高二上学期期末数学试卷(理科)

合集下载

贵州省贵阳市高二数学上学期期末试卷 理(含解析)

贵州省贵阳市高二数学上学期期末试卷 理(含解析)

贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.164.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s27.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.28810.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.13.(4分)下列四个结论,其中正确的有.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为x2+y2=0,可得x,y=0,再根据充要条件的定义进行判断;解答:解:∵xy=0,或者x=0,或y=0或x=y=0;∵x2+y2=0,可得x=y=0,∵“x2+y2=0”⇒“xy=0”;∴“xy=0”是“x2+y2=0”的必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题,考查的知识点比较单一.3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.16考点:循环结构.专题:计算题.分析:将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.解答:解:将二进制数1100化为十进制数为:1100(2)=1×23+1×2+1=11.故选C.点评:本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.4.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:计算题.分析:由题设条件,先判断出命题p:∃x∈R,x﹣2>lgx是真命题,命题q:∀x∈R,x2>0是假命题,再判断复合命题的真假.解答:解:当x=10时,10﹣2=8>lg10=1,故命题p:∃x∈R,x﹣2>lgx是真命题;当x=0时,x2=0,故命题q:∀x∈R,x2>0是假命题,∴题pVq是真命题,命题p∧q是假命题,命题pV(¬q)是真命题,命题p∧(¬q)是真命题,故选D.点评:本题考查复合命题真假的判断,是基础题.解题时要认真审题,仔细解答.5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.考点:抛物线的简单性质;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.解答:解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s2考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图中的数据,求出两组的平均数与标准差即可.解答:解:根据茎叶图中的数据,得;1组的平均数是=(53+56+57+58+61+70+72)=61,方差是=[(53﹣61)2+(56﹣61)2+(57﹣61)2+(58﹣61)2+(61﹣61)2+(70﹣61)2+(72﹣61)2]=,标准差是s1=;2组的平均数是=(54+56+58+60+61+72+73)=62,方差是=[(54﹣62)2+(56﹣62)2+(58﹣62)2+(60﹣62)2+(61﹣62)2+(72﹣62)2+(73﹣62)2]=,标准差是s2=;∴<,s1<s2.故选:D.点评:本题考查了利用茎叶图中的数据,求平均数与方差、标准差的应用问题,是基础题目.7.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.考点:椭圆的定义.专题:计算题.分析:根据|F1F2|是|PF1|与|PF2|的等差中项,得到2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,得到点P在以F1,F2为焦点的椭圆上,已知a,c的值,做出b的值,写出椭圆的方程.解答:解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选C.点评:本题考查椭圆的方程,解题的关键是看清点所满足的条件,本题是用定义法来求得轨迹,还有直接法和相关点法可以应用.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)考点:线性回归方程.专题:计算题;概率与统计.分析:求出x、y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.解答:解:回归直线方程一定过样本的中心点(,),==,==4,∴样本中心点是(,4),则y与x的线性回归方程y=bx+a必过点(,4),故选:A.点评:本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.288考点:程序框图.专题:图表型;算法和程序框图.分析:根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦满足条件就退出循环,输出结果.解答:解:模拟执行程序框图,可得k=1,S=0S=2,k=3不满足条件k≥20,S=8,k=5不满足条件k≥20,S=18,k=7不满足条件k≥20,S=32,k=9不满足条件k≥20,S=50,k=11不满足条件k≥20,S=72,k=13不满足条件k≥20,S=98,k=15不满足条件k≥20,S=128,k=17不满足条件k≥20,S=162,k=19不满足条件k≥20,S=200,k=21满足条件k≥20,退出循环,输出S的值为200.故选:B.点评:本题主要考查了循环结构,是直到型循环,先执行循环,直到满足条件退出循环,属于基础题.10.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6考点:曲线与方程;两点间距离公式的应用.专题:计算题;直线与圆.分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.解答:解:当x>0,y>0时,方程是(x﹣1)2+(y﹣1)2=8;当 x>0,y<0 时,方程是(x﹣1)2+(y+1)2=8;当 x<0,y>0 时,方程是(x+1)2+(y﹣1)2=8;当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6,故选:A.点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.考点:双曲线的简单性质.专题:计算题.分析:根据事务性的方程可得a,b,c的数值,进而求出双曲线的离心率.解答:解:因为双曲线的方程为,所以a2=4,a=2,b2=5,所以c2=9,c=3,所以离心率e=.故答案为.点评:本题主要考查双曲线的有关数值之间的关系,以及离心率的公式.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.考点:抛物线的简单性质.专题:计算题.分析:先确定抛物线的标准方程,求出抛物线的焦点坐标,利用两点间的距离公式,即可得到结论.解答:解:∵抛物线y2=ax过点,∴1=∴a=4∴抛物线方程为y2=4x,焦点为(1,0)∴点A到此抛物线的焦点的距离为=故答案为:点评:本题考查抛物线的标准方程,考查抛物线的性质,考查距离公式的运用,属于中档题.13.(4分)下列四个结论,其中正确的有①②③④.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.考点:极差、方差与标准差;频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中平均数、中位数以及样本的平均数与方差的关系,对每一个命题进行分析判断即可.解答:解:对于①,频率分布直方图中,中位数左边和右边的直方图面积相等,都等于,∴①正确;对于②,一组数据中每个数减去同一个非零常数a,这一组数的平均数变为﹣a,方差s2不改变,∴②正确;对于③,一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组样本数据的平均数是3,数据总和为3×20=60,∴③正确;对于④,数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为(2δ)2=4δ2,∴④正确;综上,正确的命题序号是①②③④.故答案为:①②③④.(填对一个给一分).点评:本题考查了频率分布直方图的应用问题,也考查了中位数、平均数与方差的应用问题,是基础题目.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是9.考点:椭圆的简单性质.专题:计算题.分析:根据椭圆的方程求得c,得到|F1F2|,设出|PF1|=t1,|PF2|=t2,利用勾股定理以及椭圆的定义,可求得t1t2的值,即可求出三角形面积.解答:解:∵椭圆的a=5,b=3;∴c=4,设|PF1|=t1,|PF2|=t2,则根据椭圆的定义得t1+t2=10,∵∠F1PF2=90°,根据勾股定理得①t12+t22=82②,由①2﹣②得t1t2=18,∴.故答案为:9.点评:本题主要考查了椭圆的标准方程、椭圆的简单性质.解答的关键是通过勾股定理解三角形,考查计算能力、数形结合思想.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.考点:几何概型.专题:计算题.分析:本题考查的知识点是几何概型的意义,关键是要找出:“两直线所夹锐角”对应图形的面积,及整个图形的面积,然后再结合几何概型的计算公式进行求解.解答:解:设两直线所夹锐角弧度为α,则有:,解得:α=.故答案为:.点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.考点:分层抽样方法;频率分布直方图.专题:概率与统计.分析:(1)求出对应的频数和频率,即可请完成频率分布直方图;(2)根据分层抽样的定义建立比例关系即可.解答:解:(1)由题意值第1,2组的频数分别为100×0.01×5=5,100×0.07×5=35,故第3,4,5组的频数之和为100﹣5﹣35=60,从而可得其频数分别为30,20,10,其频率依次是0.3,0.2,0.1,其频率分布直方图如图:;(2)由第3,4,5组共60人,用分层抽样抽取6人,故第3,4,5组中抽取的学生人数依次是第3组:,第4组:,第5组:.点评:本题主要考查抽样和统计的知识,比较基础.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.考点:列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取出两球的种数,再根据分类和分步计数原理求出一个白球一个红球的种数,根据概率公式计算即可.(2)分为同是红色,白色,黑色,根据分类和分步计数原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.解答:解:(1)两袋中各取一个球,共有6×6=36种取法,其中一个白球一个红球,分为甲袋区取的为白球乙袋红球,甲袋红球乙袋白球,故有1×3+2×2=7种,故取得一个白球一个红球的概率P=;(2)取得两球颜色相同有1×2+2×3+3×1=11种,故取得两球颜色相同的概率P=.点评:本题考查了类和分步计数原理及其概率的求法,关键是求出满足条件的种数,是基础题.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)利用向量的多边形法则即可得出;(2)由AC⊥AB,BD⊥A B,可得==0,利用数量积的运算性质展开可得==++代入即可得出.解答:解:(1)=++;(2)∵AC⊥AB,BD⊥AB,∴==0,∴==++=62+42+82+2×6×8×cos(180°﹣60°)=36+16+64﹣48=68.∴=.点评:本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系、二面角,考查了推理能力与计算能力,属于中档题.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:综合题;空间位置关系与距离;空间角.分析:(1)四棱锥S﹣ABCD的体积=;(2)以点A为原点建立如图所示的空间直角坐标系,求出平面SCD的法向量,利用向量的夹角公式求面SCD与面SAB所成二面角的余弦值.解答:解:(1)∵底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=,∴四棱锥S﹣ABCD的体积==;(2)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(0.5,0,0,),S(0,0,1),则=(1,1,﹣1),=(0.5,0,﹣1).设平面SCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1.于是=(2,﹣1,1).设平面SCD与平面SAB所成的二面角为α,∵=(0.5,0,0),∴|cosα|==∴平面SCD与平面SAB所成二面角的余弦值为.点评:本题考查四棱锥S﹣ABCD的体积、平面SCD与平面SAB所成二面角的余弦值,考查学生的计算能力,正确求平面SCD的法向量是关键.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由椭圆的离心率公式和a,b,c的关系,解方程可得a=5,b=3,即可得到椭圆方程;(2)联立直线方程和椭圆方程,运用韦达定理,求得线段MN的中点P的坐标,再由|AM|=|AN|知点A在线段MN的垂直平分线上,运用直线垂直的条件:斜率之积为﹣1,即可得到k,进而得到直线方程.解答:解:(1)由一个顶点为A(0,3),离心率e=,可得b=3,=,a2﹣b2=c2,解得a=5,c=4,即有椭圆方程为+=1;(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,由,消去y得(9+25k2)x2﹣150kx=0,由k≠0,得方程的△=(﹣150k)2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x1+x2=,∴x0==,∴y0=kx0﹣3=﹣,即P(,﹣),∵k≠0,∴直线AP的斜率为k1=﹣=﹣,由AP⊥MN,得﹣=﹣,∴25k2=7,解得:k=±,即有直线l的方程为y=±x﹣3.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的运用和方程的运用.联立直线方程,运用韦达定理,同时考查直线垂直的条件:斜率之积为﹣1,考查运算能力,属于中档题.。

2022-2023学年四川省泸县第五中学高二上学期期末考数学(理)试卷带讲解

2022-2023学年四川省泸县第五中学高二上学期期末考数学(理)试卷带讲解
由S△ABF2= ·4a·r= ·2c·|y1】本题考查焦点三角形内切圆面积的求法和椭圆定义的运用,解题的关键一是采取“算两次”的方法,根据三角形面积的唯一性得到等式后求解,二是合理运用椭圆的定义进行计算.考查转化能力和计算能力,属于基础题.
12.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线 : 就是一条形状优美的曲线,对于此曲线,给出如下结论:
【详解】∵直线方程 可整理为
∴定点为
∵点A在直线 上

∴ ,当且仅当 时取等号
故答案为:
16.过点 作抛物线 的两条切线,切点分别为 和 ,又直线 经过拋物线 的焦点 ,那么 的最小值为_________.
16
【分析】设 ,写出以 为切点的切线方程,由判别式求出切线斜率,得到以 为切点的切线方程,同理求出以 为切点的切线方程,结合 在两条切线上得直线 的方程,联立直线 与抛物线方程,根据根与系数的关系,结合抛物线定义得出结果.
【考点】圆的方程,点到直线的距离公式
【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离.已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d与半径r的大小关系,以此来确定参数的值或取值范围.
9.已知 , ,若不等式 恒成立,则正数 的最小值是()
A. 2B. 4
C. 6D. 8
第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数
相同,第六组的人数为4人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;

高二理科数学上学期期末原创卷02(人教必修2+选修2-1)

高二理科数学上学期期末原创卷02(人教必修2+选修2-1)

高二理科数学(考试时间:120分钟 试卷满分:150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.对于命题:p x ∃∈R ,使得210x x ++<,则p ⌝是 A .:p x ⌝∀∈R ,210x x ++> B .:p x ⌝∃∈R ,210x x ++≠ C .:p x ⌝∀∈R ,210x x ++≥D .:p x ⌝∃∈R ,210x x ++<2.已知点(1,2,1)A -,点C 与点A 关于平面xOy 对称,点B 与点A 关于x 轴对称,则||BC =A .B .C .D .43.过点(2,0)且与直线230x y -+=垂直的直线方程是 A .220x y --= B .220x y +-= C .240x y +-= D .220x y +-=4.已知双曲线22116y x m-=的离心率为2,则双曲线的渐近线方程为A .y x =B .y x =C .y =D .y =5.若,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是A .若,m αββ⊥⊥,则//m αB .若//,m n m α⊥,则n α⊥C .若//,//,,m n m n ααββ⊂⊂,则//αβD .若m ∥β,m ⊂α,α⋂β=n ,则//m n 6.设x ∈R ,若“2)og (l 11x -<”是“221x m >-”的充分不必要条件,则实数m 的取值范围是A .[B .(1,1)-C .(D .[1,1]-7.若圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆C 相切,则圆C 的方程为 A .22230x y x +--= B .2240x y x ++= C .2240x y x +-=D .22230x y x ++-=8.已知F 是椭圆C :22195x y +=的左焦点,P 为C 上一点,4(1,)3A ,则||||PA PF +的最小值为 A .10B .11C .4 D .139.某几何体的三视图如图所示,其中,正视图中的曲线为圆弧,则该几何体的体积为A .4π643-B .64-4πC .64-6πD .64-8π10.已知直线3y kx =+与圆22(2)(3)4x y -+-=相交于M N 、两点,若||MN ≥k 的取值范围是A .3[,0]4-B .3(,][0,)4-∞-+∞C .[D .2[,0]3-11.如图,在直三棱柱111ABC A B C -中,∠BAC =90°,AB =AC =2,AA 1,则AA 1与平面AB 1C 1所成的角为A .π6B .π4C .π3D .π212.已知抛物线22(0)y px p =>的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||AK AF =,则AFK △的面积为A .4B .8C .16D .32第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.命题“若实数a 、b 满足5a b +≤,则2a ≤或3b ≤”是________命题(填“真”或“假”).14.若1a >,则双曲线22213x y a -=的离心率的取值范围是___________. 15.已知四棱锥-P ABCD 的顶点都在球O 的球面上,底面ABCD 是边长为2的正方形,且PA ⊥平面ABCD ,四棱锥-P ABCD 的体积为163,则该球的体积为___________. 16.若直线:10l ax by ++=始终平分圆22:4210M x y x y ++++=的周长,则22(2)(2)a b -+-的最小值为___________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知命题p :二次函数2()76f x x x =-+在区间[,)m +∞上是增函数;命题q :双曲线22141x y m m -=--的离心率的取值范围是)+∞.(1)分别求命题p ,命题q 均为真命题时,m 的取值范围;(2)若“p 且q ” 是假命题,“p 或q ”是真命题,求实数m 的取值范围.18.(本小题满分12分)已知圆C 经过原点O (0,0)且与直线y =2x ﹣8相切于点P (4,0). (1)求圆C 的方程;(2)已知直线l 经过点(4, 5),且与圆C 相交于M ,N 两点,若|MN|=2,求出直线l 的方程. 19.(本小题满分12分)已知直线:2l y x b =+与抛物线21:2C y x =. (1)若直线与抛物线相切,求实数b 的值.(2)若直线与抛物线相交于A 、B 两点,且|AB |=10,求实数b 的值.20.(本小题满分12分)在平面直角坐标系xOy 中,∆ABC 顶点的坐标分别为A (−1,2)、B (1,4)、C(3,2).(1)求∆ABC 外接圆E 的方程;(2)若直线l 经过点(0,4),且与圆E 相交所得的弦长为l 的方程;(3)在圆E 上是否存在点P ,满足22||2||PB PA =12,若存在,求出点P 的坐标;若不存在,请说明理由.21.(本小题满分12分)如图,已知四棱锥S -ABCD ,底面梯形ABCD 中,BC ∥AD ,平面SAB ⊥平面ABCD ,SAB △是等边三角形,已知AC =2AB =4,BC =2AD =2DC =(1)求证:平面SAB ⊥平面SAC ; (2)求二面角B-SC-A 的余弦值.22.(本小题满分12分)设椭圆C :x 2a 2+y 2b 2=1(a >b >0),右顶点是A(2,0),离心率为12. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于两点,M N (,M N 不同于点A ),且AM ⃑⃑⃑⃑⃑⃑ ∙AN ⃑⃑⃑⃑⃑⃑ =0,求证:直线l 过定点,并求出定点坐标.。

内蒙古高二上学期期末数学理科试题 解析版

内蒙古高二上学期期末数学理科试题 解析版

高二数学(理科)注意事项:1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,请将第Ⅰ卷选择题的答案用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动用橡皮擦干净后重新填涂;请将第Ⅱ卷的答案用黑色中性笔答在答题卡指定答题区域内,在本试卷上答题无效.考试结束后,将答题卡交回,试卷自行保留. 2.所有同学们答卷时请注意:(1)题号后标注学校的,相应学校的学生解答; (2)没有标注学校的题所有学生均需解答. 3.本试卷共150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程表示的曲线是( ).()()222320x y -++=A .一个点B .两条直线C .一个圆D .两个点2.把二进制数化为十进制数为 ()2111A .2B .7C .4D .83.甲、乙两名同学12次考试中数学成绩的茎叶图如图所示,则下列说法正确的是A .甲同学比乙同学发挥稳定,且平均成绩也比乙同学高B .甲同学比乙同学发挥稳定,但平均成绩比乙同学低C .乙同学比甲同学发挥稳定,且平均成绩也比甲同学高D .乙同学比甲同学发挥稳定,但平均成绩比甲同学低4.澳大利亚的心理学家MichaelWhite 设计出了一种被人称为“怀特错觉”的图片.这种图片只有三种颜色:黑、白、灰,但大多数人都会看到四种颜色.这是因为灰色的色块嵌入了白色和黑色条纹中,从视觉上看,原本完全相同的灰色因亮度不同而仿佛变成了两种.某班同学用下边图片验证怀特错觉,在所调查的100名调查者中,有55人认为图中有4种颜色,有45人认为图中有3种颜色,而在被调查者所列举的颜色中,有40人没有提到白色(他们认为白色是背景颜色,不算在图片颜色之中),根据这个调查结果,估计在人群中产生怀特错觉的概率约为A .0.45B .0.55C .0.05D .0.955.命题“存在实数x ,使”的否定是 1x >A .对任意实数x ,都有 B .不存在实数x ,使 1x >1x ≤C .对任意实数x ,都有 D .存在实数x ,使1x ≤1x ≤6.已知x ,y 的取值如表所示:x 2 3 4 y645如果y 与x 线性相关,且线性回归方程为,则等于 13ˆˆ2ybx =+ˆbA .B .C .D .12-12110-1107.如图所示的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该算法框图,若输入的a 、b 分别为36、96,则输出的a =A .0B .8C .12D .248.(四中)从单词“equation ”中选取5个不同的字母排成一排,含有q 、u (其中q 、u 相连)的不同排法共有 A .120种B .480种C .720种D .960种8.(实验)已知空间四边形,点M ,N 分别是,的中点,且,O ABC -OA BC OA a = ,,用,,表示向量为OB b = OC c = a b cMNA .B .111222a b c ++ 111222a b c -+C .D .111222a b c -++ 111222a b c -+-9.希尔宾斯基三角形是一种分形,由波兰数学家希尔宾斯基在1915年提出,先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为希尔宾斯基三角形).在如图第3 个大正三角形中随机取点,则落在黑色区域的概率A .B .C .D .359167162510.已知抛物线焦点为F ,点P 是C 上一点,O 为坐标原点,若的面2:8C y x =POF △积为2,则等于 PF A .B .3C .D .4527211.若直线与曲线有公共点,则b 的取值范围为 y x b =+y =A.B .C .D .[]2,2-2,⎡-⎣⎡-⎣(2,-12.(四中)函数,关于x 的方程有5个不()1,00,0x x f x xx ⎧+≠⎪=⎨⎪=⎩()()20f x bf x c ++=等的实数根的充要条件是 A .且 B .且 2b <-0c >2b >-0c <C .且D .且2b <-0c =2b ≥-0c =12.(实验),,若对任意的,存在()22f x x x =-()()20g x ax a =+>[]11,2x ∈-,使,则a 的取值范围是[]01,2x ∈-()()10g x f x =A .B .C .D .10,2⎛⎤ ⎥⎝⎦1,32⎡⎤⎢⎥⎣⎦[)3,+∞(]0,3第Ⅱ卷(非选择题,共90分)二、填空题(共4小题,每小题5分,本题共20分.请把正确答案填在答题卡中相应题号的横线上)13.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为100的样本,则应从高中生中抽取__________人.14.(四中)的展开式的常数项是__________.(用数字作答)61x x ⎛⎫- ⎪⎝⎭14.(实验)圆和圆的交点为A ,B ,则线段22250x y x +--=222440x y x y ++--=的垂直平分线的方程为__________.AB 15.在正方体中M 、N 分别为,的中点,O 为侧面1111ABCD A B C D -AD 11C D 11BCC B 的中心,则异面直线与所成角的余弦值为__________.MN 1OD 16.(四中)已知双曲线的左、右焦点分别为,,点P()2222:10,0x y C a b a b-=>>1F 2F 为双曲线C 右支上一点,直线与圆相切,且,则双曲1PF 222x y a +=1212F PF PF F ∠=∠线C 的离心率为__________.16.(实验)双曲线的左、右焦点分别为,,P 为双曲线右支上一点,I221169x y -=1F 2F 是的内心,且,则__________.12PF F △2112IPF IPF IF F S S S λ=-△△△λ=三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知,q :关于x 的方程有实数根. :22p a -<<20x x a -+=(1)若q 为真命题,求实数a 的取值范围;(2)若为真命题,为真命题,求实数a 的取值范围. p q ∨q ⌝18.(本小题满分12分) 求解下列问题:(1)求过直线与直线的交点,且与直线平行的50x y --=30x y +-=3460x y -+=直线方程;(2)求以点为圆心,与直线相切的圆的方程. ()1,243350x y +-=19.(本小题满分12分)开学初某校进行了一次摸底考试,物理老师为了了解自己所教的班级参加本次考试的物理成绩的情况,从参考的本班同学中随机抽取n 名学生的物理成绩(满分100分)作为样本,将所得数据进行分析整理后画出频率分布直方图如图所示,已知抽取的学生中成绩在内的有3人.[)50,60(1)求n 的值;(2)已知抽取的n 名参考学生中,在的人中,女生有甲、乙两人,现从[]90,100的人中随机抽取2人参加物理竞赛,求女学生甲被抽到的概率.[]90,10020.(本小题满分12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期 1月10日 2月10日 3月10日 4月10日 5月10日6月10日 昼夜温差x (℃) 1011131295就诊人数y (人数)22 25 29 26 16 14(1)求出y 关于x 的线性回归方程; ˆˆˆybx a =+(2)如果7月10号昼夜温差为8℃,预测因患感冒而就诊的人数(结果四舍五入保留整数).附:回归方程中斜率和截距的最小二乘估计公式分别为: ˆˆˆybx a =+,. ()()()1122211ˆn niii ii i nni ii i xx y y x y nxybx x xnx ====---==--∑∑∑∑ˆˆay bx =-21.(本小题满分12分)如图,四边形为正方形,E ,F 分别为,的中点,以为折痕把ABCD AD BC DF DFC △折起,使点C 到达点P 的位置,且.PF BF ⊥(1)证明:平面平面; PEF ⊥ABFD (2)求与平面所成角的正弦值. DP ABFD 22.(四中)(本小题满分12分)已知椭圆C 的中心在原点,焦点在x 轴上,且过点,直线1与椭圆交于A ,B 两⎛ ⎝点(A ,B 两点不是左、右顶点),当直线1的斜率为时,弦的中点D 在直线12AB 上.12y x =-(1)求椭圆C的方程;(2)若以线段为直径的圆过椭圆的右顶点,判断直线l 是否经过定点,若过定点,求AB 出定点坐标;若不过定点,请说明理由. 22.(实验)(本小题满分12分)已知椭圆,四个点,,,()2222:10x y C a b a b +=>>()11,1P ()20,1P 3P ⎛- ⎝中恰有三点在椭圆C 上. 4P ⎛ ⎝(1)求椭圆C 的方程;(2)设直线与椭圆C 相交于A ,B 两点.若直线与直线的():1l y kx m m =+≠2P A 2P B 斜率的和为,判断直线l 是否经过定点,若过定点,求出定点坐标;若不过定点,请说1-明理由.红山区2022~2023学年第一学期期末质量检测试卷高二数学(理科答案)一、选择题1 2 3 4 5 6 7 8 9101112 ABCDCAC四中D实验CBAB四中C实验A二、填空题 13.70 14.(四中) (实验) 20-10x y +-=15. 16.(四中)(实验)1653451.【答案】A【解析】由已知得,解得,23020x y -=⎧⎨+=⎩322x y ⎧=⎪⎨⎪=-⎩所以方程表示一个点. 3,22⎛⎫- ⎪⎝⎭2.【答案】B【解析】.故选:B . ()212111121217=⨯+⨯+=3.【答案】C【解析】由茎叶图的性质可知乙同学比甲同学发挥稳定,且平均成绩比甲同学高.4.【答案】D【解析】因为在所调查的100名调查者中,55人认为图中有4种颜色,有45人认为图中有3种颜色,而在被调查者所列举的颜色中,有40人没有提到白色(他们认为白色是背景颜色,不算在图片颜色之中),所以100名调查者中,产生怀特错觉的人数为, 554095+=因此估计在人群中产生怀特错觉的概率约为. 950.95100=故选:D 5.【答案】C【解析】利用存在量词命题的否定是全称量词命题求解.“存在实数x ,使”的否定是“对任意实数x ,都有”.故选C . 1x >1x ≤6.【答案】A 【解析】∵,, 23433x ++==64553y ++==∴回归直线过点,∴, ()3,513ˆ532b =+∴.故选A . 1ˆ2b=-7.【答案】C【解析】第一步:初始值,;此时;进入循环; 36a =96b =a b ≠第二步:,计算,此时,进入循环; 3696a =<963660b =-=3660≠第三步:,计算,此时,进入循环; 3660a =<603624b =-=3624≠第四步:,计算,此时,进入循环;3624a =>362412a =-=1224≠第五步:,计算,此时,结束循环,输出. 1224a =<241212b =-=1212=12a =故选:C .8.(四中)【答案】D 8.(实验)【答案】C【解析】如图所示,连接,,ON AN,()()1122ON OB OC b c =+=+ ,()()()111112222222AN AC AB OC OA OB a b c a b c =+=-+=-++=-++ 所以.故选C . ()11112222MN ON AN a b c =+=-++9.【答案】B【解析】解:由题意可知:每次挖去的面积为前一个三角形剩下面积的,不妨设第一个14三角形的面积为1. ∴第三个三角形的面积为1, 则阴影部分的面积之为, 119114416⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭第3个大正三角形中随机取点,则落在黑色区域的概率:.9916116=故选:B . 10.【答案】A【解析】由已知得,设,则, ()2,0F ()00,P x y 01222y ⋅⋅=所以,于是,于是. 02y =012x =0522p PF x =+=11.【答案】B 【解析】由可得,表示圆心,的半圆,y =()2240x y y +=≥()0,02r =当经过时,此时; y x b =+()2,02b =-当与此半圆相切时,y x b =+2r b ==作出半圆与直线的图象如下,由图象可知,要使直线与曲线有公共点,则.y x b =+y =2,b ⎡∈-⎣故选:B12.(四中)【答案】C【解析】当时,0x =()0f x =当为的一个根时可得.0x =()()20f x bf x c ++=0c =所以,即有4个不同的根, ()()20f x bf x c ++=()()20f x bf x +=∵,∴有4个根.()0f x ≠()f x b =-时,,图象如图所示: 0x ≠()112f x x x x x =+=+≥由图可知. 22b b ->⇒<-综上可得,. 2b <-0c =故选:C . 12.(实验) 【答案】A【解析】函数,()()22211f x x x x =-=--因为,所以在的值域为,[]1,2x ∈-()f x []1,2-[]1,3-函数在的值域为, ()()20g x ax a =+>[]1,2-[]2,22a a -+因为对任意的,存在,使, []11,2x ∈-[]01,2x ∈-()()10g x f x =所以,[][]2,221,3a a -+⊆-所以,解得.故选:A .212230a a a -≥-⎧⎪+≤⎨⎪>⎩102a <≤13.【答案】7014.(四中)【答案】20-【解析】展开式的通项为,,1, (6)61x x ⎛⎫- ⎪⎝⎭()62161r r r r T C x -+=-0r =令,所以展开式的常数项为.6203r r -=⇒=()336120C ⨯-=-14.(实验)【答案】10x y +-=【解析】将化为圆的标准方程是,其圆心是.22250x y x +--=()2216x y -+=()1,0两圆的方程相减得公共弦所在直线方程为. AB 4410x y -+=又线段的垂直平分线就是过两圆圆心的直线,且其斜率为, AB 1-故所求直线方程为,即. ()01y x -=-+10x y +-=15.【答案】16【解析】如图,以D 为坐标原点,分别以,,所在直线为x ,y ,z 轴建立空DA DC 1DD 间直角坐标系.设正方体的棱长为2,则,,,,()1,0,0M ()0,1,2N ()1,2,1O ()10,0,2D ∴,.()1,1,2MN =- ()11,2,1OD =--则. 1111cos ,6MN OD MN OD MN OD ⋅===∴异面直线与所成角的余弦值为. MN 1OD 1616.(四中)【答案】53【解析】如图,设直线与圆相切于点M ,则,, 1PF 222x y a +=OM a =1OM PF ⊥取的中点N ,连接,1PF 2NF 由,可得, 1212F PF PF F ∠=∠2122PF F F c ==则,, 21NF PF ⊥1NP NF =由, 222NF OM a ==,即有,2b =14PF b =由双曲线的定义可得,即:,, 122PF PF a -=422b c a -=2b c a =+可得,即,解得,即. ()224b c a =+()()2224c ac a -=+53c a =53e =16.(实验)【答案】45【解析】如图,设内切圆的半径为r .12PF F △由,得, 2112IPF IPF IF F S S S λ=-△△△2112111222PF r PF r F F r λ⋅⋅=⋅⋅-⋅⋅⋅整理得.1212PF PF F F λ-=因为P 为双曲线右支上一点,所以,,1228PF PF a -==1210F F =所以. 84105λ==三、解答题17.(本小题满分10分)【解析】(1)∵方程有实数根,得:,得. 20x x a -+=:140q a ∆=-≥14a ≤(2)∵为真命题,为真命题,p q ∨q ⌝∴p 为真命题,q 为假命题,即得,得. 2214a a -<<⎧⎪⎨>⎪⎩124a <<18.(本小题满分12分)【解析】(1)交点,因为的斜率为, ()4,1-3460x y -+=34故所求直线的方程为,即. ()3144y x +=-34160x y --=(2)半径,又圆心.5r ()1,2∴圆的方程为. ()()221225x y --=+19.(本小题满分12分)【解析】(1)由频率分布直方图知,成绩在内的频率为[)50,60.()10.04000.03000.01250.0100100.075-+++⨯=因为成绩在内的频数为3, [)50,60所以抽取的样本容量. 3400.075n ==(2)由频率分布直方图知,抽取的学生中成绩在的人数为, []90,1000.010010404⨯⨯=因为有甲、乙两名女生,所以有两名男生.用A ,B 表示两名男生,从4人中任取2人的所有情况为甲乙,甲A ,甲B ,乙A ,乙B ,,共6种,其中女学生甲被抽到的情况共3种.AB 所以随机抽取2人参加物理竞赛,其中女学生甲被抽到的概率为. 3162=20.(本小题满分12分)【解析】(1)∵,,10x =22y =由公式可求得,, 39ˆ 1.9520b==39ˆ2210 2.520a=-⨯=∴回归直线方程是. ˆ 1.95 2.5yx =+(2)当时,, 8x =ˆ 1.958 2.518.118y=⨯+=≈∴如果7月10号昼夜温差为8℃,预测因患感冒而就诊的人数约为18人. 21.(本小题满分12分)【解析】(Ⅰ)由已知可得,, BF PF ⊥BF EF ⊥又,∴平面.PF EF F ⋂=BF ⊥PEF 又平面,∴平面平面. BF ⊂ABFD PEF ⊥ABFD (Ⅱ)作,垂足为H . PH EF ⊥由(Ⅰ)得,平面.PH ⊥ABFD 以H 为坐标原点,的方向为y 轴正方向,为单位长,HF BF建立如图所示的空间直角坐标系.H xyz -由(Ⅰ)可得. DE PE ⊥又,,∴.2DP =1DE =PE =又,,∴,∴,,1PF =2EF =PE PF ⊥PH =32EH =则,,, ()0,0,0H P ⎛ ⎝31,,02D ⎛⎫-- ⎪⎝⎭,为平面的法向量.31,2DP ⎛= ⎝HP ⎛= ⎝ ABFD 设与平面所成角为,DP ABFD θ则sin cos ,DP HP DP HP DP HPθ⋅====∴与平面. DP ABFD 22.(四中)(本小题满分12分)【解析】(1)设椭圆C 的标准方程为,()222210x y a b a b+=>>,.()11,A x y ()22,B x y 因为直线l 的斜率为时,弦的中点D 在直线上, 12AB 12y x =-所以,,121212y y x x -=-121212y y x x +=-+由得,所以.① 22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2221222212y y b x x a -=--224a b =因为椭圆过点,所以.② ⎛ ⎝221314a b +=由①②得,,2a =1b =所以椭圆C 的方程为.2214x y +=(2)易得椭圆的右顶点为,.()22,0A 22AA BA ⊥①当直线l 的斜率不存在时,设直线l 的方程为, ()0022x x x =-<<此时要使以为直径的圆过椭圆的右顶点,AB,解得或(舍去), 02x =-065x =02x =此时直线l 的方程为. 65x =②当直线l 的斜率存在时,设直线l 的方程为.y kx b =+因为,所以,220AA BA ⋅=()121212420x x x x y y +-++=将,代入并整理得11y kx b =+22y kx b =+()()()2212121240k x x kb x x b ++-+++=.(*)联立直线方程和椭圆方程,得, 2214y kx bx y =+⎧⎪⎨+=⎪⎩消去y 并整理,得,()222418440k x kbx b +++-=则,,122841kb x x k -+=+21224144b x x k -+=代入(*)式得, ()()2222211448240441k b kb k k b b k --⋅+-++⋅++=+即, 2222222222444481641640k b k b k b kb k b k b -+--+++++=即,解得或, 22121650k kb b ++=12k b =-56k b =-则或,即或, 56b y x b =-+2b y x b =-+5665b y x ⎛⎫=-- ⎪⎝⎭()22b y x =--则直线l 过点或(舍去). 6,05⎛⎫⎪⎝⎭()2,0综上所述,直线l 过定点. 6,05⎛⎫⎪⎝⎭22.(实验)(本小题满分12分)【解析】(1)由于,两点关于y 轴对称, 3P 4P 故,两点在椭圆C 上,所以. 3P 4P 221314a b+=又,所以C 不经过点,所以点在C 上, 222211134a b a b +>+1P 2P 因此,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎪⎨=⎪⎩故椭圆C 的方程为.2214x y +=(2)设直线与直线的斜率分别为,,2P A 2P B 1k 2k 将与联立,消去y 得,y kx m =+2214x y +=.()222418440kx kmx m +++-=设,,则,.()11,A x y ()22,B x y 122841km x x k +=-+21224441m x x k -=+又,()()12121212121212122111111kx x m x x y y kx m kx m k k x x x x x x +-+--+-+-+=+=+==-故.()()()12122110k x x m x x ++-+=即,解得. ()()22244810414121m k kmm k k --⋅+-⋅=+++12m k +=-故直线l 的方程为,即, 12m y x m +=-+()1122m y x ++=--所以直线l 过定点. ()2,1-。

人教版高二上学期期末数学试卷(理)(有答案)

人教版高二上学期期末数学试卷(理)(有答案)

黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。

高二年级理科数学上学期期末考试试卷

高二年级理科数学上学期期末考试试卷

高二年级数学上学期期末考试试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1. 向量(1,2,2),(2,4,4)a b =-=--rr,则a r与b r( )A.相交B.垂直C.平行D.以上都不对2. 在ABC ∆中, 30,45, 2.A B BC ∠=︒∠=︒=则AC 边长为 ( )B.C.D. 3. 过抛物线y=x 2上的点M (21, 41)的切线的倾斜角是 ( ) A ︒30 B ︒45 C ︒60 D ︒904.设()f x 在[],a b 上的图象是一条连续不间断的曲线,且在(),a b 内可导,则下列结论中正确的是 ( )A. ()f x 在[],a b 上的极值点一定是最值点B. ()f x 在[],a b 上的最值点一定是极值点C. ()f x 在[],a b 上可能没有极值点D. ()f x 在[],a b 上可能没有最值点 5.集合{}2|230A x x x =--<,{}2|B x x p =<,若A B ⊆则实数P 的取值范围是( )A. 13p p ≤-≥或B. 3p ≥C. 9p ≥D. 9p > 6.已知数列{}n a ,如果121321,,,,,n n a a a a a a a ----L L (2n ≥)是首项为1公比为13的等比数列,那么n a 等于( )A.31(1)23n - B. 131(1)23n -- C. 21(1)33n - D. 121(1)33n -- 7.已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为( )A. 2x y =±B. 2y x =±C. 4x y =±D. 4y x =±8. 如图所示长方体ABCD —1111A B C D 中,12AA AB ==,AD=1,G1点E 、F 、G 分别是11DD AB CC 、、的中点,则异面直线1A E 和GF 所成的角为 ( )A. B. 4πC. D. 2π 9.已知函数()()32,,0f x ax bx x a b R ab =++∈≠的图象如图所示(12,x x 为两个极值点),且12x x >则有( )A. 0,0a b >>B. 0,0a b <<C. 0,0a b <>D. 0,0a b ><10.已知直线y=kx-k 及抛物线()220y px p =>,则 ( )A.直线与抛物线有且只有一个公共点B.直线与抛物线有两个公共点C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点11已知梯形的两底的长度分别为(),a b a b <。

高二上学期期末考试数学(理科)试卷(含参考答案)

高二上学期期末考试数学(理科)试卷(含参考答案)

高二第一学期理科数学期末考试试题一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{14}A x x =<<,{lg(1)}B x y x ==-,则AB =( )A .{12}x x <<B .{12}x x ≤<C .{12}x x -<<D .{12}x x -≤< 2. 如果命题“p 且q ”是假命题,“q ⌝”也是假命题,则( ) A .命题“⌝p 或q ”是假命题 B .命题“p 或q ”是假命题 C .命题“⌝p 且q ”是真命题 D .命题“p 且q ⌝”是真命题3. 已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( ) A. 110 B. 55 C. 50 D. 不能确定4. 以抛物线28y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A. 22(1)1x y ++= B. 22(1)1x y -+= C. 22(2)4x y ++= D. 22(2)4x y -+=5.“3a =”是 “函数()3xf x ax =-有零点”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6.已知n m ,是两条不同的直线, βα,是两个不同的平面,给出下列命题: ①若βα⊥,α//m ,则β⊥m ; ②若α⊥m,β⊥n ,且n m ⊥,则βα⊥;③若β⊥m ,α//m ,则β⊥α; ④若α//m ,β//n ,且n m //,则βα//. 其中正确命题的序号是( )A .①④B .②④C .②③ D.①③7.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题: “今有蒲生一日,长三尺。

莞生一日,长一尺。

蒲生日自半。

莞生日自倍。

问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计右面的程序框图,输入3A =,1a =.那么在①处应填( )A .2?T S >B .2?S T >C .2?S T <D .2?T S < 8.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A. 3[0,]4π B.3π[0,)[,π) 24π⋃ C. 3π[,π) 4 D. 3(,]24ππ 9.已知定义在R 上的函数()f x 满足: ()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时, ()1x f x e =-,则()()20162017f f +-= ( )(其中e为自然对数的底)A. 1e -B. 1e -C. 1e --D. 1e +10.已知Rt ABC ∆,点D 为斜边BC 的中点,63AB =,6AC =,12AE ED =,则A E E B ⋅等于( ) A. 14- B. 9- C. 9 D.1411.在平面直角坐标系中,不等式组22200x y x y x y r +≤⎧⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为 ( )A .1- B.17- C. 13 D .75-12. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A.221+B. 224-C.225-D.223+ 二、填空题:本大题共4小题,每小题5分,满分20分.13. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.14.已知α为锐角,向量(cos ,sin )a αα=、(1,1)b =-满足223a b ⋅=,则sin()4πα+= .15.某三棱锥的三视图如图所示,则其外接球的表面积为______.16.若实数,,a b c 满足22(21)(ln )0a b a c c --+--=,则b c -的最小值是_________.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17. (本小题满分10分)在数列{}n a 中,14a =,21(1)22n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 18. (本小题满分12分) 在ABC ∆中,角,,A B C 所对的边分别是,,a b c,且sin sin sin sin 3a Ab Bc C C a B +-= .(1)求角C ;(2)若ABC ∆的中线CD 的长为1,求ABC ∆的面积的最大值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)在五面体ABCDEF 中, ////,222AB CD EF CD EF CF AB AD =====,60DCF ︒∠=,AD ⊥平面CDEF .(1)证明:直线CE ⊥平面ADF ; (2)已知P 为棱BC 上的点,23CP CB =,求二面角P DF A --的大小.21. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的右焦点(1,0)F ,过点F 且与坐标轴不垂直的直线与椭圆交于P ,Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点(,0)T t (0)t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.22.(本小题满分12分)已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间; (2)证明:当2a e≥时, ()x f x e ->.高二数学期末考试试题参考答案ACBDA CBBAD DC 13. 56 14.315. 323π 16. 117.解:(1)21(1)22n n na n a n n +-+=+的两边同时除以(1)n n +,得*12()1n na a n n n+-=∈+N , …………3分 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. …………………4分(2)由(1),得22n an n=+,…………………5分所以222n a n n =+,故2111(1)111()222(1)21n n n a n n n n n n +-==⋅=⋅-+++,………………7分所以111111[(1)()()]22231n S n n =-+-++-+, 1111111[(1)()]223231n n =++++-++++ 11(1)212(1)n n n =-=++. ……………10分 18.解:(1)∵ sin sinsin sin a A b B c C Ca B +-=,222cos 2a b c C Cab +-∴==…………4分,即tan C =(0,)C π∈3C π∴=.………………6分(2) 由222211()(2)44CD CA CB CA CB CA CB =+=++⋅ 即2222111(2cos )()44b a ab C b a ab =++=++…………………8分从而22442,3ab a b ab ab -=+≥≤(当且仅当a b ==10分 即114sin 223ABC S ab C ∆=≤⨯=…………………12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分因为51()()(3)(1)000316iii x x y y =--=-⨯-++++⨯=∑,…………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分=…………………………4分所以相关系数()()0.95ni ix x y yr--===≈∑.………………5分因为0.75r>,所以可用线性回归模型拟合y与的关系.……………6分(2)记商家周总利润为Y元,由条件可得在过去50周里:当70X>时,共有10周,此时只有1台光照控制仪运行,周总利润Y=1×3000-2×1000=1000元.…………8分当5070X≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y=2×3000-1×1000=5000元.……………………………9分当50X<时,共有5周,此时3台光照控制仪都运行,周总利润Y=3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………………………12分20.证明:(1)//,2,CD EF CD EF CF===∴四边形CDEF为菱形,CE DF∴⊥,………1分又∵AD⊥平面CDEF∴CE AD⊥………2分又,AD DF D⋂=∴直线CE⊥平面ADF.………4分(2) 60DCF∠=,DEF∴∆为正三角形,取EF的中点G,连接GD,则,GD EF GD CD⊥∴⊥,又AD⊥平面CDEF,∴,,DA DC DG两两垂直,以D为原点,,,DA DC DG所在直线分别为,,x y z轴,建立空间直角坐标系D xyz-,………5分2,1CD EF CF AB AD=====,((0,,E F∴-,(1,1,0),(0,2,0)B C………6分由(1)知(0,CE=-是平面ADF的法向量,………7分()()0,1,3,1,1,0DF CB==-,222(,,0)333CP CB==-,(0,2,0)DC=则24(,,0)33DP DC CP=+=,………8分设平面PDF的法向量为(),,n x y z=,∴n DFn DP⎧⋅=⎪⎨⋅=⎪⎩,即2433yx y⎧=⎪⎨+=⎪⎩,令z=3,6y x==-,∴(6,3,n=-………10分∴1cos ,223n CE n CE n CE⋅===-………11分∴二面角P DF A --大小为60.………12分21. 解:(1)由题意知1c =,又tan 603bc ==,所以23b =,………2分2224a b c =+=,所以椭圆的方程为:22143x y += ;………4分 (2)当0k =时, 0t =,不合题意设直线PQ 的方程为:(1),(0)y k x k =-≠,代入22143x y+=,得:2222(34)84120k x k x k +-+-=,故0∆>,则,0k R k ∈≠ 设1122(,),(,)P x y Q x y ,线段PQ 的中点为00(,)R x y ,则2120002243,(1)23434x x k k x y k x k k +===-=-++ ,………7分由QP TP PQ TQ ⋅=⋅ 得:()(2)0PQ TQ TP PQ TR ⋅+=⋅= , 所以直线TR 为直线PQ 的垂直平分线,………8分直线TR 的方程为:222314()3434k k y x k k k +=--++ , ………10分 令0y =得:T 点的横坐标22213344k t k k ==++,………11分因为2(0,)k ∈+∞, 所以234(4,)k +∈+∞,所以1(0,)4t ∈. ………12分所以线段OF 上存在点(,0)T t 使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈.22.解:(1)函数()ln af x x x=+的定义域为()0,+∞.由()ln a f x x x =+,得()221a x af x x x x ='-=-.………1分①当0a ≤时, ()0f x '>恒成立, ()f x 递增, ∴函数()f x 的单调递增区间是()0,+∞ ………2分 ②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分 (2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln xa x e x-+>,………5分 即ln xx x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+,当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1x e =时, ()min1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()xx xe φ-=,则()()1xx x x exe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<. 所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e≥时, (f x )xe ->.………12分。

2021-2022年高二数学上学期期末试卷 理(含解析)

2021-2022年高二数学上学期期末试卷 理(含解析)

2021-2022年高二数学上学期期末试卷理(含解析)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={x|3≤x<7},B={x|x2﹣7x+10<0},则∁R(A∩B)=()A.(﹣∞,3)∪(5,+∞)B.(﹣∞,3)∪∪∪(5,+∞)2.(5分)若,则下列结论不正确的是()A.a2<b2B.|a|﹣|b|=|a﹣b| C. D.ab<b23.(5分)一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C.D.4.(5分)设{an }是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.5.(5分)已知如程序框图,则输出的i是()A.9 B.11 C.13 D.156.(5分)已知θ是三角形的一个内角,且sinθ+cosθ=,则x2sinθ﹣y2cosθ=1表示()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线7.(5分)方程|x|(x﹣1)﹣k=0有三个不相等的实根,则k的取值范围是()A.B.C.D.8.(5分)对于任意实数x,符号表示x的整数部分,即是不超过x的最大整数,例如=2;=2;=﹣3,这个函数叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么+++…+的值为()A.21 B.76 C.264 D.642二、填空题(每小题5分,共30分)9.(5分)在△ABC中∠A=60°,b=1,S△ABC=,则=.10.(5分)为了调查某班学生做数学题的基本能力,随机抽查了部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为11.(5分)已知f(x)=则不等式x+(x+2)•f(x+2)≤5的解集是.12.(5分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为.13.(5分)设点O为坐标原点,A(2,1),且点F(x,y)坐标满足,则||•cos∠AOP 的最大值为.14.(5分)已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足,,则抛物线的方程为.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(12分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.16.(12分)已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)已知,且α∈(0,π),求α的值.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1﹣EC﹣D的大小为.18.(14分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=﹣x2+2(0≤x≤)的图象,且点M到边OA距离为.(1)当t=时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?19.(14分)已知如图,椭圆方程为(4>b>0).P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.(1)求M点的轨迹T的方程;(2)已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?若存在,求出点Q的坐标,若不存在,说明理由.20.(14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=(b,c∈N)有且只有两个不动点0,2,且f(﹣2),(1)求函数f(x)的解析式;(2)已知各项不为零的数列{a n}满足4S n•f()=1,求数列通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.广东省揭阳一中xx高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={x|3≤x<7},B={x|x2﹣7x+10<0},则∁R(A∩B)=()A.(﹣∞,3)∪(5,+∞)B.(﹣∞,3)∪∪∪(5,+∞)考点:交、并、补集的混合运算.分析:先计算集合B,再计算A∩B,最后计算C R(A∩B).解答:解:∵B={x|2<x<5},∴A∩B={x|3≤x<5},∴C R(A∩B)=(﹣∞,3)∪所以四棱锥的体积为:,所以h=.故选B.点评:本题是基础题,考查三视图与直观图的关系,考查几何体的体积的计算,考查计算能力.4.(5分)设{a n}是由正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.考点:等比数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a3=1,再由S3=++1=7可得q=,进而可得a1的值,由求和公式可得.解答:解:设由正数组成的等比数列{a n}的公比为q,则q>0,由题意可得a32=a2a4=1,解得a3=1,∴S3=a1+a2+a3=++1=7,解得q=,或q=(舍去),∴a1==4,∴S5==故选:C点评:本题考查等比数列的求和公式,求出数列的公比是解决问题的关键,属基础题.5.(5分)已知如程序框图,则输出的i是()A.9 B.11 C.13 D.15考点:循环结构.专题:计算题.分析:写出前5次循环的结果,直到第五次满足判断框中的条件,执行输出.解答:解:经过第一次循环得到S=1×3=3,i=5经过第二次循环得到S=3×5=15,i=7经过第三次循环得到S=15×7=105,i=9经过第四次循环得到S=105×9=945,i=11经过第五次循环得到S=945×11=10395,i=13此时,满足判断框中的条件输出i故选C点评:解决程序框图中的循环结构的问题,一般先按照框图的流程写出前几次循环的结果,找规律.6.(5分)已知θ是三角形的一个内角,且sinθ+cosθ=,则x2sinθ﹣y2cosθ=1表示()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线考点:椭圆的标准方程.专题:计算题;三角函数的求值;圆锥曲线的定义、性质与方程.分析:运用平方法,可得sinθcosθ<0,再将方程化为标准方程,运用作差法,即可判断分母的大小,进而确定焦点的位置.解答:解:θ是三角形的一个内角,且sinθ+cosθ=,则平方可得,1+2sinθcosθ=,则sinθcosθ=﹣<0,即sinθ>0,cosθ<0,x2sinθ﹣y2cosθ=1即为=1,由于﹣=<0,则<,则方程表示焦点在y轴上的椭圆.故选C.点评:本题考查椭圆的方程和性质,注意转化为标准方程,考查三角函数的化简和求值,属于中档题和易错题.7.(5分)方程|x|(x﹣1)﹣k=0有三个不相等的实根,则k的取值范围是()A.B.C.D.考点:函数的零点与方程根的关系.专题:数形结合法.分析:将方程转化为函数y=k与y=|x|(x﹣1),将方程要的问题转化为函数图象交点问题.解答:解:如图,作出函数y=|x|•(x﹣1)的图象,由图象知当k∈时,函数y=k与y=|x|(x﹣1)有3个不同的交点,即方程有3个实根.故选A.点评:本题研究方程根的个数问题,此类问题首选的方法是图象法即构造函数利用函数图象解题,其次是直接求出所有的根.8.(5分)对于任意实数x,符号表示x的整数部分,即是不超过x的最大整数,例如=2;=2;=﹣3,这个函数叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么+++…+的值为()A.21 B.76 C.264 D.642考点:对数的运算性质.专题:压轴题;新定义.分析:利用“取整函数”和对数的性质,先把对数都取整后可知++++…+=1×2+2×4+3×8+4×16+5×32+6,再进行相加运算.解答:解:∵=0,到两个数都是1,到四个数都是2,到八个数都是3,到十六个数都是4,到三十二个数都是5,=6,∴++++…+=0+1×2+2×4+3×8+4×16+5×32+6=264故选C.点评:正确理解“取整函数”的概念,把对数正确取整是解题的关键.二、填空题(每小题5分,共30分)9.(5分)在△ABC中∠A=60°,b=1,S△ABC=,则=2.考点:正弦定理;余弦定理.专题:解三角形.分析:由题意和三角形的面积公式求出c,再由余弦定理求出a,代入式子求值即可.解答:解:由题意得,∠A=60°,b=1,S△ABC=,所以,则,解得c=4,由余弦定理得,a2=b2+c2﹣2bccosA=1+16﹣2×=13,则a=,所以==2,故答案为:2.点评:本题考查正弦定理,余弦定理,以及三角形的面积公式,熟练掌握公式和定理是解题的关键.10.(5分)为了调查某班学生做数学题的基本能力,随机抽查了部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为.考点:其他不等式的解法.专题:计算题;压轴题;分类讨论.分析:先根据分段函数的定义域,选择解析式,代入“不等式x+(x+2)•f(x+2)≤5”求解即可.解答:解:①当x+2≥0,即x≥﹣2时.x+(x+2)f(x+2)≤5转化为:2x+2≤5解得:x≤.∴﹣2≤x≤.②当x+2<0即x<﹣2时,x+(x+2)f(x+2)≤5转化为:x+(x+2)•(﹣1)≤5∴﹣2≤5,∴x<﹣2.综上x≤.故答案为:(﹣∞,]点评:本题主要考查不等式的解法,用函数来构造不等式,进而再解不等式,这是很常见的形式,不仅考查了不等式的解法,还考查了函数的相关性质和图象,综合性较强,转化要灵活,要求较高.12.(5分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为4.考点:等差数列的前n项和;等差数列.专题:压轴题.分析:利用等差数列的前n项和公式变形为不等式,再利用消元思想确定d或a1的范围,a4用d或a1表示,再用不等式的性质求得其范围.解答:解:∵等差数列{a n}的前n项和为S n,且S4≥10,S5≤15,∴,即∴∴,5+3d≤6+2d,d≤1∴a4≤3+d≤3+1=4故a4的最大值为4,故答案为:4.点评:此题重点考查等差数列的通项公式,前n项和公式,以及不等式的变形求范围;13.(5分)设点O为坐标原点,A(2,1),且点F(x,y)坐标满足,则||•cos∠AOP 的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:先画出满足的可行域,再根据平面向量的运算性质,对||•cos∠AOP 进行化简,结合可行域,即可得到最终的结果.解答:解:满足的可行域如图所示,又∵||•cos∠AOP=,∵=(2,1),=(x,y),∴||•cos∠AOP=.由图可知,平面区域内x值最大的点为(5,2)||•cos∠AOP的最大值为:故答案为:.点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.14.(5分)已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足,,则抛物线的方程为y2=4x.考点:抛物线的标准方程.专题:计算题.分析:设向量的坐标分别为(x1,y1)(x2,y2)(x3,y3)则可知x1+x2+x3=0,进而表示出A,B,C三点的横坐标,根据抛物线定义可分别表示出|FA|,|FB|和|FC|,进而根据,求得p,则抛物线方程可得.解答:解:设向量的坐标分别为(x1,y1)(x2,y2)(x3,y3)由得x1+x2+x3=0∵X A=x1+,同理X B=x2+,X C=x3+∴|FA|=x1++=x1+p,同理有|FB|=x2++=x2+p,|FC|=x3++=x3+p,又,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故答案为:y2=4x.点评:本题主要考查了抛物线的标准方程和抛物线定义的运用.涉及了向量的运算,考查了学生综合运用所学知识解决问题的能力.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(12分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.考点:复合命题的真假;必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:(1)现将a=1代入命题p,然后解出p和q,又p∧q为真,所以p真且q真,求解实数a的取值范围;(2)先由¬p是¬q的充分不必要条件得到q是p的充分不必要条件,然后化简命题,求解实数a的范围.解答:解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]点评:充要条件要抓住“大能推小,小不能推大”规律去推导.16.(12分)已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)已知,且α∈(0,π),求α的值.考点:三角函数中的恒等变换应用;平面向量数量积的运算.专题:三角函数的求值;三角函数的图像与性质;平面向量及应用.分析:(1)首先根据已知条件,利用向量的坐标运算,分别求出向量的数量积和向量的模,进一步把函数的关系式通过三角恒等变换,把函数关系式变形成正弦型函数,进一步求出函数的最小正周期.(2)利用(1)的函数关系式,根据定义域的取值范围.进一步求出角的大小.解答:解:(1)已知:则:f(x)====所以:函数的最小正周期为:…(2分)…(4分)(2)由于f(x)=所以解得:所以:…(6分)因为:α∈(0,π),所以:则:解得:点评:本题考查的知识要点:三角函数关系式的恒等变换,向量的坐标运算,正弦型函数的性质的应用,利用三角函数的定义域求角的大小.属于基础题型.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1﹣EC﹣D的大小为.考点:点、线、面间的距离计算;与二面角有关的立体几何综合题.分析:解法(一):(1)通过观察,根据三垂线定理易得:不管点E在AB的任何位置,D1E⊥A1D总是成立的.(2)在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离.本题可采用“等积法”:即利用三棱锥的换底法,通过体积计算得到点到平面的距离.本法具有设高不作高的特殊功效,减少了推理,但计算相对较为复杂.根据=既可以求得点E到面ACD1的距离.(3)二面角的度量关键在于找出它的平面角,构造平面角常用的方法就是三垂线法.过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,则∠DHD1为二面角D1﹣EC﹣D的平面角.解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0).这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.(1)因为=(1,0,1)•(1,x,﹣1)=0,所以.(2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD1的法向量为,从而,所以点E到平面AD1C的距离为.(3)设平面D1EC的法向量,可求得.,因为二面角D1﹣EC﹣D的大小为,所以根据余弦定理可得AE=时,二面角D1﹣EC﹣D的大小为.解答:解法(一):(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=,故,而.∴,∴,∴.(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,∴∠DHD1为二面角D1﹣EC﹣D的平面角.设AE=x,则BE=2﹣x在Rt△D1DH中,∵,∴DH=1.∵在Rt△ADE中,DE=,∴在Rt△DHE中,EH=x,在Rt△DHC中CH=,在Rt△CBE中CE=.∴.∴时,二面角D1﹣EC﹣D的大小为.解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)(1)因为=(1,0,1)•(1,x,﹣1)=0,所以.(2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD1的法向量为,则也即,得,从而,所以点E到平面AD1C的距离为.(3)设平面D1EC的法向量,∴,由令b=1,∴c=2,a=2﹣x,∴.依题意.∴(不合,舍去),.∴AE=时,二面角D1﹣EC﹣D的大小为.点评:本小题主要考查棱柱,二面角、点到平面的距离和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.18.(14分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=﹣x2+2(0≤x≤)的图象,且点M到边OA距离为.(1)当t=时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?考点:基本不等式;利用导数研究曲线上某点切线方程.专题:不等式的解法及应用;直线与圆.分析:(Ⅰ)求当t=时,直路l所在的直线方程,即求抛物线y=﹣x2+2(0≤x≤)在x=时的切线方程,利用求函数的导函数得到切线的斜率,运用点斜式写切线方程;(Ⅱ)求出x=t时的抛物线y=﹣x2+2(0≤x≤)的切线方程,进一步求出切线截正方形在直线右上方的长度,利用三角形面积公式写出面积,得到的面积是关于t的函数,利用导数分析面积函数在(0<t<)上的极大值,也就是最大值.解答:解:(I)∵y=﹣x2+2,∴y′=﹣2x,∴过点M(t,﹣t2+2)的切线的斜率为﹣2t,所以,过点M的切线方程为y﹣(﹣t2+2)=﹣2t(x﹣t),即y=﹣2tx+t2+2,当t=时,切线l的方程为y=﹣x+,即当t=时,直路l所在的直线方程为12x+9y﹣22=0;(Ⅱ)由(I)知,切线l的方程为y=﹣2tx+t2+2,令y=2,得x=,故切线l与线段AB交点为F(),令y=0,得x=,故切线l与线段OC交点为().地块OABC在切线l右上部分为三角形FBG,如图,则地块OABC在直路l不含泳池那侧的面积为S=(2﹣)×2=4﹣t﹣=4﹣(t+)≤2.当且仅当t=1时,取等号.∴当t=100米时,地块OABC在直路l不含游泳池那侧的面积最大,最大值为xx0平方米.点评:本题考查了函数模型的选择与应用,考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,在实际问题中,函数在定义域内仅含一个极值,该极值往往就是最值.属中档题型.19.(14分)已知如图,椭圆方程为(4>b>0).P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.(1)求M点的轨迹T的方程;(2)已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?若存在,求出点Q的坐标,若不存在,说明理由.考点:圆与圆锥曲线的综合.专题:计算题;数形结合.分析:(1)延长F1M与F2P的延长线相交于点N,连接OM,利用条件求出M是线段NF1的中点,转化出|OM|=4即可求出M点的轨迹T的方程;(2)可以先观察出轨迹T上有两个点A(﹣4,0),B(4,0)满足S△OEA=S△OEB=2,再利用同底等高的两个三角形的面积相等,,,知道符合条件的点均在过A、B作直线OE的两条平行线l1、l2上,再利用点Q是轨迹T内部的整点即可求出点Q的坐标.解答:解:(1)当点P不在x轴上时,延长F1M与F2P的延长线相交于点N,连接OM,∵∠NPM=∠MPF1,∠NMP=∠PMF1∴△PNM≌△PF1M∴M是线段NF1的中点,|PN|=|PF1||(2分)∴|OM|=|F2N|=(|F2P|+|PN|)=(|F2P|+|PF1|)∵点P在椭圆上∴|PF2|+|PF1|=8∴|OM|=4,(4分)当点P在x轴上时,M与P重合∴M点的轨迹T的方程为:x2+y2=42.(6分)(2)连接OE,易知轨迹T上有两个点A(﹣4,0),B(4,0)满足S△OEA=S△OEB=2,分别过A、B作直线OE的两条平行线l1、l2.∵同底等高的两个三角形的面积相等∴符合条件的点均在直线l1、l2上.(7分)∵∴直线l1、l2的方程分别为:、(8分)设点Q(x,y)(x,y∈Z)∵Q在轨迹T内,∴x2+y2<16(9分)分别解与得与(11分)∵x,y∈Z∴x为偶数,在上x=﹣2,,0,2对应的y=1,2,3在上x=﹣2,0,2,对应的y=﹣3,﹣2,﹣1(13分)∴满足条件的点Q存在,共有6个,它们的坐标分别为:(﹣2,1),(0,2),(2,3),(﹣2,﹣3),(0,﹣2),(2,﹣1).(14分)点评:本题涉及到轨迹方程的求法.在求动点的轨迹方程时,一般多是利用题中条件得出关于动点坐标的等式,整理可得动点的轨迹方程.20.(14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=(b,c∈N)有且只有两个不动点0,2,且f(﹣2),(1)求函数f(x)的解析式;(2)已知各项不为零的数列{a n}满足4S n•f()=1,求数列通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.考点:反证法与放缩法;数列的函数特性;数列递推式.专题:综合题;等差数列与等比数列.分析:(1)由=x,化简为(1﹣b)x2+cx+a=0,利用韦达定理可求得,代入f(x)=(b,c∈N),依题意可求得c=2,b=2,从而可得函数f(x)的解析式;(2)由4S n﹣=1,整理得2S n=a n﹣(*),于是有2S n﹣1=a n﹣1﹣(**),二式相减得(a n+a n﹣1)(a n﹣a n﹣1+1)=0,讨论后即可求得数列通项a n;(3)由a n+1=f(a n)得,a n+1=,取倒数得=﹣2+≤⇒a n+1<0或a n+1≥2,分别讨论即可.解答:解:(1)依题意有=x,化简为(1﹣b)x2+cx+a=0,由韦达定理得:,解得,代入表达式f(x)=,由f(﹣2)=<﹣,得c<3,又c∈N,b∈N,若c=0,b=1,则f(x)=x不止有两个不动点,∴c=2,b=2,故f(x)=,(x≠1).(2)由题设得4S n•=1,整理得:2S n=a n﹣,(*)且a n≠1,以n﹣1代n得2S n﹣1=a n﹣1﹣,(**)由(*)与(**)两式相减得:2a n=(a n﹣a n﹣1)﹣(﹣),即(a n+a n﹣1)(a n﹣a n﹣1+1)=0,∴a n=﹣a n﹣1或a n﹣a n﹣1=﹣1,以n=1代入(*)得:2a1=a1﹣,解得a1=0(舍去)或a1=﹣1,由a1=﹣1,若a n=﹣a n﹣1得a2=1,这与a n≠1矛盾,∴a n﹣a n﹣1=﹣1,即{a n}是以﹣1为首项,﹣1为公差的等差数列.(3)由a n+1=f(a n)得,a n+1=,=﹣2+≤,∴a n+1<0或a n+1≥2.若a n+1<0,则a n+1<0<3成立;若a n+1≥2,此时n≥2,从而a n+1﹣a n=≤0,即数列{a n}在n≥2时单调递减,由a2=2知,a n≤a2=2<3,在n≥2上成立.综上所述,当n≥2时,恒有a n<3成立.点评:本题考查数列的函数特性,着重考查等差数列的判定,考查推理证明能力,考查转化思想与分类讨论思想的综合应用,属于难题. 36365 8E0D 踍37704 9348 鍈4 27966 6D3E 派z ^Ko32962 80C2 胂T32069 7D45 絅26795 68AB 梫。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二(上)期末测试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 函数:f(x)=3+xlnx 的单调递增区间是( )A. (0,1e )B. .(e,+∞)C. (1e ,+∞)D. (1e ,e)【答案】C【解析】解:由函数f(x)=3+xlnx 得:f(x)=lnx +1,令f′(x)=lnx +1>0即lnx >−1=ln 1e ,根据e >1得到此对数函数为增函数, 所以得到x >1e ,即为函数的单调递增区间.故选:C .求出f(x)的导函数,令导函数大于0列出关于x 的不等式,求出不等式的解集即可得到x 的范围即为函数的单调递增区间.本题主要考查学生会利用导函数的正负得到函数的单调区间,同时考查了导数的计算,是一道基础题. 2.函数f(x)=lnx−2x x的图象在点(1,−2)处的切线方程为( )A. 2x −y −4=0B. 2x +y =0C. x −y −3=0D. x +y +1=0【答案】C【解析】解:由函数f(x)=lnx−2x x知f′(x)=1−lnx x 2,把x =1代入得到切线的斜率k =1, 则切线方程为:y +2=x −1, 即x −y −3=0. 故选:C .求出曲线的导函数,把x =1代入即可得到切线的斜率,然后根据(1,2)和斜率写出切线的方程即可. 本题考查学生会利用导数求曲线上过某点的切线方程,考查计算能力,注意正确求导.3. 已知A(2,−5,1),B(2,−2,4),C(1,−4,1),则向量AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为( ) A. 30∘ B. 45∘ C. 60∘ D. 90∘【答案】C【解析】解:因为A(2,−5,1),B(2,−2,4),C(1,−4,1),所以AB ⃗⃗⃗⃗⃗ =(0,3,3),AC⃗⃗⃗⃗⃗ = (−1,1,0), 所以AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ ═0×(−1)+3×1+3×0=3,并且|AB ⃗⃗⃗⃗⃗ |=3√2,|AC⃗⃗⃗⃗⃗ |=√2, 所以cos <AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ |AB ||AC |=3√2×√2=12, ∴AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为60∘故选:C .由题意可得:AB ⃗⃗⃗⃗⃗ =(0,3,3),AC ⃗⃗⃗⃗⃗ = (−1,1,0),进而得到AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ 与|AB ⃗⃗⃗⃗⃗ |,|AC ⃗⃗⃗⃗⃗ |,再由cos <AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ >=AB⃗⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ |AB||AC |可得答案.解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题 4.已知椭圆x 225+y 2m =1(m >0)的左焦点为F 1(−4,0),则m =( )A. 2B. 3C. 4D. 9【答案】B 【解析】解:∵椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(−4,0),∴25−m 2=16, ∵m >0, ∴m =3, 故选:B . 利用椭圆x 225+y 2m=1(m >0)的左焦点为F 1(−4,0),可得25−m 2=16,即可求出m . 本题考查椭圆的性质,考查学生的计算能力,比较基础.5.∫(10e x +2x)dx 等于( )A. 1B. e −1C. eD. e +1【答案】C【解析】解:∵(e x +x 2)′=e x +2x ,∴∫(10e x +2x)dx═(e x +x 2)|01=(e +1)−(1+0)=e , 故选:C .由(e x +x 2)′=e x +2x ,可得∫(10e x +2x)dx =(e x +2x)|01,即可得出. 本题考查了微积分基本定理,属于基础题.6. 若函数f(x)=x(x −c)2在x =3处有极大值,则c =( )A. 9B. 3C. 3或9D. 以上都不对【答案】A【解析】解:函数f(x)=x(x −c)2的导数为f′(x)=(x −c)2+2x(x −c) =(x −c)(3x −c),由f(x)在x =3处有极大值,即有f′(3)=0, 解得c =9或3,若c =9时,f′(x)=0,解得x =9或x =3,由f(x)在x =3处导数左正右负,取得极大值, 若c =3,f′(x)=0,可得x =3或1由f(x)在x =3处导数左负右正,取得极小值. 综上可得c =9. 故选:A .由题意可得f′(3)=0,解出c 的值之后必须验证是否符合函数在某一点取得极大值的充分条件. 本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.7. 函数y =e x (2x −1)的示意图是( )A.B.C.D.【答案】C【解析】解:由函数y =e x (2x −1), 当x =0时,可得y =−1,排除A ;D当x =−12时,可得y =0,∴x <12时,y <0.当x 从12→+∞时,y =e x 越来越大,y =2x −1递增,可得函数y =e x (2x −1)的值变大,排除B ; 故选:C .带入特殊点即可选出答案本题考查了函数图象变换,是基础题. 8.若AB 过椭圆x 225+y 216=1中心的弦,F 1为椭圆的焦点,则△F 1AB 面积的最大值为( )A. 6B. 12C. 24D. 48【答案】B【解析】解:设A 的坐标(x,y)则根据对称性得:B(−x,−y), 则△F 1AB 面积S =12OF ×|2y|=c|y|. ∴当|y|最大时,△F 1AB 面积最大,由图知,当A 点在椭圆的顶点时,其△F 1AB 面积最大, 则△F 1AB 面积的最大值为:cb =√25−16×4=12. 故选:B .先设A 的坐标(x,y)则根据对称性得:B(−x,−y),再表示出△F 1AB 面积,由图知,当A 点在椭圆的顶点时,其△F 1AB 面积最大,最后结合椭圆的标准方程即可求出△F 1AB 面积的最大值.本小题主要考查函数椭圆的标准方程、椭圆的简单性质、面积公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题. 9.设函数f(x)=13x 3−x +m 的极大值为1,则函数f(x)的极小值为( )A. −13B. −1C. 13D. 1【答案】A【解析】解:∵f(x)=13x 3−x +m ,∴f′(x)=x 2−1,令f′(x)=x 2−1=0,解得x =±1, 当x >1或x <−1时,f′(x)>0, 当−1<x <1时,f′(x)<0;故f(x)在(−∞,−1),(1,+∞)上是增函数,在(−1,1)上是减函数; 故f(x)在x =−1处有极大值f(−1)=−13+1+m =1,解得m =13 f(x)在x =1处有极小值f(1)=13−1+13=−13,故选:A .求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可.本题考查函数的极值问题,属基础知识的考查.熟练掌握导数法求极值的方法步骤是解答的关键.10. 设抛物线y 2=4x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A. [−12,12]B. [−2,2]C. [−1,1]D. [−4,4]【答案】C【解析】解:∵y 2=4x ,∴Q(−1,0)(Q 为准线与x 轴的交点),设过Q 点的直线l 方程为y =k(x +1). ∵l 与抛物线有公共点,∴方程组{y 2=4x y=k(x+1)有解,可得k 2x 2+(2k 2−4)x +k 2=0有解. ∴△=(2k 2−4)2−4k 4≥0,即k 2≤1. ∴−1≤k ≤1, 故选:C .根据抛物线方程求得Q 点坐标,设过Q 点的直线l 方程与抛物线方程联立消去y ,根据判别式大于等于0求得k 的范围.本题主要考查了抛物线的应用.涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定理或判别式解决问题.11. 已知函数f(x)=ax −ln x ,若f(x)>1在区间(1,+∞)内恒成立,则实数a 的取值范围是( )A. (−∞,1)B. (−∞,1]C. (1,+∞)D. [1,+∞)【答案】D【解析】解:∵f(x)=ax −ln x ,f(x)>1在(1,+∞)内恒成立, ∴a >1+lnx x在(1,+∞)内恒成立.设g(x)=1+lnx x,∴x ∈(1,+∞)时,g′(x)=−lnx x 2<0,即g(x)在(1,+∞)上是减少的,∴g(x)<g(1)=1, ∴a ≥1,即a 的取值范围是[1,+∞). 故选:D .化简不等式,得到a >1+lnx x在(1,+∞)内恒成立.设g(x)=1+lnx x,求出函数的导数,利用函数的单调性化简求解即可.本题考查函数的导数的综合应用,考查转化思想以及计算能力.12. 设双曲线x 2a 2−y 2b 2=1的两条渐近线与直线x =a 2c分别交于A ,B 两点,F 为该双曲线的右焦点.若60∘<∠AFB <90∘,则该双曲线的离心率的取值范围是( )A. (1,√2)B. (√2,2)C. (1,2)D. (√2,+∞)【答案】B【解析】解:双曲线x 2a2−y 2b 2=1的两条渐近线方程为y =±ba x ,x =a 2c时,y =±ab c,∴A(a 2c ,abc),B(a 2c,−ab c),∵60∘<∠AFB <90∘, ∴√33<k FB <1, ∴√33<ab c c−a 2c<1,∴√33<ab <1,∴13<a 2c 2−a 2<1,∴1<e 2−1<3, ∴√2<e <2. 故选:B . 确定双曲线x 2a2−y 2b 2=1的两条渐近线方程,求得A ,B 的坐标,利用60∘<∠AFB <90∘,可得√33<k FB <1,由此可求双曲线的离心率的取值范围.本题考查双曲线的几何性质,考查学生的计算能力,正确寻找几何量之间的关系是关键.二、填空题(本大题共4小题,共20.0分)13. 双曲线x 2−y 2=1的顶点到其渐近线的距离等于______. 【答案】√22【解析】解:双曲线x 2−y 2=1的a =b =1, 可得顶点为(±1,0), 渐近线方程为y =±x , 即有顶点到渐近线的距离为d =√1+1=√22. 故答案为:√22.求得双曲线的a =b =1,求得顶点坐标,渐近线方程,运用点到直线的距离公式计算即可得到所求值. 本题考查双曲线的顶点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.14. 已知函数f(x)的导函数为f′(x),且满足f(x)=3x 2+2xf′(2),则f′(5)=______. 【答案】6【解析】解:f′(x)=6x +2f′(2) 令x =2得 f′(2)=−12∴f′(x)=6x −24 ∴f′(5)=30−24=6 故答案为:6将f′(2)看出常数利用导数的运算法则求出f′(x),令x =2求出f′(2)代入f′(x),令x =5求出f′(5). 本题考查导数的运算法则、考查通过赋值求出导函数值.15. 已知向量AB ⃗⃗⃗⃗⃗ =(1,5,−2),BC ⃗⃗⃗⃗⃗ =(3,1,2),DE⃗⃗⃗⃗⃗⃗ =(x,−3,6).若DE//平面ABC ,则x 的值是______. 【答案】−23【解析】解:∵DE//平面ABC ,∴存在事实m ,n ,使得DE ⃗⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +n BC ⃗⃗⃗⃗⃗ , ∴{x =m +3n−3=5m +n 6=−2m +2n ,解得x =−23. 故答案为:−23.由DE//平面ABC ,可得存在事实m ,n ,使得DE ⃗⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +n BC ⃗⃗⃗⃗⃗ ,利用平面向量基本定理即可得出.本题考查了平面向量基本定理、方程的解法,考查了推理能力与计算能力,属于基础题.16. 已知抛物线C :y 2=−4x 的焦点F ,A(−1,1),则曲线C 上的动点P 到点F 与点A 的距离之和的最小值为______. 【答案】2【解析】解:∵抛物线方程为y 2=−4x ,∴2p =4,可得焦点为F(−1,0),准线为x =1 设P 在抛物线准线l 上的射影点为Q 点,A(−1,1)则由抛物线的定义,可知当P 、Q 、A 点三点共线时,点P 到点(−1,1)的距离与P 到该抛物线焦点的距离之和最小,∴最小值为1+1=2. 故答案为:2.根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P 、A 和P 在准线上的射影点Q 三点共线时,这个距离之和最小,即可得出结论.本题给出抛物线上的动点,求该点到定点Q 和焦点F 距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.三、解答题(本大题共6小题,共70.0分) 17. 已知函数f(x)=x 3+x −16.(I)求曲线y =f(x)在点(2,−6)处的切线的方程;(Ⅱ)直线L 为曲线y =f(x)的切线,且经过原点,求直线L 的方程及切点坐标. 【答案】解:(I)函数f(x)=x 3+x −16的导数为f′(x)=3x 2+1, 可得曲线y =f(x)在点(2,−6)处的切线的斜率为3×4+1=13,即有曲线y =f(x)在点(2,−6)处的切线的方程为y −(−6)=13(x −2), 即为13x −y −32=0;(Ⅱ)f(x)的导数为f′(x)=3x 2+1,设切点为(m,n),可得切线的斜率为3m 2+1, 即有3m 2+1=n m=m 3+m−16m,即为2m 3+16=0, 解得m =−2,n =−8−2−16=−26,可得直线L 的方程为y =13x 及切点坐标为(−2,−26).【解析】(I)求出f(x)的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程;(Ⅱ)f(x)的导数为f′(x)=3x 2+1,设切点为(m,n),可得切线的斜率,运用两点的斜率公式,可得m 的方程,解方程可得m 的值,即可得到所求切线的方程和切点坐标.本题考查导数的运用:求切线的方程,考查导数的几何意义,以及运算能力,正确求导和运用直线方程是解题的关键,属于基础题.18. 如图,在四棱锥S −ABCD 中,SD ⊥底面ABCD ,底面ABCD 是矩形,且SD =AD =√2AB ,E 是SA 的中点.(1)求证:平面BED ⊥平面SAB ;(2)求平面BED 与平面SBC 所成二面角(锐角)的大小.【答案】(1)证明:∵SD ⊥底面ABCD ,SD ⊂平面SAD , ∴平面SAD ⊥平面ABCD …(2分)∵AB ⊥AD ,平面SAD ∩平面ABCDAD , ∴AB ⊥平面SAD , 又DE ⊂平面SAD , ∴DE ⊥AB ,…(4分)∵SD =AD ,E 是SA 的中点,∴DE ⊥SA , ∵AB ∩SA =A ,DE ⊥AB ,DE ⊥SA , ∴DE ⊥平面SAB , ∵DE ⊂平面BED ,∴平面BED ⊥平面SAB.…(6分)(2)解:由题意知SD ,AD ,DC 两两垂直,建立如图所示的空间直角坐标系D −xyz ,不妨设AD =2.则D(0,0,0),A(2,0,0),B(2,√2,0),C(0,√2,0),S(0,0,2),E(1,0,1),∴DB ⃗⃗⃗⃗⃗⃗ =(2,√2,0),DE ⃗⃗⃗⃗⃗⃗ =(1,0,1),CB ⃗⃗⃗⃗⃗ =(2,0,0),CS ⃗⃗⃗⃗ =(0,−√2,2)…(8分) 设m ⃗⃗⃗ =(x 1,y 1,z 1)是平面BED 的法向量,则{m ⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ =0,即{2x 1+√2y 1=0x 1+z 1=0,令x 1=−1,则y 1=√2,z 1=1,∴m ⃗⃗⃗ =(−1,√2,1)是平面BED 的一个法向量.设n ⃗ =(x 2,y 2,z 2)是平面SBC 的法向量,则{n ⃗ ⋅CB ⃗⃗⃗⃗⃗ =0n⃗ ⋅CS ⃗⃗⃗⃗ =0,即{2x 2=0−√2y 2+2z 2=0,解得x 2=0,令y 2=√2,则z 2=1, ∴n ⃗ =(0,√2,1)是平面SBC 的一个法向量.…(10分) ∵cos〈m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=2√3=√32, ∴平面BED 与平面SBC 所成锐二面角的大小为π6.…(12分)【解析】(1)证明平面BED ⊥平面SAB ,利用面面垂直的判定定理,证明DE ⊥平面SAB 即可;(2)建立空间直角坐标系,求出平面BED 与平面SBC 的法向量,利用向量的夹角公式,即可求平面BED 与平面SBC 所成二面角(锐角)的大小.本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确利用向量法,属于中档题.19. 如图所示,斜率为1的直线过抛物线y 2=2px(p >0)的焦点F ,与抛物线交于A ,B 两点且|AB|=8,M 为抛物线弧AB 上的动点. (1)求抛物线的方程; (2)求S △ABM 的最大值. 【答案】解 (1)由条件知l AB :y =x −p2, 与y 2=2px 联立,消去y ,得x 2−3px +14p 2=0, 则x 1+x 2=3p.由抛物线定义得|AB|=x 1+x 2+p =4p . 又因为|AB|=8,即p =2, 则抛物线的方程为y 2=4x ;(2)由(1)知|AB|=4p ,且l AB :y =x −p 2,设与直线AB 平行且与抛物线相切的直线方程为y =x +m , 代入抛物线方程,得x 2+2(m −p)x +m 2=0. 由△=4(m −p)2−4m 2=0,得m =p 2.与直线AB 平行且与抛物线相切的直线方程为y =x +p2 两直线间的距离为d =√22p ,故S △ABM 的最大值为12×4p ×√22p =√2p 2=4√2.【解析】(1)根据题意,分析易得直线AB 的方程,将其与y 2=2px 联立,得x 2−3px +14p 2=0,由根与系数的关系可得x 1+x 2=3p ,结合抛物线的定义可得|AB|=x 1+x 2+p =4p =8,解可得p 的值,即可得抛物线的方程;(2)设与直线AB 平行且与抛物线相切的直线方程为y =x +m ,代入抛物线方程,得x 2+2(m −p)x +m 2=0,进而可得与直线AB 平行且与抛物线相切的直线方程,计算可得两直线间的距离,由三角形面积公式计算即可得答案.本题考查直线与抛物线的位置关系,注意抛物线的焦点弦的性质,属于中档题20. 函数f(x)=ax +xlnx 在x =1处取得极值.(Ⅰ)求f(x)的单调区间;(Ⅱ)若y =f(x)−m −1在定义域内有两个不同的零点,求实数m 的取值范围. 【答案】解:(Ⅰ,…(1分),解得a =−1,当a =−1时,f(x)=−x +xlnx ,…(2分)即,令0'/>,解得x >1;…(3分) 令,解得0<x <1;…(4分)∴f(x)在x =1处取得极小值,f(x)的增区间为(1,+∞),减区间为(0,1)…(6分) (Ⅱ)y =f(x)−m −1在(0,+∞)内有两个不同的零点, 可转化为f(x)=m +1在(0,+∞)内有两个不同的根,也可转化为y =f(x)与y =m +1图象上有两个不同的交点,…(7分) 由(Ⅰ)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增, f(x)min =f(1)=−1,…(8分)由题意得,m +1>−1即m >−2①…(10分) 当0<x <1时,f(x)=x(−1+lnx)<0; 当x >0且x →0时,f(x)→0;当x →+∞时,显然f(x)→+∞(或者举例:当x =e 2,f(e 2)=e 2>0); 由图象可知,m +1<0,即m <−1②…(11分) 由①②可得−2<m <−1…(12分)【解析】(Ⅰ)求出函数的导数,计算f′(1),求出a 的值,从而求出函数的单调区间即可;(Ⅱ)问题转化为f(x)=m +1在(0,+∞)内有两个不同的根,结合函数的图象求出m 的范围即可.本题考查了函数的单调性、极值问题,考查导数的应用以及数形结合思想、转化思想,是一道中档题.21. 已知椭圆x 23+y 2=1,已知定点E(−1,0),若直线y =kx +2(k ≠0)与椭圆交于C 、D 两点.问:是否存在k的值,使以CD 为直径的圆过E 点?请说明理由.【答案】解:假若存在这样的k 值,由{x 2+3y 2−3=0y=kx+2得(1+3k 2)x 2+12kx +9=0. ∴△=(12k)2−36(1+3k 2)>0. ① 设C(x 1,y 1)、D(x 2,y 2),则{x 1+x 2=−12k1+3k 2x 1⋅x 2=91+3k 2②而y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4.要使以CD 为直径的圆过点E(−1,0),当且仅当CE ⊥DE 时,则y 1x 1+1⋅y 2x 2+1=−1,即y 1y 2+(x 1+1)(x 2+1)=0. ∴(k 2+1)x 1x 2+2(k +1)(x 1+x 2)+5=0. ③将②式代入③整理解得k =76.经验证,k =76,使①成立.综上可知,存在k =76,使得以CD 为直径的圆过点E .【解析】把直线的方程与椭圆的方程联立,转化为关于x 的一元二次方程,得到根与系数的关系,假设以CD 为直径的圆过E 点,则CE ⊥DE ,将它们联立消去x 1,x 2即可得出k 的值.本题考查椭圆的标准方程,考查椭圆的性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.22. 设函数f(x)=x −ae x−1.(1)求函数f(x)的单调区间;(2)若f(x)≤0对x ∈R 恒成立,求实数a 的取值范围.【答案】解:(1)f′(x)=1−ae x−1当a ≤0时,f′(x)>0,f(x)在R 上是增函数;当a >0时,令f′(x)=0得x =1−lna若x <1−lna ,则f′(x)>0,从而f(x)在区间(−∞,1−lna)上是增函数;若x >1−lna ,则f′(x)<0,从而f(x)在区间(1−lna,+∞上是减函数.(2)由(1)可知:当a ≤0时,f(x)≤0不恒成立,又当a >0时,f(x)在点x =1−lna 处取最大值,且f(1−lna)=1−lna −ae −lna =−lna ,令−lna <0得a ≥1,故若f(x)≤0对x ∈R 恒成立,则a 的取值范围是[1,+∞).【解析】(1)对函数求导,使得导函数大于0,求出自变量的取值范围,针对于a 的值小于进行讨论,得到函数的单调区间.(2)这是一个恒成立问题,根据上一问做出的结果,知道当a ≤0时,f(x)≤0不恒成立,又当a >0时,f(x)在点x =1−lna 处取最大值,求出a 的范围.本题考查求函数的单调区间和解决函数恒成立的问题,解题时注意函数的单调性是解决最值的必经途径,注意数字的运算.。

相关文档
最新文档