高二上期末数学试卷(理科)(有答案)
高二上理科数学期末试卷及答案

第一学期期末考试试题 高二(理科)数学(必修5;选修2-1)(满分150分;时间120分钟)第I 卷(选择题 共50分)一、选择题(本大题共10个小题;每小题只有一个正确选项。
每小题5分;共50分)1.{}为则,中,已知等差数列n a a a a a n n ,33,431521==+=( ) A.48 B.492. {}==⋅=+q a a a a a n 则公比中,在正项等比数列,16,105362( ) A.2 B.22C. 222或3.的值为则中,在A aS b A ABC ABC Osin ,3,1,60===∆∆( ) A.3392 B.8138 C.3326 D. 724.在下列函数中;最小值为2的是( ) A.xx y 1+=B.xx y -+=33C.()101lg 1lg <<+=x xx y D.⎪⎭⎫⎝⎛<<+=20sin 1sin πx x x y5. 若椭圆221x my +=的离心率为2;则它的长半轴长为( ) A .1 B .2 C .1或2 D .与m 有关6.()线准线方程为的右焦点重合,则抛物的焦点与椭圆若12602222=+>=y x p px y ( ) A.1-=xB. 2-=xC. 21-=x D. 4-=x7. 有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个8. 以椭圆1162522=+y x 的焦点为顶点;离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 9. 下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g10.是的距离最小的点的坐标上到直线抛物线42212=-=y x x y ( ) A.(1;1) B.(1;2) C.(2;2) D.(2;4)第II 卷(非选择题 共100分)二、填空题(本大题共5个小题;每小题5分;共25分)11. 等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于 . 12.()的最大值为则若a a a 21,210-<< . 13. 的最大值为,则足若满y x z x y x y x y x -=⎪⎩⎪⎨⎧≥+≤-≤+302142, .14. 双曲线的渐近线方程为20x y ±=;焦距为10;这双曲线的方程为 . 15. 若19(0,2,)8A ;5(1,1,)8B -;5(2,1,)8C -是平面α内的三点;设平面α的法向量),,(z y x a =;则=z y x :: .三、解答题(本大题6个小题;共75分.解答应写出说明文字;证明过程或演算步骤) 16. (本小题共12分) 如图;△ACD 是等边三角形;△ABC 是等腰直角三角形;∠ACB=90°;BD 交AC 于E ;AB=2. (1)求cos ∠CBE 的值;(2)求AE 。
高二上学期期末考试数学(理)试卷及参考答案(共3套)

第一学期期末考试高二年级(理科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,满分60分. 1.下列说法正确的是(A) 命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”(B) 若命题2:,210p x x x ∃∈-->R ,则命题2:,210p x x x ⌝∀∈--<R (C) 命题“若x y =,则sin sin x y =”的逆否命题为真命题 (D) “1x =-”是“2560x x --=”的必要不充分条件2.已知向量(1,1,0)=a ,(1,0,2)=-b ,且(R)k k +∈a b 与2-a b 互相垂直,则k 等于(A) 1 (B)15 (C) 3 (D)753.设ABC ∆的内角A ,B ,C 所对边分别为3a =,b =π3A =,则B =(A)π6 (B) 5π6 (C) (D)2π34.若公差为2的等差数列{}n a 的前9项和为81,则9a =(A) 1(B) 9(C) 17(D)195.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率是(A)2(B) (C) 2 16.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a (2)n a +等于(A) 2)12(-n(B))12(31-n (C) 14-n (D))14(31-n 7.不等式220ax bx ++>的解集是11(,)23-,则a b -等于(A) 10- (B) 10 (C) 14- (D)148.已知0,0>>b a ,且132=+b a ,则23a b+的最小值为(A) 24(B) 25 (C) 26(D)279.若中心在原点,焦点在y(A) y x =± (B) y x = (C) y = (D)12y x =± 10.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是 (A) 30m -<< (B) 32m -<< (C) 34m -<< (D)13m -<<11.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为(A)13(B)3(C)(D)2312.已知点P 是抛物线22y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是⎪⎭⎫ ⎝⎛4,27A ,则|||PA PM +的最小值是(A)211 (B) 4 (D)5二、填空题:本大题共4小题,每小题5分,满分20分.13.已知向量1(8,,),(,1,2)2a x xb x ==,其中0x >,若b a //,则x 的值为__________. 14.过抛物线214y x =的焦点F 作一条倾斜角为30︒的直线交抛物线于A 、B 两点,则AB =__________. 15.已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =__________.16.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨。
人教版高二上学期期末数学试卷(理)(有答案)

黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。
高二上学期期末考试数学(理科)试卷(含参考答案)

高二第一学期理科数学期末考试试题一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{14}A x x =<<,{lg(1)}B x y x ==-,则AB =( )A .{12}x x <<B .{12}x x ≤<C .{12}x x -<<D .{12}x x -≤< 2. 如果命题“p 且q ”是假命题,“q ⌝”也是假命题,则( ) A .命题“⌝p 或q ”是假命题 B .命题“p 或q ”是假命题 C .命题“⌝p 且q ”是真命题 D .命题“p 且q ⌝”是真命题3. 已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( ) A. 110 B. 55 C. 50 D. 不能确定4. 以抛物线28y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A. 22(1)1x y ++= B. 22(1)1x y -+= C. 22(2)4x y ++= D. 22(2)4x y -+=5.“3a =”是 “函数()3xf x ax =-有零点”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6.已知n m ,是两条不同的直线, βα,是两个不同的平面,给出下列命题: ①若βα⊥,α//m ,则β⊥m ; ②若α⊥m,β⊥n ,且n m ⊥,则βα⊥;③若β⊥m ,α//m ,则β⊥α; ④若α//m ,β//n ,且n m //,则βα//. 其中正确命题的序号是( )A .①④B .②④C .②③ D.①③7.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题: “今有蒲生一日,长三尺。
莞生一日,长一尺。
蒲生日自半。
莞生日自倍。
问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计右面的程序框图,输入3A =,1a =.那么在①处应填( )A .2?T S >B .2?S T >C .2?S T <D .2?T S < 8.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A. 3[0,]4π B.3π[0,)[,π) 24π⋃ C. 3π[,π) 4 D. 3(,]24ππ 9.已知定义在R 上的函数()f x 满足: ()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时, ()1x f x e =-,则()()20162017f f +-= ( )(其中e为自然对数的底)A. 1e -B. 1e -C. 1e --D. 1e +10.已知Rt ABC ∆,点D 为斜边BC 的中点,63AB =,6AC =,12AE ED =,则A E E B ⋅等于( ) A. 14- B. 9- C. 9 D.1411.在平面直角坐标系中,不等式组22200x y x y x y r +≤⎧⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为 ( )A .1- B.17- C. 13 D .75-12. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A.221+B. 224-C.225-D.223+ 二、填空题:本大题共4小题,每小题5分,满分20分.13. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.14.已知α为锐角,向量(cos ,sin )a αα=、(1,1)b =-满足223a b ⋅=,则sin()4πα+= .15.某三棱锥的三视图如图所示,则其外接球的表面积为______.16.若实数,,a b c 满足22(21)(ln )0a b a c c --+--=,则b c -的最小值是_________.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17. (本小题满分10分)在数列{}n a 中,14a =,21(1)22n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 18. (本小题满分12分) 在ABC ∆中,角,,A B C 所对的边分别是,,a b c,且sin sin sin sin 3a Ab Bc C C a B +-= .(1)求角C ;(2)若ABC ∆的中线CD 的长为1,求ABC ∆的面积的最大值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)在五面体ABCDEF 中, ////,222AB CD EF CD EF CF AB AD =====,60DCF ︒∠=,AD ⊥平面CDEF .(1)证明:直线CE ⊥平面ADF ; (2)已知P 为棱BC 上的点,23CP CB =,求二面角P DF A --的大小.21. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的右焦点(1,0)F ,过点F 且与坐标轴不垂直的直线与椭圆交于P ,Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点(,0)T t (0)t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.22.(本小题满分12分)已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间; (2)证明:当2a e≥时, ()x f x e ->.高二数学期末考试试题参考答案ACBDA CBBAD DC 13. 56 14.315. 323π 16. 117.解:(1)21(1)22n n na n a n n +-+=+的两边同时除以(1)n n +,得*12()1n na a n n n+-=∈+N , …………3分 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. …………………4分(2)由(1),得22n an n=+,…………………5分所以222n a n n =+,故2111(1)111()222(1)21n n n a n n n n n n +-==⋅=⋅-+++,………………7分所以111111[(1)()()]22231n S n n =-+-++-+, 1111111[(1)()]223231n n =++++-++++ 11(1)212(1)n n n =-=++. ……………10分 18.解:(1)∵ sin sinsin sin a A b B c C Ca B +-=,222cos 2a b c C Cab +-∴==…………4分,即tan C =(0,)C π∈3C π∴=.………………6分(2) 由222211()(2)44CD CA CB CA CB CA CB =+=++⋅ 即2222111(2cos )()44b a ab C b a ab =++=++…………………8分从而22442,3ab a b ab ab -=+≥≤(当且仅当a b ==10分 即114sin 223ABC S ab C ∆=≤⨯=…………………12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分因为51()()(3)(1)000316iii x x y y =--=-⨯-++++⨯=∑,…………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分=…………………………4分所以相关系数()()0.95ni ix x y yr--===≈∑.………………5分因为0.75r>,所以可用线性回归模型拟合y与的关系.……………6分(2)记商家周总利润为Y元,由条件可得在过去50周里:当70X>时,共有10周,此时只有1台光照控制仪运行,周总利润Y=1×3000-2×1000=1000元.…………8分当5070X≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y=2×3000-1×1000=5000元.……………………………9分当50X<时,共有5周,此时3台光照控制仪都运行,周总利润Y=3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………………………12分20.证明:(1)//,2,CD EF CD EF CF===∴四边形CDEF为菱形,CE DF∴⊥,………1分又∵AD⊥平面CDEF∴CE AD⊥………2分又,AD DF D⋂=∴直线CE⊥平面ADF.………4分(2) 60DCF∠=,DEF∴∆为正三角形,取EF的中点G,连接GD,则,GD EF GD CD⊥∴⊥,又AD⊥平面CDEF,∴,,DA DC DG两两垂直,以D为原点,,,DA DC DG所在直线分别为,,x y z轴,建立空间直角坐标系D xyz-,………5分2,1CD EF CF AB AD=====,((0,,E F∴-,(1,1,0),(0,2,0)B C………6分由(1)知(0,CE=-是平面ADF的法向量,………7分()()0,1,3,1,1,0DF CB==-,222(,,0)333CP CB==-,(0,2,0)DC=则24(,,0)33DP DC CP=+=,………8分设平面PDF的法向量为(),,n x y z=,∴n DFn DP⎧⋅=⎪⎨⋅=⎪⎩,即2433yx y⎧=⎪⎨+=⎪⎩,令z=3,6y x==-,∴(6,3,n=-………10分∴1cos ,223n CE n CE n CE⋅===-………11分∴二面角P DF A --大小为60.………12分21. 解:(1)由题意知1c =,又tan 603bc ==,所以23b =,………2分2224a b c =+=,所以椭圆的方程为:22143x y += ;………4分 (2)当0k =时, 0t =,不合题意设直线PQ 的方程为:(1),(0)y k x k =-≠,代入22143x y+=,得:2222(34)84120k x k x k +-+-=,故0∆>,则,0k R k ∈≠ 设1122(,),(,)P x y Q x y ,线段PQ 的中点为00(,)R x y ,则2120002243,(1)23434x x k k x y k x k k +===-=-++ ,………7分由QP TP PQ TQ ⋅=⋅ 得:()(2)0PQ TQ TP PQ TR ⋅+=⋅= , 所以直线TR 为直线PQ 的垂直平分线,………8分直线TR 的方程为:222314()3434k k y x k k k +=--++ , ………10分 令0y =得:T 点的横坐标22213344k t k k ==++,………11分因为2(0,)k ∈+∞, 所以234(4,)k +∈+∞,所以1(0,)4t ∈. ………12分所以线段OF 上存在点(,0)T t 使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈.22.解:(1)函数()ln af x x x=+的定义域为()0,+∞.由()ln a f x x x =+,得()221a x af x x x x ='-=-.………1分①当0a ≤时, ()0f x '>恒成立, ()f x 递增, ∴函数()f x 的单调递增区间是()0,+∞ ………2分 ②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分 (2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln xa x e x-+>,………5分 即ln xx x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+,当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1x e =时, ()min1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()xx xe φ-=,则()()1xx x x exe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<. 所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e≥时, (f x )xe ->.………12分。
高二第一学期数学(理)期末试卷及答案5套

高二第一学期数学(理)期末试卷及答案5套(时间:120分钟 总分:150分,交答题纸)第Ⅰ卷(12题:共60分)一、选择题(包括12小题,每小题5分,共60分) 1.某高中有学生1 000人,其中一、二、三年级的人数比为4∶3∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .100 B .40 C .75 D .252.某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为 ( ) A.40%B.30%C.20%D. 10%3.对于空间的两条直线n m ,和一个平面α,下列命题中的真命题是 ( ) A.n m n m //,////则,若αα B.n m n m //,则,若αα⊥⊥ C.n m n m //,//则,若αα⊥ D.n m n m //,//则,若αα⊂4.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为 ( )A.911B.811C.89D.255.甲、乙两名学生六次数学测验成绩如右图所示。
①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差。
上面说法正确的是( )A.②④B.①②④C.③④D.①③ 6.下图是把二进制数11111(2)化成十进制数的一个程序框图, 则判断框内应填入的条件是( )A.?5>iB.?4≤iC.?4>iD.?5≤i7.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为8165,则事件A 在1次试验中发生的概率为( ) A.32 B.31 C.95 D.94 8.已知双曲线)0,0(12222>>=-b a by a x 的一个焦点与圆01022=-+x y x 的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为( )A.120522=-y x B.1202522=-y x C.152022=-y x D.1252022=-y x 9.设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( ) A.34B. 35C.13D.1210.命题“设R b a ∈,,若6≠+b a ,则3≠a 或3≠b ”是一个真命题; 若“q p ∨”为真命题,则q p ,均为真命题;命题“)1(2,,22--≥+∈∀b a b a R b a ”的否定是“)1(2,,22--≤+∈∃b a b a R b a ”; ④“)(2Z k k ∈+=ππϕ”是函数)2sin(ϕ+=x y 为偶函数的充要条件。
高二上期末数学试卷(理)含答案解析

高二(上)期末数学试卷一、选择题1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3} 2.下列结论正确的是()A.x>1⇒<1 B.x+≥2 C.x>y⇒=<D.x>y⇒x2>y2 3.命题“∃x∈R+,lnx>0”的否定是()A.∃x∈R+,lnx>0 B.∀x∈R+,lnx≤0 C.∀x∈R+,lnx>0 D.∃x∈R+,lnx≥0 4.有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为()A.5、10、15、20 B.2、6、10、14 C.2、4、6、8 D.5、8、11、14 5.执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.76.椭圆+=1(a>b>0)的两个焦点F1,F2,点M在椭圆上,且MF1⊥F1F2,|MF1|=,|MF2|=,则离心率e等于()A.B.C.D.7.如图,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为()A.B.C.D.8.已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积是()A.27cm3B.9cm3C.cm3D.3cm310.实数x,y满足,则z=y﹣x的最大值是()A.1 B.2 C.3 D.411.函数,给出下列结论正确的是()A.f(x)的最小正周期为B.f(x)的一条对称轴为C.f(x)的一个对称中心为D.是奇函数12.设f(x)是定义在R上的周期为3的函数,当x∈[﹣2,1)时,f(x)=,则f()=()A.0 B.1 C.D.﹣1二、填空13.若角45°的终边上有一点(4,a),则a的值是.14.不等式x2﹣3x﹣18≤0的解集为.15.若与为非零向量,,则与的夹角为.16.直线l过点A(3,2)与圆x2+y2﹣4x+3=0相切,则直线l的方程为.三、解答题17.求椭圆+=1的长轴和短轴的长、顶点和焦点的坐标.18.焦点坐标(﹣5,0),实轴长为6,求双曲线标准方程并求此双曲线渐近线方程及离心率.19.如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.(1)求证:PD∥面AEC;(2)求证:平面AEC⊥平面PDB.20.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,已知第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明.21.已知等差数列{a n},S n为其前n项和,a5=10,S7=56.(1)求数列{a n}的通项公式;(2)若b n=a n+(),求数列{b n}的前n项和T n.22.已知函数(x∈R).(1)求f(x)的单调递增区间;(2)在△ABC中,B为锐角,且f(B)=,AC=4,D是BC边上一点,AB=AD,试求△ADC周长的最大值.2015-2016学年辽宁省阜新二中高二(上)期末数学试卷参考答案与试题解析一、选择题1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3} 【考点】交集及其运算.【专题】集合.【分析】直接利用交集运算求得答案.【解答】解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.【点评】本题考查交集及其运算,是基础的计算题.2.下列结论正确的是()A.x>1⇒<1 B.x+≥2 C.x>y⇒=<D.x>y⇒x2>y2【考点】不等式的基本性质.【专题】不等式的解法及应用.【分析】A.x>1⇒<1;B.x<时不成立;C.取x>0,y<0,不成立;D.取x=﹣1,y=﹣2,不成立.【解答】解:对于A.x>1⇒<1,正确;对于B.x<时不成立;对于C.取x>0,y<0,则不成立;对于D.取x=﹣1,y=﹣2,不成立.只有A正确.故选;A.【点评】本题考查了不等式的基本性质,属于基础题.3.命题“∃x∈R+,lnx>0”的否定是()A.∃x∈R+,lnx>0 B.∀x∈R+,lnx≤0 C.∀x∈R+,lnx>0 D.∃x∈R+,lnx≥0 【考点】命题的否定.【专题】简易逻辑.【分析】根据特称命题的否定是全称命题进行判断即可.【解答】解:特称命题的否定是全称命题,则命题“∃x∈R+,lnx>0”的否定是:∀x∈R+,lnx≤0,故选:B【点评】本题主要考查含有量词的命题的否定,比较基础.4.有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为()A.5、10、15、20 B.2、6、10、14 C.2、4、6、8 D.5、8、11、14 【考点】系统抽样方法.【专题】常规题型.【分析】系统抽样,要求编号后,平均分租,每一组只抽一个样本,两个相邻的样本的编号间距相等【解答】解:从20人中用系统抽样抽4个人,须把20人平均分成4组,每一组只抽1人,且所抽取的号码成等差数列只有A选项满足故选A【点评】本题考查系统抽样,要求掌握系统抽样的特点:平均分租,每一组只抽一个样本,号码成等差数列.属简单题5.执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.7【考点】程序框图.【专题】算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.6.椭圆+=1(a>b>0)的两个焦点F1,F2,点M在椭圆上,且MF1⊥F1F2,|MF1|=,|MF2|=,则离心率e等于()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题意,|F1F2|==2=2c,2a=+=6,即可求出椭圆的离心率.【解答】解:由题意,|F 1F 2|==2=2c ,2a=+=6,∴e==.故选:C .【点评】本题考查椭圆的定义,考查椭圆的几何性质,考查学生的计算能力,属于中档题.7.如图,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为( )A .B .C .D .【考点】概率的应用. 【专题】计算题.【分析】先求出正方形的面积为22,设阴影部分的面积为x ,由概率的几何概型知,由此能求出该阴影部分的面积. 【解答】解:设阴影部分的面积为x ,则,解得x=.故选B .【点评】本题考查概率的性质和应用,每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型. 解题时要认真审题,合理地运用几何概型解决实际问题.8.已知直线a ,b ,平面α,β,且a ⊥α,b ⊂β,则“a ⊥b ”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据题意,分两步来判断:①分析当α∥β时,a⊥b是否成立,有线面垂直的性质,可得其是真命题,②分析当a⊥b时,α∥β是否成立,举出反例可得其是假命题,综合①②可得答案.【解答】解:根据题意,分两步来判断:①当α∥β时,∵a⊥α,且α∥β,∴a⊥β,又∵b⊂β,∴a⊥b,则a⊥b是α∥β的必要条件,②若a⊥b,不一定α∥β,当α∩β=a时,又由a⊥α,则a⊥b,但此时α∥β不成立,即a⊥b不是α∥β的充分条件,则a⊥b是α∥β的必要不充分条件,故选B.【点评】本题考查充分必要条件的判断,涉及线面垂直的性质的运用,解题的关键要掌握线面垂直的性质.9.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积是()A.27cm3B.9cm3C.cm3D.3cm3【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】几何体是四棱锥,由侧视图知四棱锥的高为1,根据三视图的数据判断底面是边长为1+2=3的正方形,代入棱锥的体积公式计算.【解答】解:由三视图知:几何体是四棱锥,且四棱锥的高为1,底面是边长为1+2=3的正方形,∴几何体的体积V=×32×1=3(cm3).故选:D.【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及数据所对应的几何量.10.实数x,y满足,则z=y﹣x的最大值是()A.1 B.2 C.3 D.4【考点】简单线性规划.【专题】计算题;对应思想;数形结合法;不等式.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件画出平面区域,如图所示.A(0,1),化目标函数z=y﹣x为y=x+z,由图可知,当直线y=x+z过点A时,目标函数取得最大值.∴z max=1﹣0=1.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.函数,给出下列结论正确的是()A.f(x)的最小正周期为B.f(x)的一条对称轴为C.f(x)的一个对称中心为D.是奇函数【考点】两角和与差的正弦函数.【专题】转化思想;数形结合法;三角函数的图像与性质.【分析】化简函数f(x),求出f(x)的最小正周期T,判断出A错误;把x=代入2x+中计算,根据正弦函数图象的对称性,判断出B、C错误;化简f(x﹣),得出f(x﹣)是定义域R上的奇函数,判断出D正确.【解答】解:函数=sin(2x+),∴f(x)的最小正周期为T==π,A错误;又当x=时,2x+=≠kπ+,k∈Z,∴x=不是f(x)的对称轴,B错误;同理x=时,2x+=≠kπ,k∈Z,∴(,0)不是f(x)的对称中心,C错误;又f(x﹣)=sin[2(x﹣)+]=sin2x,∴f(x﹣)是定义域R上的奇函数,D正确.故选:D.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的恒等变换问题,是基础题目.12.设f(x)是定义在R上的周期为3的函数,当x∈[﹣2,1)时,f(x)=,则f()=()A.0 B.1 C.D.﹣1【考点】函数的值.【专题】函数的性质及应用.【分析】既然3是周期,那么﹣3也是周期,所以f()=f(﹣),代入函数解析式即可.【解答】解:∵f(x)是定义在R上的周期为3的函数,∴f()=f(﹣3)=f(﹣)=4(﹣)2﹣2=﹣1故选:D【点评】本题考查函数的周期性以及分段函数的表示,属于基础题.二、填空13.若角45°的终边上有一点(4,a),则a的值是4.【考点】任意角的三角函数的定义.【专题】计算题;函数思想;定义法;三角函数的求值.【分析】直接利用三角函数的定义,即可求出m的值.【解答】解:因为45°角的终边上有一点为(4,a),所以tan45°==1,所以a=4.故答案为:4.【点评】本题考查三角函数的定义,考查计算能力,正确运用利用三角函数是关键.14.不等式x2﹣3x﹣18≤0的解集为[﹣3,6].【考点】一元二次不等式的解法.【专题】计算题;方程思想;定义法;不等式的解法及应用.【分析】不等式可化为(x+3)(x﹣6)≤0.解得x≤﹣3≤x≤6,由此得到不等式的解集.【解答】解:不等式x2﹣3x﹣18≤0,即(x+3)(x﹣6)≤0.解得x≤﹣3≤x≤6,故不等式解集为[﹣3,6],故答案为:[﹣3,6].【点评】本题主要考查了一元二次不等式的解法,体现了等价转化的数学思想,属于基础题.15.若与为非零向量,,则与的夹角为.【考点】数量积表示两个向量的夹角;向量的模.【专题】平面向量及应用.【分析】利用模的计算公式和数量积即可得出.【解答】解:∵,∴,∴=,∴.∵与为非零向量,∴.∴与的夹角为.故答案为.【点评】熟练掌握模的计算公式和数量积是解题的关键.16.直线l过点A(3,2)与圆x2+y2﹣4x+3=0相切,则直线l的方程为x=3或3x﹣4y﹣1=0.【考点】圆的切线方程.【专题】计算题;直线与圆.【分析】根据直线和圆相切的条件进行求解即可.【解答】解:圆的标准方程为(x﹣2)2+y2=1,则圆心坐标为(2,0),半径R=1若直线斜率k不存在,则直线方程为x=3,圆心到直线的距离d=3﹣2=1,满足条件.若直线斜率k存在,则直线方程为y﹣2=k(x﹣3),即kx﹣y+2﹣3k=0,圆心到直线的距离d==1,平方得k=,此时切线方程为3x﹣4y﹣1=0,综上切线方程为x=3或3x﹣4y﹣1=0,故答案为:x=3或3x﹣4y﹣1=0.【点评】本题主要考查直线和圆的位置关系的应用,根据直线和圆相切的等价条件是解决本题的关键.三、解答题17.求椭圆+=1的长轴和短轴的长、顶点和焦点的坐标.【考点】椭圆的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】利用椭圆性质求解.【解答】解:椭圆+=1中,∵a=4,b=2,c==2,∴椭圆+=1的长轴2a=8,短轴2b=4,顶点(﹣4,0),(4,0),(0,﹣2),(0,2),焦点(﹣2,0),(2,0).【点评】本题考查椭圆的长轴和短轴的长、顶点和焦点的坐标的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.18.焦点坐标(﹣5,0),实轴长为6,求双曲线标准方程并求此双曲线渐近线方程及离心率.【考点】双曲线的简单性质.【专题】计算题;方程思想;数学模型法;圆锥曲线的定义、性质与方程.【分析】由题意可知,双曲线为实轴在x轴上的双曲线,并求得c与a的值,代入隐含条件求得b,则双曲线标准方程、渐近线方程及离心率可求.【解答】解:∵双曲线焦点坐标(﹣5,0),∴双曲线为实轴在x轴上的双曲线,且c=5,又实轴长为6,即2a=6,得a=3,∴b2=c2﹣a2=25﹣9=16,则b=4,∴双曲线标准方程为,渐近线方程为y=±,即4x±3y=0,双曲线的离心率为e=.【点评】本题考查双曲线方程的求法,考查了双曲线的简单性质,是基础题.19.如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.(1)求证:PD∥面AEC;(2)求证:平面AEC⊥平面PDB.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题.【分析】(1)设AC∩BD=O,连接EO,证明PD∥EO,利用直线与平面平行的判定定理证明PD∥面AEC.(2)连接PO,证明AC⊥PO,AC⊥BD,通过PO∩BD=O,证明AC⊥面PBD,然后证明面AEC⊥面PBD【解答】解:(1)证明:设AC∩BD=O,连接EO,因为O,E分别是BD,PB的中点,所以PD∥EO…(4分)而PD⊄面AEC,EO⊂面AEC,所以PD∥面AEC…(7分)(2)连接PO,因为PA=PC,所以AC⊥PO,又四边形ABCD是菱形,所以AC⊥BD…(10分)而PO⊂面PBD,BD⊂面PBD,PO∩BD=O,所以AC⊥面PBD…(13分)又AC⊂面AEC,所以面AEC⊥面PBD…(14分)【点评】本题考查直线与平面平行,平面与平面垂直的判定定理的应用,考查空间想象能力.20.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,已知第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明.【考点】频率分布直方图.【专题】计算题;图表型.【分析】(1)根据各个小矩形的面积之比,做出第二组的频率,再根据所给的频数,做出样本容量.(2)从频率分步直方图中看出次数子啊110以上的频数,用频数除以样本容量得到达标率,进而估计高一全体学生的达标率.(3)这组数据的中位数落在的位置是刚好把频率分步直方图分成两个相等的部分的位置,测试中各个小组的频数分别是6,12,51,45,27,9前3组频数之和是69,后3组频数之和是81,得到中位数落在第四小组.【解答】解:(1)∵各小长方形面积之比为2:4:17:15:9:3∴第二小组的频率是=0.08∵第二小组频数为12,∴样本容量是=150(2)∵次数在110以上(含110次)为达标,∴高一学生的达标率是=88%即高一有88%的学生达标.(3)∵这组数据的中位数落在的位置是刚好把频率分步直方图分成两个相等的部分的位置,∵测试中各个小组的频数分别是6,12,51,45,27,9前3组频数之和是69,后3组频数之和是81,∴中位数落在第四小组,即跳绳次数的中位数落在第四小组中.【点评】本题考查频率分步直方图,考查用样本的频率分布估计总体的频率分布,本题解题的关键是读懂直方图,本题是一个基础题.21.已知等差数列{a n},S n为其前n项和,a5=10,S7=56.(1)求数列{a n}的通项公式;(2)若b n=a n+(),求数列{b n}的前n项和T n.【考点】数列的求和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】(1)根据题意和等差数列的前n项和公式、通项公式,求出公差和首项,再求出数列{a n}的通项公式;(2)由(1)求出b n,由分组求和法和等差、等比数列的前n项和公式求出T n.【解答】解:(1)由S7=56得=56,则7a4=56,解得a4=8,因为a5=10,所以公差d=a5﹣a4=10﹣8=2,则a4=a1+3d,解得a1=8﹣6=2,所以a n=2+2(n﹣1)=2n;(2)由(1)得,b n=a n+()=2n+3n,所以T n=(2+3)+(4+32)+(6+33)+…+(2n+3n)=(2+4+6+…+2n)+(3+32+33+…+3n)=+=,所以T n=.【点评】本题考查等差数列的通项公式,等差、等比数列的前n项和公式,及数列的求和方法:分组求和法,属于中档题.22.已知函数(x∈R).(1)求f(x)的单调递增区间;(2)在△ABC中,B为锐角,且f(B)=,AC=4,D是BC边上一点,AB=AD,试求△ADC周长的最大值.【考点】三角函数中的恒等变换应用;正弦定理.【专题】计算题;三角函数的图像与性质;解三角形.(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=.由【分析】,可得单调递增区间.(2)由得.又,则可求得,由AB=AD可求得:AD+DC=BD+DC=BC,又由正弦定理可得BC=8sin∠BAC.由,可得.故可得周长最大值.【解答】解:(1)===.由,得(k∈Z).∴单调递增区间为,k∈Z(2)由得.又,则,从而,∴.由AB=AD 知△ABD 是正三角形,AB=AD=BD ,∴AD+DC=BD+DC=BC ,在△ABC 中,由正弦定理,得,即BC=8sin ∠BAC .∵D 是BC 边上一点,∴,∴,知.当时,AD+CD 取得最大值8,周长最大值为.【点评】本题主要考查了三角函数中的恒等变换应用,正弦定理的应用,综合性较强,属于中档题.。
高二上学期期末数学试卷(理科)含答案

高二(上)期末测试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.函数:的单调递增区间是 f(x)=3+xlnx ()A. B. C. D. (0,1e ).(e,+∞)(1e ,+∞)(1e ,e)【答案】C【解析】解:由函数得:,f(x)=3+xlnx f(x)=lnx +1令即,根据得到此对数函数为增函数,f'(x)=lnx +1>0lnx >‒1=ln 1e e >1所以得到,即为函数的单调递增区间.x >1e 故选:C .求出的导函数,令导函数大于0列出关于x 的不等式,求出不等式的解集即可得到x 的范围即为函数的单f(x)调递增区间.本题主要考查学生会利用导函数的正负得到函数的单调区间,同时考查了导数的计算,是一道基础题.2.函数的图象在点处的切线方程为 f(x)=lnx ‒2x x (1,‒2)()A. B. C. D. 2x ‒y ‒4=02x +y =0x ‒y ‒3=0x +y +1=0【答案】C【解析】解:由函数知,f(x)=lnx ‒2x x f'(x)=1‒lnxx 2把代入得到切线的斜率,x =1k =1则切线方程为:,y +2=x ‒1即.x ‒y ‒3=0故选:C .求出曲线的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.x =1(1,2)本题考查学生会利用导数求曲线上过某点的切线方程,考查计算能力,注意正确求导.3.已知,,,则向量与的夹角为 A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)⃗AB ⃗AC ()A. B. C. D. 30∘45∘60∘90∘【答案】C 【解析】解:因为,,,A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)所以,⃗AB =(0,3,3),⃗AC = (‒1,1,0)所以,并且,,⃗AB ⋅⃗AC═0×(‒1)+3×1+3×0=3|⃗AB |=32|⃗AC |=2所以,,cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |=332×2=12的夹角为∴⃗AB 与⃗AC 60∘故选:C .由题意可得:,进而得到与,,再由,可得答⃗AB=(0,3,3),⃗AC = (‒1,1,0)⃗AB ⋅⃗AC |⃗AB ||⃗AC |cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |案.解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题4.已知椭圆的左焦点为,则 x 225+y 2m 2=1(m >0)F 1(‒4,0)m =()A. 2B. 3C. 4D. 9【答案】B【解析】解:椭圆的左焦点为,∵x 225+y 2m 2=1(m >0)F 1(‒4,0),∴25‒m 2=16,∵m >0,∴m =3故选:B .利用椭圆的左焦点为,可得,即可求出m .x 225+y 2m 2=1(m >0)F 1(‒4,0)25‒m 2=16本题考查椭圆的性质,考查学生的计算能力,比较基础.5.等于 ∫10(e x +2x)dx ()A. 1B. C. e D. e ‒1e +1【答案】C 【解析】解:,∵(e x +x 2)'=e x +2x ,∴∫10(e x +2x)dx ═(e x +x 2)|10=(e +1)‒(1+0)=e故选:C .由,可得,即可得出.(e x +x 2)'=e x +2x ∫10(e x +2x)dx =(e x +2x)|10本题考查了微积分基本定理,属于基础题.6.若函数在处有极大值,则 f(x)=x(x ‒c )2x =3c =()A. 9B. 3C. 3或9D. 以上都不对【答案】A 【解析】解:函数的导数为f(x)=x(x ‒c )2f'(x)=(x ‒c )2+2x(x ‒c),=(x ‒c)(3x ‒c)由在处有极大值,即有,f(x)x =3f'(3)=0解得或3,c =9若时,,解得或,c =9f'(x)=0x =9x =3由在处导数左正右负,取得极大值,f(x)x =3若,,可得或1c =3f'(x)=0x =3由在处导数左负右正,取得极小值.f(x)x =3综上可得.c =9故选:A .由题意可得,解出c 的值之后必须验证是否符合函数在某一点取得极大值的充分条件.f'(3)=0本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.7.函数的示意图是 y =e x (2x ‒1)()A. B.C. D.【答案】C【解析】解:由函数,y =e x (2x ‒1)当时,可得,排除A ;D x =0y =‒1当时,可得,时,.x =‒12y =0∴x <12y <0当x 从时,越来越大,递增,可得函数的值变大,排除B ;12→+∞y =e x y =2x ‒1y =e x (2x ‒1)故选:C .带入特殊点即可选出答案本题考查了函数图象变换,是基础题.8.若AB 过椭圆 中心的弦,为椭圆的焦点,则面积的最大值为 x 225+y 216=1F 1△F 1AB ()A. 6B. 12C. 24D. 48【答案】B【解析】解:设A 的坐标则根据对称性得:,(x,y)B(‒x,‒y)则面积.△F 1AB S =12OF ×|2y|=c|y|当最大时,面积最大,∴|y|△F 1AB 由图知,当A 点在椭圆的顶点时,其面积最大,△F 1AB 则面积的最大值为:.△F 1AB cb =25‒16×4=12故选:B .先设A 的坐标则根据对称性得:,再表示出面(x,y)B(‒x,‒y)△F 1AB积,由图知,当A 点在椭圆的顶点时,其面积最大,最后结合椭圆的标准方程即可求出面积△F 1AB △F 1AB 的最大值.本小题主要考查函数椭圆的标准方程、椭圆的简单性质、面积公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题..9.设函数的极大值为1,则函数的极小值为 f(x)=13x 3‒x +m f(x)()A. B. C. D. 1‒13‒113【答案】A【解析】解:,∵f(x)=13x 3‒x +m ,∴f'(x)=x 2‒1令,解得,f'(x)=x 2‒1=0x =±1当或时,,x >1x <‒1f'(x)>0当时,;‒1<x <1f'(x)<0故在,上是增函数,在上是减函数;f(x)(‒∞,‒1)(1,+∞)(‒1,1)故在处有极大值,解得f(x)x =‒1f(‒1)=‒13+1+m =1m =13在处有极小值,f(x)x =1f(1)=13‒1+13=‒13故选:A .求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可.本题考查函数的极值问题,属基础知识的考查熟练掌握导数法求极值的方法步骤是解答的关键..10.设抛物线的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值y 2=4x 范围是 ()A. B. C. D. [‒12,12][‒2,2][‒1,1][‒4,4]【答案】C【解析】解:,∵y 2=4x 为准线与x 轴的交点,设过Q 点的直线l 方程为.∴Q(‒1,0)(Q )y =k(x +1)与抛物线有公共点,∵l 方程组有解,可得有解.∴{y =k(x +1)y 2=4x k 2x 2+(2k 2‒4)x +k 2=0,即.∴△=(2k 2‒4)2‒4k 4≥0k 2≤1,∴‒1≤k ≤1故选:C .根据抛物线方程求得Q 点坐标,设过Q 点的直线l 方程与抛物线方程联立消去y ,根据判别式大于等于0求得k 的范围.本题主要考查了抛物线的应用涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定.理或判别式解决问题.11.已知函数 x ,若在区间内恒成立,则实数a 的取值范围是 f(x)=ax ‒ln f(x)>1(1,+∞)()A. B. C. D. (‒∞,1)(‒∞,1](1,+∞)[1,+∞)【答案】D 【解析】解: x ,在内恒成立,∵f(x)=ax ‒ln f(x)>1(1,+∞)在内恒成立.∴a >1+lnx x (1,+∞)设,g(x)=1+lnx x 时,,∴x ∈(1,+∞)g'(x)=‒lnxx 2<0即在上是减少的,,g(x)(1,+∞)∴g(x)<g(1)=1,即a 的取值范围是.∴a ≥1[1,+∞)故选:D .化简不等式,得到在内恒成立设,求出函数的导数,利用函数的单调性化简求a >1+lnx x (1,+∞).g(x)=1+lnx x 解即可.本题考查函数的导数的综合应用,考查转化思想以及计算能力.12.设双曲线的两条渐近线与直线分别交于A ,B 两点,F 为该双曲线的右焦点若x 2a 2‒y 2b 2=1x =a 2c .,则该双曲线的离心率的取值范围是 60∘<∠AFB <90∘()A. B. C. D. (1,2)(2,2)(1,2)(2,+∞)【答案】B【解析】解:双曲线的两条渐近线方程为,时,,x 2a 2‒y 2b 2=1y =±b a x x =a 2c y =±ab c ,,∴A(a 2c ,ab c )B(a 2c ,‒ab c ),∵60∘<∠AFB <90∘,∴33<k FB <1,∴33<ab c c ‒a 2c <1,∴33<a b <1,∴13<a 2c 2‒a 2<1,∴1<e 2‒1<3.∴2<e <2故选:B .确定双曲线的两条渐近线方程,求得A ,B 的坐标,利用,可得,由x 2a 2‒y 2b 2=160∘<∠AFB <90∘33<k FB <1此可求双曲线的离心率的取值范围.本题考查双曲线的几何性质,考查学生的计算能力,正确寻找几何量之间的关系是关键.二、填空题(本大题共4小题,共20.0分)13.双曲线的顶点到其渐近线的距离等于______.x 2‒y 2=1【答案】22【解析】解:双曲线的,x 2‒y 2=1a =b =1可得顶点为,(±1,0)渐近线方程为,y =±x 即有顶点到渐近线的距离为d =11+1=22故答案为:.22求得双曲线的,求得顶点坐标,渐近线方程,运用点到直线的距离公式计算即可得到所求值.a =b =1本题考查双曲线的顶点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.14.已知函数的导函数为,且满足,则______.f(x)f'(x)f(x)=3x 2+2xf'(2)f'(5)=【答案】6【解析】解:f'(x)=6x +2f'(2)令得x =2f'(2)=‒12∴f'(x)=6x ‒24∴f'(5)=30‒24=6故答案为:6将看出常数利用导数的运算法则求出,令求出代入,令求出.f'(2)f'(x)x =2f'(2)f'(x)x =5f'(5)本题考查导数的运算法则、考查通过赋值求出导函数值.15.已知向量5,,1,,若平面ABC ,则x 的值是______.⃗AB=(1,‒2)⃗BC =(3,2)⃗DE =(x,‒3,6).DE//【答案】‒23【解析】解:平面ABC ,∵DE//存在事实m ,n ,使得,∴⃗DE =m ⃗AB +n ⃗BC ,解得.∴{x =m +3n ‒3=5m +n 6=‒2m +2n x =‒23故答案为:.‒23由平面ABC ,可得存在事实m ,n ,使得,利用平面向量基本定理即可得出.DE//⃗DE =m ⃗AB +n ⃗BC 本题考查了平面向量基本定理、方程的解法,考查了推理能力与计算能力,属于基础题.16.已知抛物线C :的焦点F ,,则曲线C 上的动点P 到点F 与点A 的距离之和的最小值为y 2=‒4x A(‒1,1)______.【答案】2【解析】解:抛物线方程为,∵y 2=‒4x ,可得焦点为,准线为∴2p =4F(‒1,0)x =1设P 在抛物线准线l 上的射影点为Q 点,A(‒1,1)则由抛物线的定义,可知当P 、Q 、A 点三点共线时,点P 到点的距离与P 到该抛物线焦点的距离之和(‒1,1)最小,最小值为.∴1+1=2故答案为:2.根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P 、A 和P 在准线上的射影点Q 三点共线时,这个距离之和最小,即可得出结论.本题给出抛物线上的动点,求该点到定点Q 和焦点F 距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知函数.f(x)=x 3+x ‒16求曲线在点处的切线的方程;(I)y =f(x)(2,‒6)Ⅱ直线L 为曲线的切线,且经过原点,求直线L 的方程及切点坐标.()y =f(x)【答案】解:函数的导数为,(I)f(x)=x 3+x ‒16f'(x)=3x 2+1可得曲线在点处的切线的斜率为,y =f(x)(2,‒6)3×4+1=13即有曲线在点处的切线的方程为,y =f(x)(2,‒6)y ‒(‒6)=13(x ‒2)即为;13x ‒y ‒32=0Ⅱ的导数为,()f(x)f'(x)=3x 2+1设切点为,可得切线的斜率为,(m,n)3m 2+1即有,3m 2+1=n m =m 3+m ‒16m 即为,2m 3+16=0解得,m =‒2,n =‒8‒2‒16=‒26可得直线L 的方程为及切点坐标为.y =13x (‒2,‒26)【解析】求出的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程;(I)f(x)Ⅱ的导数为,设切点为,可得切线的斜率,运用两点的斜率公式,可得m 的方程,()f(x)f'(x)=3x 2+1(m,n)解方程可得m 的值,即可得到所求切线的方程和切点坐标.本题考查导数的运用:求切线的方程,考查导数的几何意义,以及运算能力,正确求导和运用直线方程是解题的关键,属于基础题.S‒ABCD SD⊥18.如图,在四棱锥中,底面ABCD,底面ABCD是矩形,且SD=AD=2AB,E是SA的中点.(1)BED⊥求证:平面平面SAB;(2)()求平面BED与平面SBC所成二面角锐角的大小.(1)∵SD⊥SD⊂【答案】证明:底面ABCD,平面SAD,∴SAD⊥ABCD (2)平面平面分∵AB⊥AD SAD∩,平面平面ABCDAD,∴AB⊥平面SAD,DE⊂又平面SAD,∴DE⊥AB (4),分∵SD=AD∴DE⊥SA,E是SA的中点,,∵AB∩SA=A DE⊥AB DE⊥SA,,,∴DE⊥平面SAB,∵DE⊂平面BED,∴BED⊥SAB (6)平面平面分(2)D‒xyz AD=2解:由题意知SD,AD,DC两两垂直,建立如图所示的空间直角坐标系,不妨设.则0,,0,,,,0,,0,,D(0,0)A(2,0)B(2,2,0)C(0,2,0)S(0,2)E(1,1),,,分∴⃗DB=(2,2,0)⃗DE=(1,0,1)⃗CB=(2,0,0)⃗CS=(0,‒2,2)…(8)设是平面BED 的法向量,则,即,⃗m =(x 1,y 1,z 1){⃗m ⋅⃗DB =0⃗m ⋅⃗DE=0{2x 1+2y 1=0x 1+z 1=0令,则,x 1=‒1y 1=2,z 1=1是平面BED 的一个法向量.∴⃗m=(‒1,2,1)设是平面SBC 的法向量,则,即,⃗n=(x 2,y 2,z 2){⃗n ⋅⃗CB =0⃗n ⋅⃗CS=0{2x 2=0‒2y 2+2z 2=0解得,令,则,x 2=0y 2=2z 2=1是平面SBC 的一个法向量分∴⃗n=(0,2,1) (10),∵cos〈⃗m ,⃗n>=⃗m ⋅⃗n|⃗m|⋅|⃗n|=323=32平面BED 与平面SBC所成锐二面角的大小为分∴π6 (12)【解析】证明平面平面SAB ,利用面面垂直的判定定理,证明平面SAB 即可;(1)BED ⊥DE ⊥建立空间直角坐标系,求出平面BED 与平面SBC 的法向量,利用向量的夹角公式,即可求平面BED 与平(2)面SBC 所成二面角锐角的大小.()本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确利用向量法,属于中档题.19.如图所示,斜率为1的直线过抛物线的焦点F ,与抛物线交y 2=2px(p >0)于A ,B 两点且,M 为抛物线弧AB 上的动点.|AB|=8求抛物线的方程;(1)求的最大值.(2)S △ABM 【答案】解 由条件知:,(1)l AB y =x ‒p2与联立,消去y ,得,y 2=2px x 2‒3px +14p 2=0则由抛物线定义得.x 1+x 2=3p.|AB|=x 1+x 2+p =4p 又因为,即,|AB|=8p =2则抛物线的方程为;y 2=4x 由知,且:,(2)(1)|AB|=4p l AB y =x ‒p2设与直线AB 平行且与抛物线相切的直线方程为,y =x +m 代入抛物线方程,得.x 2+2(m ‒p)x +m 2=0由,得.△=4(m ‒p )2‒4m 2=0m =p 2与直线AB 平行且与抛物线相切的直线方程为y =x +p2两直线间的距离为,d =22p故的最大值为.S △ABM 12×4p ×22p =2p 2=42【解析】根据题意,分析易得直线AB 的方程,将其与联立,得,由根与系数的(1)y 2=2px x 2‒3px +14p 2=0关系可得,结合抛物线的定义可得,解可得p 的值,即可得抛物线的x 1+x 2=3p |AB|=x 1+x 2+p =4p =8方程;设与直线AB 平行且与抛物线相切的直线方程为,代入抛物线方程,得,(2)y =x +m x 2+2(m ‒p)x +m 2=0进而可得与直线AB 平行且与抛物线相切的直线方程,计算可得两直线间的距离,由三角形面积公式计算即可得答案.本题考查直线与抛物线的位置关系,注意抛物线的焦点弦的性质,属于中档题20.函数在处取得极值.f(x)=ax +xlnx x =1Ⅰ求的单调区间;()f(x)Ⅱ若在定义域内有两个不同的零点,求实数m 的取值范围.()y =f(x)‒m ‒1【答案】解:Ⅰ,分( (1),解得,当时,,分a =‒1a =‒1f(x)=‒x +xlnx (2)即,令0'/>,解得;分x >1 (3)令,解得;分0<x <1 (4)在处取得极小值,的增区间为,减区间为分∴f(x)x =1f(x)(1,+∞)(0,1)…(6)Ⅱ在内有两个不同的零点,()y =f(x)‒m ‒1(0,+∞)可转化为在内有两个不同的根,f(x)=m +1(0,+∞)也可转化为与图象上有两个不同的交点,分y =f(x)y =m +1...(7)由Ⅰ知,在上单调递减,在上单调递增,()f(x)(0,1)(1,+∞),分f(x )min =f(1)=‒1 (8)由题意得,即分m +1>‒1m >‒2①…(10)当时,;0<x <1f(x)=x(‒1+lnx)<0当且时,;x >0x→0f(x)→0当时,显然或者举例:当,;x→+∞f(x)→+∞(x =e 2f(e 2)=e 2>0)由图象可知,,即分m +1<0m <‒1②...(11)由可得分①②‒2<m <‒1 (12)【解析】Ⅰ求出函数的导数,计算,求出a 的值,从而求出函数的单调区间即可;()f'(1)Ⅱ问题转化为在内有两个不同的根,结合函数的图象求出m 的范围即可.()f(x)=m +1(0,+∞)本题考查了函数的单调性、极值问题,考查导数的应用以及数形结合思想、转化思想,是一道中档题.21.已知椭圆,已知定点,若直线与椭圆交于C 、D 两点问:是否存在x 23+y 2=1E(‒1,0)y =kx +2(k ≠0).k 的值,使以CD 为直径的圆过E 点?请说明理由.【答案】解:假若存在这样的k 值,由得.{y =kx +2x 2+3y 2‒3=0(1+3k 2)x 2+12kx +9=0 ∴△=(12k )2‒36(1+3k 2)>0.①设、,则C(x 1,y 1)D(x 2,y 2){x 1+x 2=‒12k1+3k 2x 1⋅x 2=91+3k 2②而.y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4要使以CD 为直径的圆过点,当且仅当时,则,即E(‒1,0)CE ⊥DE y 1x 1+1⋅y 2x2+1=‒1.y 1y 2+(x 1+1)(x 2+1)=0 ∴(k 2+1)x 1x 2+2(k +1)(x 1+x 2)+5=0.③将式代入整理解得经验证,,使成立.②③k =76.k =76①综上可知,存在,使得以CD 为直径的圆过点E .k =76【解析】把直线的方程与椭圆的方程联立,转化为关于x 的一元二次方程,得到根与系数的关系,假设以CD为直径的圆过E 点,则,将它们联立消去,即可得出k 的值.CE ⊥DE x 1x 2本题考查椭圆的标准方程,考查椭圆的性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.22.设函数.f(x)=x ‒ae x ‒1求函数的单调区间;(1)f(x)若对恒成立,求实数a 的取值范围.(2)f(x)≤0x ∈R 【答案】解:(1)f'(x)=1‒ae x ‒1当时,,在R 上是增函数;a ≤0f'(x)>0f(x)当时,令得a >0f'(x)=0x =1‒lna 若,则,从而在区间上是增函数;x <1‒lna f'(x)>0f(x)(‒∞,1‒lna)若,则,从而在区间上是减函数.x >1‒lna f'(x)<0f(x)(1‒lna,+∞由可知:当时,不恒成立,(2)(1)a ≤0f(x)≤0又当时,在点处取最大值,a >0f(x)x =1‒lna 且,f(1‒lna)=1‒lna ‒ae‒lna=‒lna 令得,‒lna <0a ≥1故若对恒成立,则a 的取值范围是.f(x)≤0x ∈R [1,+∞)【解析】对函数求导,使得导函数大于0,求出自变量的取值范围,针对于a 的值小于进行讨论,得到函(1)数的单调区间.这是一个恒成立问题,根据上一问做出的结果,知道当时,不恒成立,又当时,在(2)a ≤0f(x)≤0a >0f(x)点处取最大值,求出a 的范围.x =1‒lna 本题考查求函数的单调区间和解决函数恒成立的问题,解题时注意函数的单调性是解决最值的必经途径,注意数字的运算.。
((完整版))高二上学期期末理科数学试题及答案,推荐文档

11、已知双曲线的顶点与焦点分别是椭圆的
y2 a2
x2 b2
1( a
b
0 )焦点与顶点,若双
曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为
1
A.
3
1
B.
2
3
C.
3
2
D.
2
12.如果满足方程 x2 y 2 t 2 2 2tx 3y 的实数对 (x , y) 一定满足不等式 y | x | ,
则常数 t 的取值范围是
A.[ 3 2 , 3 2 ]
B.[ 3
2 3 ,
2 ]
C.[ 3 2 , 3 2 ]
D.
2
2
2
2
2
2
[ 3
2 3 ,
2 ]
2
2
二、填空题.(本大题共 4 小题,每小题 5 分,共 20 分 )
13、已知向量
a
(5,
3,1)
,Leabharlann b(2,t,
2
)
,若向量
a
与
b
A. m // 且n //
B. m // 且 n
C. m 、 n 与 成等角
D. m 且 n
10、如果满足∠ABC= 600 ,AC=12,BC= k 三角形恰有一个,那么 k 的取值范围是
A. k 8 3 B. 0 k 12 C. k 12 D. 0 k 12 或 k 8 3
(1)求数列 an 与 bn 的通项公式;
(2)设 cn
bn an
,求数列cn的前 n
项和 Tn
.
19.(本小题满分 14 分)
已知直线 y 2 上有一个动点 Q ,过点 Q 作直线 l1 垂直于 x 轴,动点 P 在 l1 上,且满足 OP OQ ( O 为坐标原点),记点 P 的轨迹为 C . (1) 求曲线 C 的方程; (2) 若曲线上 C 有两个点 A, B 满足 OA OB 0 ,求 AOB 面积的最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上期末数学试卷(理科)(有答案)一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是.2.命题“∃x∈R,x2≤0”的否定为.3.底面边长为2,高为3的正三棱锥的体积为.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为.6.已知函数f(x)=xsinx,则f′(π)=.7.双曲线﹣=1的焦点到渐近线的距离为.8.“m<”是“方程+=1表示在y轴上的椭圆”的条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为.11.已知F为椭圆C:+=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为.13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值范围为.14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值范围为.二、解答题:本大题共6小题,共计90分.15.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.16.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,求实数a的值;(2)若弦AB的长为4,求实数a的值;(3)求直线l的方程及实数a的取值范围.17.如图,在直三棱柱ABC﹣A1B1C1中,已知A1C1⊥B1C1,CC1=2BC=2.(1)当AC=2时,求异面直线BC1与AB1所成角的余弦值;(2)若直线AB1与平面A1BC1所成角的正弦值为,求AC的长.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?19.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值范围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是(3,0).【考点】抛物线的简单性质.【分析】确定抛物线的焦点位置,进而可确定抛物线的焦点坐标.【解答】解:抛物线y2=12x的焦点在x轴上,且p=6,∴=3,∴抛物线y2=12x的焦点坐标为(3,0).故答案为:(3,0).2.命题“∃x∈R,x2≤0”的否定为∀x∈R,x2>0.【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x∈R,x2≤0”的否定为:∀x∈R,x2>0.故答案为:∀x∈R,x2>0.3.底面边长为2,高为3的正三棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】求出正三棱锥的底面面积,然后求解体积.【解答】解:底面边长为2,高为3的正三棱锥的体积为:=.故答案为:.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为18.【考点】椭圆的简单性质.【分析】由题意知a=5,b=3,c=4,从而可得|PF1|+|PF2|=2a=10,|F1F2|=2c=8.【解答】解:由题意作图如右图,∵椭圆的标准方程为+=1,∴a=5,b=3,c=4,∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8,∴△PF1F2的周长为10+8=18;故答案为:18.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为16π.【考点】球内接多面体;球的体积和表面积.【分析】由已知求出正方体的棱长为4,所以正方体的内切球的半径为2,由球的表面积公式得到所求.【解答】解:因为正方体的体积为64,所以棱长为4,所以正方体的内切球的半径为2,所以该正方体的内切球的表面积为4π•22=16π.故答案为:16π.6.已知函数f(x)=xsinx,则f′(π)=﹣π.【考点】导数的运算.【分析】直接求出函数的导数即可.【解答】解:函数f(x)=xsinx,则f′(x)=sinx+xcosx,f′(π)=sinπ+πcosπ=﹣π.故答案为:﹣π.7.双曲线﹣=1的焦点到渐近线的距离为2.【考点】双曲线的简单性质.【分析】求出双曲线的焦点坐标,渐近线方程,利用距离公式求解即可.【解答】解:双曲线﹣=1的一个焦点(,0),一条渐近线方程为:y=,双曲线﹣=1的焦点到渐近线的距离为:=2.故答案为:2.8.“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)【考点】必要条件、充分条件与充要条件的判断.【分析】根据椭圆的定义,求出m的范围,结合集合的包含关系判断充分必要性即可.【解答】解:若“方程+=1表示在y轴上的椭圆”,则,解得:1<m<,故“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件,故答案为:必要不充分.9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为﹣1或4.【考点】圆的切线方程.【分析】把圆的方程化为标准方程后,找出圆心坐标和圆的半径,然后根据直线与圆相切得到圆心到直线的距离等于圆的半径,列出关于a的方程,求出方程的解即可得到a的值.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y+)2=,所以圆心坐标为(1,﹣),半径r=||,由已知直线与圆相切,得到圆心到直线的距离d==r=||,解得a=﹣1或4.故答案为:﹣1或4.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为e.【考点】变化的快慢与变化率.【分析】根据导数和函数单调性的关系,再分离参数,求出最值即可.【解答】解:f′(x)=e x﹣a∵函数f(x)在区间(1,+∞)上单调递增⇔函数f′(x)=e x﹣a≥0在区间(1,+∞)上恒成立,∴a≤[e x]min在区间(1,+∞)上成立.而e x>e,∴a≤e.故答案为:e.11.已知F为椭圆C:+=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.【考点】椭圆的简单性质.【分析】利用线段垂直平分线的性质可得线段BF的垂直平分线的方程,进而得出.【解答】解:由已知可得:A(﹣a,0),B(0,b),F(c,0),线段BF的中点M,k BF=,可得线段BF的垂直平分线的斜率为.∴线段BF的垂直平分线的方程为:y﹣=,∵BF的垂直平分线恰好过点A,∴0﹣=,化为:2e2+2e﹣1=0,解得e=.故答案为:.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为(1,1),(﹣1,﹣1).【考点】利用导数研究曲线上某点切线方程.【分析】利用直线平行斜率相等求出切线的斜率,再利用导数在切点处的值是曲线的切线斜率求出切线斜率,列出方程解得即可.【解答】解:设切点P(m,m3),由y=x3的导数为y′=3x2,可得切线的斜率为k=3m2,由切线与直线y=3x+2平行,可得3m2=3,解得m=±1,可得P(1,1),(﹣1,﹣1).故答案为:(1,1),(﹣1,﹣1).13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值范围为(﹣,﹣)∪(0,2).【考点】圆的标准方程.【分析】由已知得圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,由此能求出实数m 的取值范围.【解答】解:圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,∴圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,圆C的圆心C(m+1,2m),半径r1=2,圆O的圆心O(0,0),半径r2=3,圆心距离|OC|==,∴3﹣2<<3+2,解得﹣<m<﹣或0<m<2.∴实数m的取值范围为(﹣,﹣)∪(0,2).故答案为:(﹣,﹣)∪(0,2).14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值范围为a≥.【考点】导数在最大值、最小值问题中的应用;函数与方程的综合运用.【分析】求导数,确定函数的单调性,即可求函数f(x)的值域;g(x)∈(0,e],分类讨论,研究f(x)的单调性,即可求a的取值范围.【解答】解:g′(x)=,令=0,解得x=1,∵e x >0,∴x ∈(0,1)时,g ′(x )>0;x ∈(1,e ]时,g ′(x )<0,g (x )在(0,1]上单调递增,在(1,e ]单调单调递减,根据极大值的定义知:g (x )极大值是g (1)=1,又g (0)=0,g (e )=,所以g (x )的值域是(0,1].函数f (x )=a (x ﹣1)2﹣lnx ,x >0,f ′(x )=2ax ﹣2a ﹣=,令h (x )=2ax 2﹣2ax ﹣1,h (x )恒过(0,﹣1),当a=0时,f ′(x )<0,f (x )是减函数,不满足题意.h (x )=0,可得2ax 2﹣2ax ﹣1=0,△=4a 2+8a ,△>0解得a <﹣2或a >0.当﹣2<a <0时,h (x )的对称轴为:x=,h (x )<0恒成立,f ′(x )<0,f (x )是减函数,不满足题意. 当a <﹣2时,x ∈(0,),h (x )<0恒成立,f ′(x )<0,f (x )是减函数, x ∈,f ′(x )>0,f (x )是增函数,x ∈,f ′(x )<0,f(x )是减函数,若对任意的x 0∈(0,e ],总存在两个不同的x 1,x 2∈(0,e ],使得f (x 1)=f (x 2)=g (x 0).可知f (x )极大值≥1,f (x )极小值≤0.可得,,∵f (x )=a (x ﹣1)2﹣lnx ,,不等式不成立.当a >0时,x ∈(0,),h (x )<0恒成立,f ′(x )<0,f (x )是减函数,x ∈,f ′(x )>0,f (x )是增函数,因为x=1时,f (1)=0,只需f (e )≥1.可得:a (e ﹣1)2﹣1≥1, 解得a ≥.综上:实数a 的取值范围为:a ≥.二、解答题:本大题共6小题,共计90分.15.如图,在四棱锥P ﹣ABCD 中,四边形ABCD 是矩形,平面PCD ⊥平面ABCD ,M 为PC 中点.求证: (1)PA ∥平面MDB ;(2)PD⊥BC.【考点】直线与平面平行的判定.【分析】(1)连接AC,交BD与点O,连接OM,先证明出MO∥PA,进而根据线面平行的判定定理证明出PA∥平面MDB.(2)先证明出BC⊥平面PCD,进而根据线面垂直的性质证明出BC⊥PD.【解答】证明:(1)连接AC,交BD与点O,连接OM,∵M为PC的中点,O为AC的中点,∴MO∥PA,∵MO⊂平面MDB,PA⊄平面MDB,∴PA∥平面MDB.(2)∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PCD,∵PD⊂平面PCD,∴BC⊥PD.16.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,求实数a的值;(2)若弦AB的长为4,求实数a的值;(3)求直线l的方程及实数a的取值范围.【考点】直线与圆的位置关系.【分析】(1)利用配方法得到圆的标准方程,根据圆C的半径为,求实数a的值;(2)求出直线l的方程,求出圆心到直线的距离,根据弦AB的长为4,求实数a的值;(3)点与圆的位置关系即可求出a的取值范围.【解答】解:(1)圆的标准方程为(x+1)2+(y﹣2)2=5﹣a,则圆心C(﹣1,2),半径r=,∵圆C的半径为,∴=,∴a=2;(2)∵弦的中点为M(0,1).∴直线CM的斜率k=﹣1,则直线l的斜率k=1,则直线l的方程为y﹣1=x,即x﹣y+1=0.圆心C到直线x﹣y+1=0的距离d==,若弦AB的长为4,则2+4=5﹣a=6,解得a=﹣1;(3)由(2)可得直线l的方程为x﹣y+1=0.∵弦AB的中点为M(0,1).∴点M在圆内部,即<,∴5﹣a>2,即a<3.17.如图,在直三棱柱ABC﹣A1B1C1中,已知A1C1⊥B1C1,CC1=2BC=2.(1)当AC=2时,求异面直线BC1与AB1所成角的余弦值;(2)若直线AB1与平面A1BC1所成角的正弦值为,求AC的长.【考点】异面直线及其所成的角;直线与平面所成的角.【分析】(1)以C1为原点,C1A1为x轴,C1B1为y轴,C1C为z轴,建立空间直角坐标系,利用向量法能求出异面直线BC1与AB1所成角的余弦值.(2)设AC=a,求出平面A1C1B的法向量,由直线AB1与平面A1BC1所成角的正弦值为,利用向量法能求出AC.【解答】解:(1)∵在直三棱柱ABC﹣A1B1C1中,A1C1⊥B1C1,CC1=2BC=2,∴以C1为原点,C1A1为x轴,C1B1为y轴,C1C为z轴,建立空间直角坐标系,∵AC=2,∴B(0,2,2),C1(0,0,0),A(2,0,2),B1(0,2,0),∴=(0,﹣2,﹣2),=(﹣2,2,0),设异面直线BC1与AB1所成角为θ,则cosθ=|cos<,>|===,∴θ=60°,∴异面直线BC1与AB1所成角的余弦值为60°.(2)设AC=a,则A1(a,0,0),B(0,2,2),C1(0,0,0),B1(0,2,0),A(a,0,2),=(a,0,0),=(0,2,2),=(﹣a,2,﹣2),设平面A1C1B的法向量=(x,y,z),则,取y=1,得=(0,1,﹣1),∵直线AB1与平面A1BC1所成角的正弦值为,∴==,解得a=.∴AC=.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?【考点】基本不等式在最值问题中的应用.【分析】(1)求出纸箱的侧面积S,利用基本不等式,求最大值;(2)求出纸箱的容积V,利用导数,求最大值.【解答】解:(1)S=2x(50﹣2x+80﹣2x)=2x≤•=,当且仅当4x=130﹣4x,即x=cm,纸箱的侧面积S(cm2)最大;(2)V=x(50﹣2x)(80﹣2x)(0<x<12.5),V′=(50﹣2x)(80﹣2x)﹣2x(80﹣2x)﹣2x(50﹣2x)=4(3x﹣100)(x﹣10),∴0<x<10,V′>0,10<x<12.5,V′<0,∴x=10cm时,V最大.19.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【分析】(1)由椭圆的离心率公式及菱形的面积公式求得a和b的值,可求得椭圆的方程;(2)利用椭圆方程及直线AM,AN的方程求得x M、x N、x P及x Q的值根据三角形面积公式求得k的值,求得直线方程.【解答】解:(1)由题意可知:e===,且2ab=4,且a2﹣b2=c2,解得a=2,b=,∴椭圆的标准方程:,(2)由(1)可知,A(0,﹣),则直线AM的方程为y=kx﹣,将直线方程代入椭圆方程得:消去并整理得:(3+4k2)x2﹣8kx=0,解得x M=,直线AN的方程y=﹣﹣,同理可得:x N=﹣,解得x P=k,同理可得x Q=﹣,∴==丨丨==,即3k4﹣10k2+3=0,解得k2=3或k2=,所以=或﹣,故存在直线l:y=x,y=﹣x,满足题意.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值范围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.【考点】利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(1)a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,对x分类讨论即可得出函数f(x)的单调性极值.(2)f(x)≤2x化为:a≥﹣2=g(x),利用导数研究函数g(x)的单调性极值最值即可得出.(3)h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.利用导数研究函数u(m)的单调性即可得出.【解答】(1)解:a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,∴0<x<1时,函数f(x)单调递增;1<x时,函数f(x)单调递减.因此x=1时函数f(x)取得极大值,f(1)=0.(2)解:f(x)≤2x化为:a≥﹣2=g(x),g′(x)=,可知:x∈(0,1)时,g′(x)>0,函数g(x)单调递增;x∈(1,+∞)时,g′(x)<0,函数g(x)单调递减.∴x=1时函数g(x)取得极大值即最大值,g(1)=1﹣2=﹣1.∴a≥﹣1,∴a的取值范围是[﹣1,+∞).(3)证明:h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.u′(m)=1+﹣==>0,因此函数u(m)在m∈(1,+∞)上单调递增,∴u(m)>u(1)=0,∴>恒成立.2016年7月21日。