曲线,可以计算出实际水样中六价铬的含量。

实验结果表明,水样A中六价铬的含量为0.05 mg/L,水样B 中六价铬的含量为0.1 mg/L。

图1:六价铬标准曲线本实验采用的分光光度法测定水中六价铬的含量,具有准确、可靠的特点。

通过制备标准曲线,可以根据测得的吸光度值计算出六价铬的浓度。

然后,通过对实际水样的处理和测量,可以确定水中六价铬的含量。

实验结果表明,该方法可以有效地测定水中六价铬的含量。

结论:本实验通过分光光度法测定了水中六价铬的含量。

通过制备标准曲线,确定了六价铬的吸光度与浓度之间的关系,并利用该标准曲线测定了实际水样中六价铬的含量。

分光光度法测定生活饮用水中六价铬的方法验证

分光光度法测定生活饮用水中六价铬的方法验证

分光光度法测定生活饮用水中六价铬的方法验证■ 胡 艳(四川省泸州生态环境监测中心站)摘 要:本文采用《生活饮用水标准检验方法 第6部分:金属和类金属指标》(GB/T 5750.6—2023)中二苯碳酰二肼分光光度法对生活饮用水中六价铬的方法进行验证研究,验证内容主要包括标准曲线线性关系、方法检出限、测定下限、准确度、精密度等方面,并对以上性能指标的测定结果进行分析,结果表明:标准曲线相关系数为0.9999;检出限为0.0007 mg/ L;测定下限为0.0021 mg/L;精密度为0.3%~0.8%;加标回收率为95%~102%,所有性能指标验证结果均能满足方法标准要求,本实验室具备采用二苯碳酰二肼分光光度法测定生活饮用水中六价铬的能力。

关键词:六价铬,分光光度法,方法验证DOI编码:10.3969/j.issn.1002-5944.2024.03.035Validation of Determination of Hexavalent Chromium in Drinking Waterby Spectrophotometry MethodHU Yan(Sichuan Luzhou Ecological Environment Monitoring Center Station)Abstract:In this paper, the validation study of hexavalent chromium determination in drinking water by diphenylcarbazide spectrophotometry is conducted, which is expounded in GB/T 5750.6—2023, Standard examination methods for drinking water—Part 6: Metal and metalloid indices. The verifi cation content mainly includes linearity calibration curve, method detection limit, lower limit of determination, accuracy, precision and other aspects, and the verifi cation results are analyzed in the paper. The results show that the correlation coeffi cient of the standard curve was 0.9999, the method detection limit was 0.0007 mg/L, the lower limit of determination was 0.0021 mg/L, the precision was 0.3%~0.8%, the add standard recovery rate was 95%~102%, and the validation results of all performance indicators meet the requirements of the standard, which means the laboratory has the ability to determine hexavalent chromium in drinking water by diphenylcarbazide spectrophotometry method.Keywords: hexavalent chromium, spectrophotometry, method validation自然界中的铬主要以三价铬和六价铬两种价态存在,在水环境中二者在特定条件下能够相互转化,三价铬较稳定、毒性小,六价铬氧化性强、毒性大,长期饮用被六价铬污染的生活饮用水,可能会对人体产生“三致”(致癌、致畸和致突变)危害,因此,六价铬是水质监测的重点项目之一。

(完整版)紫外分光光度计测定水中的六价铬

(完整版)紫外分光光度计测定水中的六价铬

紫外分光光度计测定水中的六价铬六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。

但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。

铬是生物体必需的微量元素之一。

铬的缺乏会导致糖、脂肪等物质的代谢紊乱,但摄入量过高对生物和人类有害。

铬的毒性与其存在形态有极大的关系: 三价铬化合物几乎无毒,且是人和动物所必需的; 相反,六价铬化合物具有强氧化性,且有致癌性。

一般来说,六价铬的毒性要比三价铬大100倍。

我国规定铬在地面水中最高允许浓度: 三价铬为0.5 mg/L,六价铬为0.1 mg/L,生活饮水最高允许浓度( 六价铬) 为0.055 mg/L。

因此对六价铬需要一种简单、有效的分析方法。

六价铬的测定方法有很多: 如二苯碳酰二肼可见分光光度法、示波极谱滴定法、原子吸收分光光度法、动力学光度法、流动注射光度法等,但大多由于仪器价昂难以普及使用。

分光光度法则以仪器价廉,操作简单等优点,目前在我国仍具有广泛的实用价值。

本文研究了在碱性条件下对六价铬的测定,碱性条件下六价铬在紫外区有一较强的吸收峰,因此建立了对六价铬的测定方法。

1 主要仪器和试剂配制紫外可见分光光度计,可见分光光度计,酸度计。

六价铬标准溶液: 称取于120℃干燥2 h 的K2Cr2O7( 优级纯) 0.282 9 g,溶于少量水中并稀释定容至1 L,摇匀得浓度为0.100 mg/mL 的储备液。

2%(m/V) 氢氧化钾溶液: 称取2 g 氢氧化钾溶于100 mL蒸馏水中。

1∶1 硫酸溶液: 将浓硫酸缓慢加入到等体积水中,混合均匀。

所用试剂均为分析纯,实验用水为二次蒸馏水。

所用的玻璃器皿均在1 mol /L 的HNO3 溶液中浸泡12 h 以上。

2 方法与结果 2.1 六价铬的吸收光谱准确移取1 mL 铬标准和适量的氢氧化钾溶液置于25 mL 容量瓶中,定容后用1 cm 比色皿在波长200~400 nm 范围内扫描吸收曲线,结果产物的λmax 为372 nm; 故本文选372 nm 作为测试波长。

测定六价铬两种方法中显色剂的比较

测定六价铬两种方法中显色剂的比较

测定六价铬两种方法中显色剂的比较作者:周春雨来源:《绿色科技》2019年第14期摘要:用六价铬地下水质检验方法DZ/T 0064.17-93中的显色剂与GB 7467-87方法的水质中的六价铬检测的显色剂进行了对比,把地下水质六价铬检验方法DZ/T 0064.17-93的显色剂加到六价铬水质检测GB 7467—87方法中,通过t检验对加两种显色剂方法的实验数据进行了分析,结果表明:t检验的Sig值大于0.05,说明两种显色剂方法无显著性差异。

以方法GB7467-87测定值为真值,计算相对误差在-1.23%~1.07%,使用地下水质检验方法中的显色剂检测水质,避免使用丙酮,可以减少丙酮对人体的危害。

关键词:水质检验;Cr6+显色荆t检验中图分类号:TS761 文献标识码:A 文章编号:1674-9944(2019)14-0176-021引言铬的毒性与其存在价态有关,通常认为六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且在体内蓄积。

目前我国已经把六价铬规定为实施总量控制的指标之一,在日常的环境监测中,六价铬被列为必测项目。

水中六价铬的测定方法主要包括二苯碳酰二肼分光光度法、瑞利共振光散射法、火焰原子吸收分光光度法、硫酸亚铁铵滴定法、催化动力学法、重铬酸钾法、荧光熄灭法等多种方法。

六价铬的测定方法最常用的是二苯碳酰二肼分光光度法。

该方法具有多项优点,例如干扰少、灵敏度高、操作简单、使用范围广等。

因此其常被用作测定水样中六价铬的首选国标经典方法。

其原理是在酸性溶液之中,具有强氧化性的六价铬会将二苯碳酰二肼氧化成为二苯缩二氨基脲,而新生成的二苯缩二氨基脲则继续和六价铬的还原产物Cr3+形成紫红色化合物,其最大吸收波长为540nm,从而实现水样六价铬的测定。

测定水和废水常采用GB 7467-87的方法,该方法显色剂中会用到丙酮,而丙酮对人体健康具有危害,原本六价铬就是有害物质,实验过程中再使用有害的丙酮,对人们的健康更加不利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

紫外分光光度计测定水中的六价铬
六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。

但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。

铬是生物体必需的微量元素之一。

铬的缺乏会导致糖、脂肪等物质的代谢紊乱,但摄入量过高对生物和人类有害。

铬的毒性与其存在形态有极大的关系: 三价铬化合物几乎无毒,且是人和动物所必需的; 相反,六价铬化合物具有强氧化性,且有致癌性。

一般来说,六价铬的毒性要比三价铬大100倍。

我国规定铬在地面水中最高允许浓度: 三价铬为0.5 mg/L,六价铬为0.1 mg/L,生活饮水最高允许浓度( 六价铬) 为0.055 mg/L。

因此对六价铬需要一种简单、有效的分析方法。

六价铬的测定方法有很多: 如二苯碳酰二肼可见分光光度法、示波极谱滴定法、原子吸收分光光度法、动力学光度法、流动注射光度法等,但大多由于仪器价昂难以普及使用。

分光光度法则以仪器价廉,操作简单等优点,目前在我国仍具有广泛的实用价值。

本文研究了在碱性条件下对六价铬的测定,碱性条件下六价铬在紫外区有一较强的吸收峰,因此建立了对六价铬的测定方法。

1 主要仪器和试剂配制紫外可见分光光度计,可见分光光度计,酸度计。

六价铬标准溶液: 称取于120℃干燥2 h 的K2Cr2O7( 优级纯) 0.282 9 g,溶于少量水中并稀释定容至1 L,摇匀得浓度为0.100 mg/mL 的储备液。

2%(m/V) 氢氧化钾溶液: 称取2 g 氢氧化钾溶于100 mL蒸馏水中。

1∶1 硫酸溶液: 将浓硫酸缓慢加入到等体积水中,混合均匀。

所用试剂均为分析纯,实验用水为二次蒸馏水。

所用的玻璃器皿均在1 mol /L 的HNO3 溶液中浸泡12 h 以上。

2 方法与结果 2.1 六价铬的吸收光谱准确移取1 mL 铬标准和适量的氢氧化钾溶液置于25 mL 容量瓶中,定容后用1 cm 比色皿在波长200~400 nm 范围内扫描吸收曲线,结果产物的λmax 为372 nm; 故本文选372 nm 作为测试波长。

用移液管分别移取铬标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00 mL 于50 mL 容量瓶中,分别加适量氢氧化钾溶液,然后用蒸馏水稀释至刻度,摇匀; 得到Cr(VI) 的浓度分别是0.00、1.00、2.00、4.00、6.00、8.00、10.00 mg/L,用1 cm 比色皿以蒸馏水为参比,在波长372 nm 处测定其吸光度分别为0.002、0.078、0.158、0.309、0.452、0.587、0.745 mg/L,得到六价铬
浓度C(mg/L) 与吸光度A 之间的线性关系: A=0.0736C 0.0084,r=0.9995。

2.3 样品测定方法将澄清的待测样品( 河南省振兴化工有限公司提供铬渣水浸出物) 用蒸馏水稀释到可测范围内,用1 cm 比色皿以蒸馏水为参比,于波长372 nm 处测定其吸光度通过校准曲线计算六价铬的含量。

3 讨论3.1 pH 值的影响配浓度为
4 mg/L 的六价铬溶液,不同pH 值下,在372 nm 处用可见分光光度计测定其吸光度。

3.2 干扰离子实验对于2 mg/L 的Cr(VI) ,我们考察了一些可能存在的共存离子对测定Cr(VI) 的影响; 结果表明:在测定的相对误差小于±5%情况下,300 倍的K 、Na 、Zn2 、Mn2 、Co2 对测定结果无干扰。

Fe3 和Cu2 有干扰,但1 mL 5%NaF 和1 mL 10%硫脲存在下Fe3 和Cu2 对测Cr(VI) 的干扰即可消除。

4 结论紫外分光光度法对六价铬的测定,操作简便,重现性好,对外界条件要求较为缓和,干扰较少灵敏度也较高; 在实际分析中几乎不用其它试剂,具有较好的实用价值。

本文由广州深华实验室仪器设备整合发布。

相关文档
最新文档