2020四川中职对口高考数学模拟试题
中职对口升学资料-2020年高考数学模拟试卷-7份-8

第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。
B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。
C.两平行直线一定能够确定一个平面。
D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。
8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)9.已知sinα∙cosα>0,则α是第 象限角;10.若直线2x -ay +1=0与3x +2y -1=0互相垂直,那么a = ;11.已知球的半径是8cm ,则这个球的表面积是 ;12.由数字1,2,3,4,5可以组成 个没有重复数字的三位奇数;13.已知f (x )=(x -1)2,则其单调增区间是 。
中职对口升学资料-2020年高考数学模拟试卷-6份-10

第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。
B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。
C.两平行直线一定能够确定一个平面。
D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。
8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有 种方法;13.已知圆柱体的模具的底面半径为10cm ,高15cm ,现在在模具中间挖空一个半径为4cm ,高为15cm 的小圆柱体,问剩下的这个模具的体积为 ;三、解答题.(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。
中职对口升学资料-2020年高考数学模拟试卷-6份- 24

第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1、设A ={a },则下列写法正确的是( )。
A .a =A B.a ∈A C. a ⊆A D.a ∉A2.函数f (x )=lg (1-x )的定义域为( )A .x ≠1B .{x |x ≠1 }C .(1,+∞)D .[1,+∞)3.如果函数f (x )=g (x )+2 ,已知g (2)=-2,那么f (2)=( )A .2B . 5C .4D .04.已知→a =(0,-2),→b =(-1,1),则→a ∙→b =( ) A .-2 B .0 C .-3 D .25.与角-450终边相同的角是 ( )A 、π45B 、-405ºC 、π47- D 、765º 6.已知直线l : 2x -y -1=0,那么这条直线的斜率和截距分别为( )A .2,1B .1,2C .2,-1D .-2,-17.下列命题中,正确的是( )A 、平面就是平行四边形 。
B 、过直线外一点有且只有一条直线与这条直线平行 。
C 、空间内不相交的两条直线一定是平行直线。
D 、垂直于同条直线的两条直线平行。
8. 书架上有语文、英语、数学、物理、化学共5本不同的书,现从中任抽一本,则没有抽到物理书的概率是( ).A .51B . 52C .53D .54 二、填空题(本大题共5小题,每题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有种方法;13.已知圆柱体的模具的底面半径为10cm,高15cm,现在在模具中间挖空一个半径为4cm,高为15cm的小圆柱体,问剩下的这个模具的体积为;三、解答题(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。
中职对口升学资料-2020年高考数学模拟试卷-4份-4

第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin α,则α=( ) A .300 B .600 C .1200 D .300 或15005.已知点A(2,1)与点B(-2,-4),则向量BA =( )A. (-4,-5)B.(4,5)C.(-4,5)D.(4,-5)6.已知圆的方程为x 2-2x +y 2+4y -11=0,则它的圆心与半径分别是( )A .(1,2),4B .(-1,2),4C .(1,-2),4D .(-1,-2),47.下列命题错误的是( )A.如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。
B .如果一条直线与一个平面平行,并且经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
C . 如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。
D .如果平面外的一条直线与平面内的所有直线都平行,那么这条直线与这个平面平行。
8.某样本容量为60,若采取分层抽样的方法,若一、二、三级品的个数之比为2:3:5,则从二级品中应抽取( )个。
A .12B .18C .30D .60二、填空题(本大题共5小题,每小题6分,共30分)9.已知sinα∙cosα>0,则α是第 象限角;10.若直线2x -ay +1=0与3x +2y -1=0互相垂直,那么a = ;11.已知球的半径是8cm,则这个球的表面积是;12.由数字1,2,3,4,5可以组成个没有重复数字的三位奇数;13.加工一批零件,先用30分钟准备,若加工5个零件用了1小时,则加工60个零件要用分钟.三、解答题(本大题共2小题,共30分)14. 某林场计划第一年造林50公顷,以后每一年比前一年多造林10%,求该林场五年内的造林数(精确到1).(10分)15.某电力公司采用分段计费的方法计算电费:每月用电不超过230度时,按每度0.51元计费;每月用电超过230度时,其中的230度仍然按原来的标准收费,超过部分按每度0.82元计费。
2020四川中职对口高考数学模拟试题

2020四川中职对口高考数学模拟试题一、选择题(每小题4分,共60分)1.设全集{}4,3,2,1,0=U ,集合{}3,2,1,0=A ,{}4,3,2=B ,则集合B C A C u u =( ) (A ){}0 (B ){}1,0 (C) {}4,1,0 (D) {},3,2,1,0 2. 1>a 是11<a的( ) (A )充分但不必要条件 (B )必要但不充分条件 (C )充要条件 (D )既不充分又不必要条件 3.以π2为周期的奇函数是( )(A )⎪⎭⎫ ⎝⎛+=2sin πx y (B )x y 2sin 21-= (C )⎪⎭⎫ ⎝⎛+=3sin πx y (D )2cos 2sin x x y =4.圆03222=--+y y x 的圆半径为( )(A )()2,1,0=r (B )()4,1,0=r(C )()2,1,0=-r (D )()4,1,0=-r 5.已知xa y =是R 上的增函数,x y a log =和()x a y -=1的图像只可能是( )(A ) 6.若Z k ∈,则函数x y sin =的定义域是( )(A )[]πππk k 2,2+ (B )()πππk k 2,2+(C )[]πππk k 2,2+ (D )⎥⎦⎤⎢⎣⎡++-ππππk k 22,22 7.向量()(),5,2,3,2-==b a如果b x a 32=+则=x ( )(A)2 (B )-2 (C )()6,4- (D )()6,4- 8.数列{}n a 的通项公式492-=n a n ,那么n S 取最小值时=n ( ) (A )23 (B )24 (C )25 (D )24或259.一棱长为6cm 的正方体,现从中切割出一个最大的圆柱,则所得圆柱的体积是( ) (A )3108cm π (B )354cm π (C )360cm π (D )3216cm π10.下列命题中的真命题是( )(A )若直线l 垂直于平面α内的二直线a 、b ,则α⊥l(B )若直线l 与平面α相交,则过l 且与α垂直的平面只有一个 (C )过平面α外一点,只能做一个平面与α平行 (D )与两条异面直线都相交的二直线也是异面直线11.点()5,2P 关于直线0=+y x 的对称点的坐标是( ) (A )()2,5 (B )()5,2- (C )()2,5-- (D )()52-- 12. 椭圆的一个顶点与两个焦点构成等边三角形,则椭圆离心率是( ) (A )51 (B )43 (C )33 (D )2113.顶点在原点,准线方程为1=x 的抛物线方程是( )(A )x y 22= (B )x y 22-= (C )y x 42-= (D )x y 42-= 14.函数2cos 3cos 2+-=x x y 的最小值是( ) (A )0 (B )41-(C )2 (D )6 15.8个学生坐成两排,前排3人,后排5人,其中学生甲必须坐前排中间位置,则不同的坐法有( )(A )88P (B )77P (C )5538P P (D )5538C C二、填空题(每小题4分,共20分)16、计算:()=⎪⎭⎫⎝⎛+--•-6log 43log 32log log 22222232317、已知,20,31sin παα<<=则=-2cos 2sin πα 18.如右图,等腰直角△ABC 的斜边BC 在平面α内,BC=12,顶点A 到α的距离为3,则斜边BC 上的中线与α所成的角是19.椭圆14222=+a y x 与双曲线1222=-y a x 有相同的焦点,则a 的值为 20.二项式612⎪⎭⎫ ⎝⎛-x x 展开式中的常数项为 三、解答题:21、袋中有3个红球,2个黑球,1个白球,若从中取出一个红球得2分,一个黑球得1分,一个白球得-1分,从中任取3个球。
中职对口升学资料-2020年高考数学模拟试卷-7份 - 33

第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1、设A ={a },则下列写法正确的是( )。
A .a =A B.a ∈A C. a ⊆A D.a ∉A2.函数f (x )=lg (1-x )的定义域为( )A .x ≠1B .{x |x ≠1 }C .(1,+∞)D .[1,+∞)3.如果函数f (x )=g (x )+2 ,已知g (2)=-2,那么f (2)=( )A .2B . 5C .4D .04.已知→a =(0,-2),→b =(-1,1),则→a ∙→b =( ) A .-2 B .0 C .-3 D .25.与角-450终边相同的角是 ( )A 、π45B 、-405ºC 、π47- D 、765º 6.已知直线l : 2x -y -1=0,那么这条直线的斜率和截距分别为( )A .2,1B .1,2C .2,-1D .-2,-17.下列命题中,正确的是( )A 、平面就是平行四边形 。
B 、过直线外一点有且只有一条直线与这条直线平行 。
C 、空间内不相交的两条直线一定是平行直线。
D 、垂直于同条直线的两条直线平行。
8. 书架上有语文、英语、数学、物理、化学共5本不同的书,现从中任抽一本,则没有抽到物理书的概率是( ).A .51B . 52C .53D .54 二、填空题(本大题共5小题,每题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有种方法;13.已知圆柱体的模具的底面半径为10cm,高15cm,现在在模具中间挖空一个半径为4cm,高为15cm的小圆柱体,问剩下的这个模具的体积为;三、解答题(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。
2020年四川对口升学数学样题3

2020年四川普通高校职教师资和高职班对口招生统一考试数学样题(3)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1~2页,第Ⅱ卷第3~4页,共4页。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
满分150分,考试时间120分钟。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
2.第I 卷共1个大题,15个小题。
每个小题4分,共60分。
一、选择题:(本大题共15个小题.每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知R U =,{}|||1A x x =<,{}032|2<--=x x x B ,则A B I = ( ) A.{}31|≥<x x x 或 B.{}11|<<-x x C. {}31|≤≤-x x D. {}11|≤<-x x2.已知θθ2cos ,21cos 则== ( ) A .21- B .23- C .23 D .21 3.在等比数列{}n a 的前n 项的和n S ,2112s s =,则公比q= ( ) A. 5.0 B. 5.0- C. 2 D. 2-4.在直角坐标系中,直线033=--y x 的倾斜角是 ( )A .030B .060C .0120D .0150 5.已知53cos -=α,且α是第三象限角,则=-)2cos(απ ( ) A .53 B .54- C .54 D .53- 6.已知)(x f 1()42x =+(R x ∈),则(2)f -= ( ) A .8- B .0 C .4 D .8 7.已知向量)1 ,5( ),3 ,3(--=-=则=21 ( ) A .)2,1( B .)2,1(-C .)1,4(-D .)1,4(- 8.在等差数列{n a }中,4a 、10a 是方程0462=--x x 的两根,则7a = ( )A .6B .3C .6-D .3-9.若直线0=++m y x 与圆122=+y x 相切,则m 为 ( )A .2B . 2±C . 2-D .210.双曲线2213x y m m-=的一个焦点是(2,0),则m 的值是 ( ) A .1 B .1- C .2 D .2-11.在ABC ∆中,的长为则边c A b a ,30,15 ,5 === ( )A .52B .5C .52或5D .以上都不对 12.下列命题正确的是 ( )A .函数x y -=3在),(+∞-∞上是增函数B .函数x xy -+=11的定义域为x≤1 C .函数x x y sin =是奇函数 D .函数)32sin(π+=x y 的最小正周期为л13.四名学生报名参加三个项目的比赛,每项只准一人参加,则不同报名方法数为 ( )A .34CB .34AC .43D .3414.若抛物线()220y px p =>过点M )(4,4,F 是焦点,则=MF ( ) A .5 B .4 C .3 D .215.二项式n x )2(+的展开式中所有项的系数和是729,此展开式中含4x 的系数是 ( )A .30B . 60C .120D . 240 第Ⅱ卷(非选择题 共90分)注意事项:1.非选择题必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答。
中职对口升学资料-2020年高考数学模拟试卷-6份- 22

第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin α,则α=( ) A .300 B .600 C .1200 D .300 或15005.已知点A(2,1)与点B(-2,-4),则向量BA =( )A. (-4,-5)B.(4,5)C.(-4,5)D.(4,-5)6.已知圆的方程为x 2-2x +y 2+4y -11=0,则它的圆心与半径分别是( )A .(1,2),4B .(-1,2),4C .(1,-2),4D .(-1,-2),47.下列命题错误的是( )A.如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。
B .如果一条直线与一个平面平行,并且经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
C . 如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。
D .如果平面外的一条直线与平面内的所有直线都平行,那么这条直线与这个平面平行。
8.某样本容量为60,若采取分层抽样的方法,若一、二、三级品的个数之比为2:3:5,则从二级品中应抽取( )个。
A .12B .18C .30D .60三、解答题(本大题共2小题,共30分)9.已知y =1-2cosα,则y 的最小值是 ,最大值是 ;10.=-)314sin(π; 11.已知数列:...643-432321-,,,⨯⨯⨯则这个数列的通项公a n = . 12.已知一扇形的半径为5cm ,圆心角为1200,则此扇形的面积为 .13.若某学校高三一班有25个男生,30个女生,要从男女生中各选拔出一个同学作为学校代表参加比赛,共有 种选法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020四川中职对口高考
数学模拟试题
一、选择题(每小题4分,共60分)
1.设全集{}4,3,2,1,
0=U ,集合{
}3,2,1,0=A ,{}
4,3,2=B ,则集合B C A C u u =( ) (A ){}0 (B ){
}1,0 (C) {}4,1,0 (D) {},3,2,1,0 2. 1>a 是
11
<a
的( ) (A )充分但不必要条件 (B )必要但不充分条件 (C )充要条件 (D )既不充分又不必要条件 3.以π2为周期的奇函数是( )
(A )⎪⎭⎫ ⎝
⎛+
=2sin πx y (B )x y 2
sin 21-= (C )⎪⎭⎫ ⎝
⎛
+=3sin πx y (D )2cos 2sin x x y =
4.圆0322
2
=--+y y x 的圆半径为( )
(A )()2,1,0=r (B )()4,1,0=r
(C )()2,1,
0=-r (D )()
4,1,0=-r 5.已知x
a y =是R 上的增函数,x y a log =和()x a y -=1的图像只可能是( )
(A ) 6.若Z k ∈,则函数x y sin =
的定义域是( )
(A )[]πππk k 2,2+ (B )(
)
πππk k 2,2+
(C )[]πππ
k k 2,2+ (D )⎥⎦
⎤
⎢⎣⎡++-
ππ
ππ
k k 22,
22 7.向量()(),5,2,3,2-==b a
如果b x a 32=+则=x ( )
(A)2 (B )-2 (C )()6,
4- (D )()
6,4- 8.数列{}n a 的通项公式492-=n a n ,那么n S 取最小值时=n ( ) (A )23 (B )24 (C )25 (D )24或25
9.一棱长为6cm 的正方体,现从中切割出一个最大的圆柱,则所得圆柱的体积是( ) (A )3
108cm π (B )3
54cm π (C )3
60cm π (D )3
216cm π
10.下列命题中的真命题是( )
(A )若直线l 垂直于平面α内的二直线a 、b ,则α⊥l
(B )若直线l 与平面α相交,则过l 且与α垂直的平面只有一个 (C )过平面α外一点,只能做一个平面与α平行 (D )与两条异面直线都相交的二直线也是异面直线
11.点()
5,
2P 关于直线0=+y x 的对称点的坐标是( ) (A )()2,
5 (B )()5,2- (C )()2,5-- (D )()52-- 12. 椭圆的一个顶点与两个焦点构成等边三角形,则椭圆离心率是( ) (A )
51 (B )43 (C )33 (D )2
1
13.顶点在原点,准线方程为1=x 的抛物线方程是( )
(A )x y 22
= (B )x y 22
-= (C )y x 42
-= (D )x y 42
-= 14.函数2cos 3cos 2
+-=x x y 的最小值是( ) (A )0 (B )4
1
-
(C )2 (D )6 15.8个学生坐成两排,前排3人,后排5人,其中学生甲必须坐前排中间位置,则不同的坐法有( )
(A )88P (B )7
7P (C )5538P P (D )5538C C
二、填空题(每小题4分,共20分)
16、计算:()
=⎪⎭
⎫
⎝⎛+--•-6log 43log 32log log 22
2222323
17、已知,20,31sin παα<<=则=-2
cos 2sin πα 18.如右图,等腰直角△ABC 的斜边BC 在平面α内,BC=12,顶点A 到α的距离为3,则斜边BC 上的中线与α所成的角是
19.椭圆
14222=+a y x 与双曲线122
2=-y a x 有相同的焦点,则a 的值为 20.二项式6
12⎪
⎭⎫ ⎝
⎛
-x x 展开式中的常数项为 三、解答题:
21、袋中有3
个红球,2个黑球,1个白球,若从中取出一个红球得2分,一个黑球得1分,一个白球得-1分,从中任取3个球。
求:(1)得分X 的分布列;(2)得分大于3分的概率。
22、的值
求五、已知απαπα4cos ,833sin 6sin =⎪⎭⎫ ⎝⎛
+•⎪⎭⎫ ⎝⎛+
23、
{}()()
*∈-=N n 1a 31
S S n n n n ,项和为的前六、已知数列n a
(1)求
2
1,a a
()是等比数列
求证:数列}{2n a
24、
()()的),且与二次函数的图像过点(七、已知一次函数q px x x g 5,02++=+=b kx x f 最小值。
轴上,求此二次函数的x ),另一个在8,3图像的一个交点为(-
25、如右图,CD 是直角三角形ABC 斜边AB 上的高,AD=3,BD=6,CD=3√2,把ΔACD 绕CD 旋转到△A ’CD 位置,使二面角A ’-CD-B 为60º。
(1)求证:面A ’BC ⊥A ’CD ;(2)求二面角A ’-BC-D 的大小。
26、椭圆中心在原点,焦点在x 轴上,一抛物线顶点是重合与椭圆中心,并且以椭圆右焦点
,求椭圆方程36,,21M 物线有一交点为为焦点,已知椭圆和抛⎪⎪⎭
⎫ ⎝⎛
A'
B。