高二上学期数学期末考试试卷真题

合集下载

高二数学上学期期末考试试题含解析_1 2(共15页)

高二数学上学期期末考试试题含解析_1 2(共15页)

HY 疏勒县八一(b ā y ī)中学2021-2021学年高二数学上学期期末考试试题〔含解析〕一.选择题〔答案请写在答题框内〕 1.集合,,那么A.B.C.D.【答案】C 【解析】试题分析:由题意可得:集合,所以,应选择C考点:集合的运算 2.函数y =+的定义域为〔 〕A.B.C. D.【答案】C 【解析】 【分析】 函数有意义,要求【详解】函数()1233f x x x =-+-有意义,要求故答案(dá àn)为:C.【点睛】这个题目考察了详细函数的定义域问题,对于函数定义域问题,首先分式要满足分母不为0,根式要求被开方数大于等于0,对数要求真数大于0,幂指数要求底数不等于0即可. 3.函数的单调递增区间为( ) A.B.C.D.【答案】D 【解析】 【分析】先求出函数的定义域,然后根据复合函数的单调性满足“同增异减〞的结论求解即可. 【详解】由可得或者, ∴函数的定义域为. 设,那么在上单调递减,又函数为减函数,∴函数在(),2-∞-上单调递增,∴函数()f x 的单调递增区间为(),2-∞-. 应选D .【点睛】〔1〕复合函数单调性满足“同增异减〞的结论,即对于函数来讲,它的单调性依赖于函数和函数的单调性,当两个函数的单调性一样时,那么函数()()y f g x =为增函数;否那么函数()()y f g x =为减函数.〔2〕解答此题容易出现的错误(cuòwù)是无视函数的定义域,误认为函数的单调递增区间为(),0-∞. 4.,那么的值是( ) A.B.C.D.【答案】D 【解析】 【分析】 先化简得,再求cos α的值.【详解】由题得1sin =2α-,所以在第三、四象限,所以.应选:D【点睛】此题主要考察诱导公式和同角的平方关系,意在考察学生对这些知识的理解掌握程度,属于根底题.的图象,只需要将函数的图象〔 〕A. 向左平移个单位B. 向右平移12π个单位C. 向左平移(pínɡ yí)3π个单位 D. 向右平移3π个单位 【答案】B 【解析】 因为函数,要得到函数的图象,只需要将函数4y sin x =的图象向右平移12π个单位。

黑龙江省高二上学期期末考试数学试题(解析版)

黑龙江省高二上学期期末考试数学试题(解析版)

高二上学期期末考试数学试题一、单选题1.在曲线的图象上取一点及邻近一点,则为( ) 26y x =+(1,7)(1,7)x y +∆+∆yx∆∆A . B . 2x +∆12x x ∆--∆C . D . 12x x∆++∆12x x+∆-∆【答案】A【分析】根据平均变化率,代入计算. ()()00+∆-∆=∆∆f x x f x y x x【详解】()26172x x x x y ⎡⎤+-∆⎣⎦==+∆+∆∆∆故选:A2.设直线的方程为,则直线的倾斜角的范围是( ) l 66cos 130x y β-+=l αA . B .[0,]πππ,42⎡⎤⎢⎥⎣⎦C .D .π3π,44⎡⎤⎢⎥⎣⎦πππ3,,422π4⎡⎫⎛⎤⋃⎪ ⎢⎣⎭⎝⎦【答案】C【分析】当时,可得倾斜角为,当时,由直线方程可得斜率cos 0β=π2cos 0β≠1tan cos αβ==k ,然后由余弦函数和正切函数的性质求解即可.【详解】当时,方程变为,其倾斜角为, cos 0β=6130+=x π2当时,由直线方程可得斜率, cos 0β≠1tan cos αβ==k 且,[]cos 1,1β∈- cos 0β≠,即,][(),11,k ∴∈-∞-⋃+∞][()tan ,11,α∈-∞-⋃+∞又,,[)0,πα∈πππ3π,,4224α⎡⎫⎛⎤∴∈⋃⎪ ⎢⎣⎭⎝⎦由上知,倾斜角的范围是.π3π,44⎡⎤⎢⎥⎣⎦故选:C .3.已知等差数列的前项和为,且,则( ){}n a n n S 0n a >7448S Sa a-=+A .2B .C .1D .3212【答案】B【分析】由等差数列的性质求解. 【详解】由题意得.745676486633222S S a a a a a a a a -++===+故选:B4.已知双曲线的离心率为3,则该双曲线的渐近线方程为( )22221(0,0)y x a b a b -=>>A. B .0y ±=0x ±=C . D .30x y ±=30x y ±=【答案】B【分析】设,由题有,据此可得,即可得双曲线的渐近线方程.222+=a b c 3c a =228b a =【详解】设,由题有,则222+=a b c 3ce a ==222222298c a b b a b a a a +==⇒=⇒=±故双曲线渐近线方程为,即.y =0x ±=故选:B5.函数过点的切线方程为( )()2e xf x x =()0,0A . B . C .或 D .或0y =e 0x y +=0y =e 0x y +=0y =e 0x y +=【答案】C【分析】设切点,利用导数的几何意义求该切点上的切线方程,再由切线过代入求2(,e )m m m ()0,0参数m ,即可得切线方程.【详解】由题设,若切点为,则, 2()(2)e x f x x x '=+2(,e )m m m 2()(2)e m f m m m '=+所以切线方程为,又切线过, 22(2))e e (m m y m m m x m +-=-()0,0则,可得或,22(2e )e m m m m m +=0m =1m =-当时,切线为;当时,切线为,整理得. 0m =0y =1m =-e 1(1)y x --=+e 0x y +=故选:C6.过抛物线的焦点F 的直线交抛物线于A 、B 两点,分别过A 、B 两点作准线的垂线,垂24y x =足分别为两点,以线段为直径的圆C 过点,则圆C 的方程为( )11,A B 11A B (2,3)-A .B . 22(1)(2)2x y ++-=22(1)(1)5x y ++-=C .D .22(1)(1)17x y +++=22(1)(2)26x y +++=【答案】B【分析】求出抛物线焦点坐标、准线方程,设出直线AB 的方程,与抛物线方程联立求出圆心的纵坐标,再结合圆过的点求解作答.【详解】抛物线的焦点,准线:,设,令弦AB 的中点24y x =(1,0)F 11A B =1x -1122(,),(,)A x y B x y 为E ,而圆心C 是线段的中点,又,即有,,11A B 111111,AA A B BB A B ⊥⊥11////EC AA BB 11EC A B ⊥显然直线AB 不垂直于y 轴,设直线,由消去x 得:,:1AB x ty =+214x ty y x =+⎧⎨=⎩2440y ty --=则,E 的纵坐标为, 12124,4y y t y y +==-12||y y -==1222y y t +=于是得圆C 的半径,而圆C 过点, 111211||||22r A B y y ==-=(1,2)C t -(2,3)M -则有,解得, ||MC r ==12t =因此圆C 的圆心,半径C 的方程为. (1,1)C -r =22(1)(1)5x y ++-=故选:B7.若对任意,不等式恒成立,则实数的取值范围是( ) x R ∈20x ax a +->a A . B . (]ln 2,0e -[)0,ln 2e C . D .(]2ln 2,0e -[)0,2ln 2e 【答案】C【分析】由不等式在上恒成立,问题转化为图象恒在上方,分类讨论参数x R ∈2x y =()1y a x =--,结合函数图象、导数,即可求在何范围时图象符合要求.a a 【详解】对,不等式恒成立,知:不等式恒成立,x ∀∈R 20x ax a +->()21xa x >--问题可转化为:曲线恒处于直线的上方, 2x y =()1y a x =--当时,直线与曲线恒有交点,不满足条件.0a >当时,直线与曲线没有交点且曲线恒处于直线的上方,满足条件.0a =2x y =()1y a x =--当时,当直线与曲线相切时,设切点为,切线方程为,切线过点a<0(),2mm 22ln 2()mm y x m -=-,代入方程得,此时切线斜率为, ()1,0211log 2ln 2m e =+=2ln 2e由图可知,,即,曲线恒处于直线的上方, 02ln 2a e <-<2ln 20e a -<<2x y =()1y a x =--综上,. 2ln 20e a -<≤故选:C【点睛】本题考查不等式恒成立,并将问题转化为函数图象的位置关系,利用导数研究函数求参数范围.8.已知,设,则( )ln 20.69≈3ln 8 3.527 3.536,,132a b c e ===A . B . a c b >>b c a >>C . D .a b c >>b a c >>【答案】D【分析】将化为,和b 比较,确定变量,构造函数,利用其导数判断其单调性,即a 33323()2x x f x =可比较大小,再比较,即可得答案.,a b ,a c 【详解】由于,33ln83 3.527273 3.5,822a b e ====故设函数 , 32322322ln 2(3ln 2)(),()2(2)2x x x x x x x x x x f x f x ⋅-⋅⋅-⋅'=∴==当时,,即在上单调递增, 3ln 2x <()0f x '>()f x 3(,ln 2-∞由于, 33 4.35ln 20.69≈≈故,即, (3)(3.5)f f <333 3.53 3.522a b =<=又,故, ln82727363813a c e ==>>=b a c >>故选:D【点睛】关键点睛:比较的大小时,要注意根据两数的结构特征,确定变量,从而构造函数,,a b 这是比较大小关键的一步,然后利用导数判断函数的单调性,即可求解.二、多选题 9.关于函数,则下面四个命题中正确的是( ) ()ln xf x x=A .函数在上单调递减B .函数在上单调递增 ()f x (0,e)()f x (e,)+∞C .函数没有最小值D .函数的最小值为()f x ()f x e 【答案】BC【分析】求出函数的定义域,求出函数导数,判断函数的单调性,作出其大致图像,一一判断每个选项,即可确定答案. 【详解】由,定义域为,且,则,()ln xf x x={|0x x >1}x ≠2ln 1()(ln )x f x x -'=当和时,,01x <<1e x <<()0f x '<故函数在上单调递减,故A 错误;()f x (0,1),(1,e)当时,,故函数在上单调递增,故B 正确; e x >()0f x '>()f x (e,+)∞当时,,当时,, 01x <<()0f x <1x >()0f x >作出其大致图像如图:由图像可知函数没有最小值,故C 正确,D 错误, ()f x 故选:BC10.定义在上的函数的导函数为,且恒成立,则( ) (0,)+∞()f x ()f x '2()()()0f x x x f x '++<A . B . 4(2)3(1)f f <8(2)9(3)f f >C . D .3(3)2(1)f f >15(3)16(4)f f <【答案】AB【分析】令,利用导数判断函数的单调性,再根据函数的单调性逐一判断即可. ()()()01xf x g x x x =>+【详解】令,()()()01xf x g x x x =>+则, ()()()()()()()()()()222111f x xf x x xf x x g f x x x x x f x '++-⎡⎤⎣⎦'++'==++因为恒成立, 2()()()0f x x x f x '++<所以恒成立, ()0g x '<所以在上递减, ()g x (0,)+∞所以, ()()()()1234g g g g >>>即, ()()()()12233442345f f f f >>>所以,故A 正确; 4(2)3(1)f f <,故B 正确;8(2)9(3)f f >,故C 错误; 3(3)2(1)f f <故D 错误.15(3)16(4)f f >故选:AB.【点睛】关键点点睛:本题考查了利用导数研究函数的单调性,构造函数是解()()()01xf x g x x x =>+决本题的关键.11.已知,令,则取到的值可以112(,6),(A x x B x -L =L 有( )A .BCD . 【答案】BCD【分析】可以看作点直线上的点到椭圆上的点的距离,从L =A B 而求出直线上的点到椭圆的最短距离,从而可判断各项的对错. 【详解】由,得点为直线上的点,11(,6)A x x -A 6y x =-由得点为曲线,(2B x B y则可以看作点到点的距离,L =A B由,y 221(0)2y x y +=≥所以点为椭圆且在轴上方的点,B 221(0)2y x y +=≥x如图,设与直线平行且与椭圆相切的直线方程为6y x =-221(0)2y x y +=≥y x C =-+联立,消得, 2212y x y x C ⎧+=⎪⎨⎪=-+⎩y 223220x Cx C -+-=则,解得(舍去()2241220C C ∆=--=C =则=-+y x所以直线与直线6y x =-=-+yxd==所以L≥对于A ,,A 错误;=<对于B B 正确;>=对于C C 正确;>=对于D ,D 正确. =>故选:BCD12.对于正整数,是小于或等于的正整数中与互质的数的数目.函数以其首名研究者n )(n ϕn n )(n ϕ欧拉命名,称为欧拉函数,例如(1,3与4互质),则( ) (4)2ϕ=A .B .如果为偶数,则数列单调递增(13)12ϕ=n {}()n ϕC .数列的前6项和等于63D .数列前项和为(){}2nϕ()54nϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭n 1514n --【答案】AC【分析】根据欧拉函数的定义,即可求解AC,根据反例即可排除BD.【详解】对于A,13与1,2,3,4,5,6,7,8,9,10,11,12均互质,所以,故A 正(13)12ϕ=确,对于B,当时,6与1,5互质,所以,故B 错误,6n =(6)(4)2ϕϕ==对于C,由于2为质数,所以小于等于的正整数中,所有的偶数的个数为个,所以剩下的均与2n 12n -互质,故,所以前6项和等于,故C 正确,2n ()112=222n n n n ϕ---=(){}2nϕ251222=63++++ 对于D ,当时,5与1,2,3,4均互质,所以,而,,显然不成1n =()54ϕ=()514ϕ=051=04-立,故D 错误,(与不互质的数有,共有个,所以与不互质的数有5n 51055n n ,,-5,15n -5n ,因此,则前项和为,故错误) 115545n n n ---=⨯()(){}1155=45,54n nn n ϕϕ--⎧⎫⎪⎪⨯∴=⎨⎬⎪⎪⎩⎭n 514n -故选:AC三、填空题13.圆与圆的公共弦所在直线方程为___________.221:130O x y +-=222:650O x y x +-+=【答案】30x -=【分析】判断两圆相交,将两圆方程相减即可求得答案.【详解】圆的圆心为,半径为,221:130O x y +-=(0,0)1r =圆的圆心为,半径为,222:650O x y x +-+=(3,0)22r =则,则两圆相交,121212||3r r O O r r -<=<+故将两圆方程相减可得:,即,6180x -=30x -=即圆与圆的公共弦所在直线方程为,221:130O x y +-=222:650O x y x +-+=30x -=故答案为:30x -=14.已知,数列的前项和的通项公式为___________.21nn a =-12n n n a a +⎧⎫⎨⎬⋅⎩⎭n n S 【答案】 112221n n n S ++-=-【分析】先化简为,再利用裂项相消法可求解. 112112121n n n n n a a ++=-⋅--【详解】因为,()()111212122211121n n n n n n n n a a +++----==-⋅所以 12231111111212121212121n n n S +-+--=++------ . 11111122212121n n n +++=--=---故答案为:. 112221n n n S ++-=-四、双空题15.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).如取正整数,根据上述运算法则得出6→3→10→5→16→8→4→2→1,6m =共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递推关系如下:已知数列满足(为正整数), {}n a 1a m =m 1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时当时,试确定使得至少需要________步雹程;若,则所有可能的取值集合34m =1n a =91a =m M 为________.【答案】 13{4,5,6,32,40,42,256}【分析】第一空,根据运算法则,写出每一个步骤,即可得答案;第二空,根据运算法则一步步逆推,分类求解,可得答案.【详解】当时,则按运算法则得到:34m =,34175226134020105168421→→→→→→→→→→→→→即使得需要13步雷程. 1n a =若,则或, 91a =8762,4,8a a a ===1当 时,则或, 68a =5416,32a a ==5若,则或;432a =3264,128a a ==21若,则,若,则; 2128a =1256a =221a =142a =当时,或,45a =3210,20a a ==3若时,则,若时,则; 220a =140a =23a =16a =当时,则或,61a =5432,4,8a a a ===1若,则或;38a =2116,32a a ==5若,则,31a =212,4a a ==故所有可能的取值集合为,m M {4,5,6,32,40,42,256}故答案为:13;{4,5,6,32,40,42,256}五、填空题16.已知分别为双曲线的左、右顶点,是双曲线上关于轴对称的不同两点,,A B 2213x y t -=,P Q x设直线的斜率分别为,若点A 到直线,AP BQ ,m n 2y mnx =________.【分析】确定的坐标,设点,表示出的表达式,结合化简可得,A B (,)P u v ,m n 2213u v t -=2y mnx =即,根据点A 到直线t 的值,即可求得答案.60x ty +=2y mnx =【详解】由题意可得双曲线中,,故, 2213x y t -=0t >(A B 设点,则,则,则, (,)P u v (,)Q u v -2213u v t -=223v t u t =--所以 AP m k ==BQ n k ==故即,即,即, 2y mnx =2(y x =2226v y x x t u t==--60x ty +=由于点A 到直线,2y mnx =解得, 6t =故双曲线离心率为 c e a ====【点睛】关键点睛:解答本题的关键在于设点,从而表示出,结合化简可得(,)P u v ,m n 2213u v t -=,从而可得即,这是关键的环节,然后再结合题意求解即可. 223v t u t=--2y mnx =60x ty +=六、解答题17.过点可以作两条直线与圆相切,切点分别为 (0,1)P 22:20E x y kx k ++-=AB 、(1)求实数的取值范围.k (2)当时,存在直线吗?若存在求出直线方程,若不存在说明理由.10k =-AB 【答案】(1) 1(,8)0,2⎛⎫-∞-⋃ ⎪⎝⎭(2)存在,5200x y --=【分析】(1)根据点在圆外和圆方程的条件即可求解;P (2)易知四点共圆且以为直径,求其方程,利用两圆方程相减即可得到相交弦所P A B E 、、、PE 在直线方程,从而求解.【详解】(1)由题意可知,点在圆外,即,解得. P 120k ->12k <又因为圆,即, 22:20E x y kx k ++-=222824k k k x y +⎛⎫++= ⎪⎝⎭所以,即或,280k k +>8k <-0k >综上,实数的取值范围是. k 1(,8)0,2⎛⎫-∞-⋃ ⎪⎝⎭(2)当时,,10k =-22:10200E x y x +-+=即,所以圆心,22(5)5x y -+=()5,0E 因为与圆相切,所以四点共圆且以为直径.,PA PB P A B E 、、、PE 设过四点的圆上一点,P A B E 、、、(),M x y 则,即,即0PM EM ⋅= (5)(1)0x x y y -+-=2250x y x y +--=所以过过四点的圆的方程为,P A B E 、、、2250x y x y +--=两圆方程相减得,5200x y --=于是直线的方程为.AB 5200x y --=18.设抛物线的准线为,过抛物线上的动点作,为垂足.设点的2:2(0)E x py p =>0l T 0TT l '⊥T 'K 坐标为,则有最小值(6,0)KT TT '+(1)求抛物线的方程;(2)已知,过抛物线焦点的直线(直线斜率不为0)与抛物线交于两点,记直线的(2,1)H -E E ,M N ,斜率分别为,求的值. HM HN 12,k k 1212k k k k +【答案】(1)24x y =(2) 12-【分析】(1)结合抛物线定义确定的最小值,即可求得p 的值,可得答案.KT TT '+(2)设出直线方程并联立抛物线方程,可得根与系数的关系,进而将化简,即可求得答案. 1212k k k k +【详解】(1)设抛物线焦点为,则,则有, F (0,)2p F ||||||||KT TT KT TF KF '+=+≥即三点共线时取得最小值,,,F T K KT TT '+而有最小值KT TT '+=得,则抛物线的方程为 12p =E 24x y =(2)由题意可知,直线的斜率一定存在,设为k ,则其方程为,(0,1)F MN 1y kx =+设,()()1122,,,M x y N x y 由,得,, 214y kx x y=+⎧⎨=⎩2440x kx --=216(1)0k ∆=+>,,124x x k ∴+=124x x =-,,111y kx =+221y kx =+ 121212221111x x k k y y --∴+=+++ 1212221111x x kx kx --=+++++ ()()()()()()122112222222x kx x kx kx kx -++-+=++ ()()12122121222(1)824kx x k x x k x x k x x --+-=+++, 222288(1)888248444k k k k k k k ------===--+++所以的值为. 1212k k k k +12-【点睛】方法点睛:解决直线和抛物线的位置关系类问题时,一般方法是设出直线方程并联立抛物线方程,得到根与系数的关系式,要结合题中条件进行化简,但要注意的是计算量一般都较大而复杂,要十分细心.19.设为数列的前项和,已知.n S {}n a n ()2*0,484n n n n a a a S n >+=-∈N (1)求数列的通项公式;{}n a (2)求数列的前项和. 18(1)()n n n n n a a a +⎧⎫-⋅+⎨⎬⎩⎭n n T 【答案】(1)()*42n a n n =-∈N (2) 11(1)224(2)n n T n n =-+-++【分析】(1)利用与的关系式即可求出;n S n a n a (2)结合的奇偶,利用分组求和法、裂项相消法求和.n 【详解】(1)由,①,得:0n a >2484n n n a a S +=-当时,,解得.1n =2111148484a a S a +=-=-12a =当时,②,2n ≥2111484n n n a a S ---+=-①-②得:,2211144888n n n n n n n a a a a S S a ---+--=-=即()()()1114n n n n n n a a a a a a ---+-=+所以,所以数列是以2为首项,4为公差的等差数列.14n n a a --={}n a 所以.()*42n a n n =-∈N (2) ()()()()()()188111424242n n n n n n n n a n a a n n +⎛⎫-⋅+=-+-⋅- ⎪-+⎝⎭, ()()()()()()()()2111114211222212122121n n n n n n n n n n n n ⎛⎫=-+-⋅-=-⨯++-⋅-+ ⎪-+-+⎝⎭设数列的前项和为, (1)21211112⎧⎫⎛⎫⨯+⎨⎬ ⎪⎝⎭⎩⎭--+n n n n n C ; (1)1(1)(1)33557212111212111111111122214⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++-++⋅⋅⋅++=+=-+ ⎪ ⎪ -⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝-----+⎭⎣⎦++n n n n C n n n n 设数列的前项和为,(){}(1)222-⋅-+n n n n n D .()()()()()()02244668(1)222(1)2+++-++++-⋅==--+-⋅n n n n n n D所以数列的前项和 18(1)()n n n n n a a a +⎧⎫-⋅+⎨⎬⎩⎭n 11(1))224(2=-+-+++=n n n n T C D n n 利用分组,列项和并项求和即可获得. 11(1)224(2)n n T n n =-+-++20.已知等差数列的前项和为,首项为,.数列是等比数列,公比小于0,{}n a n n T 38-63T T ={}n b q 且,,数列的前项和为,121b a =39b a ={}n b n n S (1)记点,证明:在直线上; ()*,,N n n n L b S n ∈n L :330l x y -+=(2)对任意奇数恒成立,对任意偶数恒成立,求的最小值.,n n M S ≥,n n N S ≤M N -【答案】(1)证明见解析(2)34【分析】(1)根据题意求得等常数列的通项公式,即可求得等比数列的通项公式,继而求得,n n b S 的表达式,即可证明结论;(2)结合(1)可判断当为奇数和偶数时的单调性,从而求得的最值,即可得答案.n n S ,M N 【详解】(1)证明:设等差数列的公差为d , {}n a 则由首项为,可得,则, 38-63T T =365332638282d d ⨯⨯-⨯+⋅=-⨯+⋅332d =故, 33315(1)8323232n a n n =-+-⨯=-由,,得,, 0q <121b a =39b a =131532132322b ⨯-==2131519,32322q q b ⨯-∴=-=故,, 131()22n n b -=⋅-311()1221(121()2n n n S ⎡⎤--⎢⎥⎣⎦==----则,即, 1311(22233(3n n n n S b -=-=-=--330n n S b -+=则点在直线上;(),n n n L b S :330l x y -+=(2)由(1)可知, n S =111()1(12()2n n n --=--当为奇数时,在奇数集上单调递减,; n (112n n S =+31,2n S ⎛⎤∈ ⎥⎝⎦当为偶数时,在偶数集上单调递增,, n 11()2n n S =-3,14n S ⎡⎫∈⎪⎢⎣⎭所以. min max min 333,,()244M N M N ==∴-=21.已知函数.()ln (2)1(R)f x x m x m m =+-+-∈(1)当时,求函数的最小值;1m =()e ()x h x x f x =-(2)是否存在正整数,使得恒成立,若存在,求出的最小值;若不存在,说明理由.m ()0f x ≤m 【答案】(1)1(2)存在,最小正整数3m =【分析】(1)根据题意可得,构造函数,利用导数说明其单调ln ()e (ln )x x h x x x +=-+()e x m x x =-性,结合设,判断其取值情况,即可求得答案.()ln ,(0)g x x x x =+>(2)求出函数的导数,根据其表达式,讨论时,说明不合题意,当时,将问题转化为2m ≤m 2>函数的最值问题,即可求得答案.【详解】(1)当时,,1m =()ln ,(0)f x x x x =+>,ln ()e ()e (ln )e (ln )x x x x h x x f x x x x x x +=-=-+=-+令,则,()e x m x x =-()e 1x m x '=-当时,,当时,,0x <()0m x '<0x >()0m x '>即在上单调递减,在上单调递增,()m x (,0)-∞(0,)+∞故,仅当时取等号,1())(0m m x ≥=0x =故对于,此时,ln ()e (ln )x x h x x x +=-+ln 0x x +=令,则, ()ln ,(0)g x x x x =+>11()10x g x x x+'=+=>即在在上单调递增,()ln g x x x =+(0,)+∞,,故,使得, 1110e e g ⎛⎫=-< ⎪⎝⎭(1)10g =>01,1e x ⎛⎫∃∈ ⎪⎝⎭()00g x =函数的最小值为.()e ()x h x x f x =-00ln 000()e (ln )1x x h x x x +=-+=(2)由题意的定义域为,()ln (2)1f x x m x m =+-+-(0,)+∞, 1(2)1()2m x f x m x x-+'=+-=当时,,函数在上单调递增,函数无最大值,不合题意;2m ≤()0f x '>()f x (0,)+∞当时,时,,时,, m 2>102x m <<-()0f x '>12x m >-()0f x '<函数在上单调递增,在上单调递减, ()f x 10,2m ⎛⎫ ⎪-⎝⎭1,2m ⎛⎫+∞ ⎪-⎝⎭当时,函数取得最大值,且, 12x m =-()f x max 11()ln 22f x f m m m ⎛⎫==- ⎪--⎝⎭要使恒成立,即,()0f x ≤max ()0f x ≤所以,即, 1ln 02m m -≤-ln(2)0m m -+≥令,, ()ln(2),(2)m m m m ϕ=-+>11'()10,(2)22m m m m m ϕ-=+=>>--所以在上单调递增, ()m ϕ(2,)+∞,, 6120e ϕ⎛⎫+< ⎪⎝⎭(3)ln130ϕ=+>所以存在最小正整数,使得,即使得恒成立.3m =()ln(2)0m m m ϕ=-+≥()0f x ≤【点睛】方法点睛:(1)第一问中要能根据的表达式的结构特征进行变形为()h x ,从而构造函数,利用导数判断单调性,解决问题;ln ()e (ln )x x h x x x +=-+(2)第二问中,根据函数不等式恒成立问题,求出函数导数,分类讨论参数范围,进而转化为函数最值问题解决.22过点,点分别为椭圆的左、2222:1(0)x y C a b a b +=>>12,F F C 右焦点,过点与轴垂直的直线交椭圆第一象限于点.直线平行于(为原点),且与椭2F x 0l T 1l OT O 圆交于两点,与直线交于点(介于两点之间).C ,M N 0l P P ,M N (1)当面积最大时,求的方程;TMN △1l (2)求证:.||||||||TM PN TN PM ⋅=⋅【答案】(1) 2y x =-(2)证明见解析【分析】(1)根据离心率以及椭圆经过的点联立方程即可解,进而可得椭圆方2a b c ===程,联立直线与椭圆方程,由韦达定理,进而由弦长公式求解弦长,利用面积公式表达面积,结合基本不等式即可求解最值,(2)根据比例关系可将问题转化成斜率之和为0,代入斜率公式即可化简求解.【详解】(1)由题意可知,解得,22222231c e a ab a bc ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩2a b c ===所求椭圆的方程为. C 22184x y +=当时,,所以 2x =211422y æöç÷=-´=ç÷èø(2T 由于的方程为,设,,OT k =1l y t =+()11,M x y ()22,Nx y 由,消去整理得, 22184y t x y ⎧=+⎪⎪⎨⎪+=⎪⎩y 2240xt +-=由韦达定理可得:,()12212224Δ2808x x x x t t t ⎧+=⎪⎪=-⎨⎪=-->⇒<⎪⎩则||MN===又点到的距离 T 1ld ==所以. 11|22TMN S MN d t ===V≤=当且仅当,即时,等号成立.228t t -=24t =又介于两点之间, P ,MN 2P y t t ++所以,故.0t t --<<2t =-故直线的方程为:. 1l 2y =-(2)要证结论成立,只须证明, ||||||||TM TN PM PN =由角平分线性质即证:直线为的平分线,2x =MTN ∠转化成证明:.0TM TN k k +=由于TM TN k k+= ()()()()122112222222t x t x x x ⎡⎡⎫⎫+-++--⎢⎢⎪⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=--===0=因此结论成立.【点睛】圆锥曲线中的范围或最值问题,可根据题意构造关于参数的目标函数,然后根据题目中给出的范围或由判别式得到的范围求解,解题中注意函数单调性和基本不等式的作用.另外在解析几何中还要注意向量的应用,如本题中根据向量的共线得到点的坐标之间的关系,进而为消去变量起到了重要的作用。

江苏省高二上学期期末数学试题(解析版)

江苏省高二上学期期末数学试题(解析版)

高二上学期期末数学试题一、单选题1.在等比数列中,,公比,则( ) {}n a 13a =2q =4a =A .24 B .48 C .54 D .66【答案】A【分析】根据等比数列通项公式基本量计算出答案.【详解】.33413224a a q ==⨯=故选:A2.曲线处的切线与直线平行,则实数( ) y =()1,1y kx =k =A . B .C .D .12-12-12【答案】C【分析】根据导数的几何意义求解.【详解】时,,所以. y '=1x =12y ¢=12k =故选:C .3.已知平面的一个法向量,平面的一个法向量,若,则α()13,0,n λ= β()22,1,6n =αβ⊥λ=( )A .B .4C .D .1921-【答案】C【分析】根据题意,由面面垂直可得法向量也相互垂直,结合空间向量的坐标运算,代入计算即可得到结果.【详解】因为,则可得,αβ⊥12n n ⊥且,, ()13,0,n λ= ()22,1,6n =则可得,解得 660λ+=1λ=-故选:C4.若直线与圆相切,则实数取值的集合为( )340x y m ++=2220x y y +-=mA .B .C .D .{}1,1-{}9,1-{}1{}8,2-【答案】B【分析】根据题意,由直线与圆相切可得,结合点到直线的距离公式,代入计算,即可得到d r =结果.【详解】由圆可得,表示圆心为,半径为的圆,2220x y y +-=()2211x y +-=()0,11则圆心到直线的距离340x y m ++=d 因为直线与圆相切,340x y m ++=2220x y y +-=所以,解得或,d r =11m =9m =-即实数取值的集合为 m {}9,1-故选:B5.已知,则n =( )22A C 30n n +=A .3B .4C .5D .6【答案】C【分析】利用排列数、组合数公式得到,解方程即得解. ()31302n n -=【详解】解:,整理得, ()()()22131A C 13022n nn n n n n n --+=-+==2200n n --=解得(舍),. n =-45n =故选:C .6.函数的图象如图所示,则函数的图象可能是y ()y ()f x f x ==,的导函数y ()f x =A .B .C .D .【答案】D【详解】原函数先减再增,再减再增,且位于增区间内,因此选D .0x =【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图x 0x 象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单0x x 0x 调性时,由导函数的正负,得出原函数的单调区间.'()f x ()f x 7.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 ()A .12种 B .18种 C .24种 D .36种【答案】D【详解】4项工作分成3组,可得:=6,24C 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成, 可得:种. 36363A ⨯=故选D.8.已知数列首项为2,且,则( ){}n a 112n n n a a ++-=n a =A . B . C . D .2n 121n -+22n -122n +-【答案】D【分析】由已知的递推公式,利用累加法可求数列通项.【详解】由已知得,,则当时,有112n n n a a ++-=12a =2n ≥ ,12111221()()(222)n n n n n n n a a a a a a a a -----=-+-++-=+++()12121121222222222212n n n n n n n a a --+-=++++=++++==-- 经检验当时也符合该式.∴.1n =122n n a +=-故选:D二、多选题9.下列四个选项中,不正确的是( ) A .数列,的一个通项公式是 2345,,,3456⋯1n n a n =+B .数列的图象是一群孤立的点C .数列1,,1,,与数列,1,,1,是同一数列1-1-⋯1-1-⋯D .数列,,是递增数列11,24⋯12n 【答案】ACD【分析】由可判断A ;由数列的通项公式以及可判断B ;由数列定义可判断C ; 11223a =≠N*n ∈由递减数列定义可判断D . 【详解】对于A ,当通项公式为时,,不符合题意,故选项A 错误;1n n a n =+11223a =≠对于B ,由数列的通项公式以及可知,数列的图象是一群孤立的点,故选项B 正确; N*n ∈对于C ,由于两个数列中的数排列的次序不同,因此不是同一数列,故选项C 错误;对于D ,数列,,是递减数列,故选项D 错误.11,24⋯12n 故选:ACD .10.下列结论中正确的有( ) A .若,则B .若,则 sin3y π=0y '=2()3(1)f x x f x =-'(1)3f '=C .若,则D .若,则y x =1y ='+sin cos y x x =+cos sin y x x +'=【答案】ABC【解析】根据常见的基本初等函数的导数公式和常用的导数运算法则求解即可.【详解】选项A 中,若,故A 正确; sin3y π==0y '=选项B 中,若,则, 2()3(1)f x x f x =-⋅'()6(1)f x x f '-'=令,则,解得,故B 正确; 1x =(1)6(1)f f ''=-(1)3f '=选项C 中,若,则,故C 正确;y x =+1y ='+选项D 中,若,则x ,故D 错误. sin cos y x x =+cos sin y x x '=-故选:ABC【点睛】1.常见的基本初等函数的导数公式 (1) (C 为常数); ()0C '=(2); ()1()nn x nx n '∈N -+=(3); ; ()sinx cosx '=()cosx sinx '=-(4);,且); ()xx e e '=()(0x x a a lna a '>=1a ≠(5); ,且). 1(ln )'=x x a a 1 (log )'=log e(a>0x x1a ≠2.常用的导数运算法则法则1: . ()()()()[]u x v x u x v x ±''±'=法则2:. ()()()()()()[]u x v x u x v x u x v x '''=+法则3: ()()()()()()()()22[](0)u x u x v x u x v x v x v x v x '''≠-=11.已知名同学排成一排,下列说法正确的是( ) 7A .甲不站两端,共有种排法 1656A A B .甲、乙必须相邻,共有种排法 5252A A C .甲、乙不相邻,共有种排法2555A A D .甲不排左端,乙不排右端,共有种排法7657652A A A -+【答案】AD【分析】A 选项通过特殊元素法判断;B 选项利用捆绑法判断;C 选项利用插空法判断;D 选项用总情况减去不满足的情况即可.【详解】A 选项:甲不站两端,甲有种,剩余6人全排,共有种排法,正确;15A 1656A A B 选项:甲、乙必须相邻,甲、乙捆绑有种,作为整体和剩余5人全排,共有种排法,错22A 2626A A 误;C 选项:甲、乙不相邻,先排其他5人有种,再把甲、乙插入6个空中,共有种排法,错55A 5256A A 误;D 选项:甲不排左端,乙不排右端,用7人全排减去甲在左端的和乙在右端的,再加上甲在左端同时乙在右端的,共有种排法,正确.7657652A A A -+故选:AD.12.如图,在四面体中,点在棱上,且满足,点,分别是线段,OABC M OA 2OM MA =N G BC的中点,则用向量,,表示向量中正确的为( )MN OA OB OCA .B .111344GN OA OB OC =-++111344OG OA OB OC =-+C . D .113232GM OA OB OC =++111344GM OA OB OC =--【答案】AD【分析】连接,利用空间向量基本定理以及空间向量的线性运算进行求解即可. ON 【详解】连接,ON因为点,分别是线段,的中点,N G BC MN 所以,111211()222322OG OM ON OA OB OC =+=⨯+⨯+ 化简可得,故B 错误;111344OG OA OB OC =++所以,故A 正确 1111111()()2344344GN ON OG OB OC OA OB OC OA OB OC =-=+-++=-++ ,故C 错误,D 正确;11121113443344GM GO OM OA OB OC OA OA OB OC =+=---+=--故选:.AD三、填空题13.已知,1,、,2,、,,,若向量与垂直为坐标原(2A 3)(4B -)x (1C x -2)OA OB + OC(O点),则等于__. x 【答案】4【分析】由向量垂直的坐标表示求解.【详解】,()()()2,1,3,4,2,,1,,2OA OB x OC x ==-=-,∴()2,3,3OA OB x +=-+向量与垂直,OA OB + OC,∴()·23260OA OB OC x x +=--++=.4x ∴=故答案为:4.四、双空题14.已知函数,则函数的单调递增区间是______,值域为______.()()212log 43f x x x =-+-【答案】[2,3)[0,)+∞【解析】令,求得函数的定义域,根据在其定义域内为单调减函2430t x x =-+->()12log f x t =数,求函数的单调递增区间转化为求函数在定义域内的减区间,再利用()()212log 43f x x x =-+-t 二次函数的值域求整个函数的值域.【详解】解:令,可得,故函数的定义域为. 2430t x x =-+->13x <<()1,3因为在其定义域内为单调减函数,()12log f x t =故求在定义域内的减区间,又函数在定义域内的减区间为,243t x x =-+-t [2,3)所以函数的单调递增区间为,()()212log 43f x x x =-+-[2,3)当时,,则,()1,3x ∈243(0,1]t x x =-+-∈()12log [0,)f x t =∈+∞即函数的值域为. ()()212log 43f x x x =-+-[0,)+∞故答案为:;.[2,3)[0,)+∞【点睛】本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基本知识的考查.五、填空题15.求和:Sn =1+++1++++…+=________.1(12+11(1)24++1214181111(1)242n -+++⋯+【答案】2n +-2 112n -【分析】先化简数列,结合分组求和法即可求解. 1212k ka ⎛⎫=- ⎪⎝⎭【详解】被求和式的第k 项为:111111121211242212kk k k a -⎛⎫- ⎪⎛⎫⎝⎭=++++==- ⎪⎝⎭-所以Sn =2=22111(1)(1(1)222n -+-+⋯+-231111(2222n n ⎡⎤-+++⋯+⎢⎥⎣⎦ 111111222212212212n n n n n n -⎡⎤⎛⎫- ⎪⎢⎥⎡⎤⎛⎫⎝⎭⎢⎥=-=--=+- ⎪⎢⎥⎝⎭⎢⎥⎣⎦-⎢⎥⎣⎦故答案为:2n +-2. 112n -16.如图,圆形花坛分为部分,现在这部分种植花卉,要求每部分种植种,且相邻部分不能441种植同一种花卉,现有种不同的花卉供选择,则不同的种植方案共有______种(用数字作答)5【答案】260【分析】先分1,3相同与1,3不相同两类,每类中按分步计数原理,分2,4相同或不同两类求解,然后再分类计数原理求和.【详解】根据题意:当1,3相同时,2,4相同或不同两类,有:种, ()5411380⨯⨯⨯+=当1,3不相同时,2,4相同或不同两类,有:种, ()54312180⨯⨯⨯+=所以不同的种植方案共有种, 80180260+=故答案为:260【点睛】本题主要考查计数原理的应用问题,还考查了分析求解问题的能力,所以中档题.六、解答题17.已知等比数列的首项为2,前项和为,且. {}n a n n S 234230S S S -+=(1)求;n a(2)已知数列满足:,求数列的前项和. {}n b n n b na ={}n b n n T 【答案】(1)2n n a =(2)()1122n n T n +=-⋅+【分析】(1)根据题意,由可得公比,再由等比数列的通项公式即可得到结234230S S S -+=q 果;(2)根据题意,由错位相减法即可求得结果. 【详解】(1)设等比数列的公比为,{}n a q 因为,所以,234230S S S -+=()234320S S S S -+-=所以,所以,所以.342a a =2q =112n n n a a q -==(2)由(1)得,,所以,……①2nn b n =⨯212222n n T n =⨯+⨯++⨯ 所以,……②()23121222122n n n T n n +=⨯+⨯++-⨯+⨯ ①-②,得,()()21112122222212212n nn n n n T n n n +++⨯--=+++-⨯=-⨯=-⨯-- 所以.()1122n n T n +=-⋅+18.已知双曲线的实轴长为,一个焦点的坐标为-.2222:1x y C a b-=()0,0a b >>4()-(1)求双曲线的标准方程;(2)已知斜率为的直线与双曲线交于,两点,且的方程.1l C A B AB =l 【答案】(1);(2)22148x y -=1y x =±【分析】(1)由双曲线的实轴长及焦点坐标,再由,,之间的关系求出,进而求出双曲线a b c b 的方程;(2)由题意设直线的方程,与双曲线联立求出两根之和及两根之积,进而求出弦长的AB ||AB 值,再由题意可得参数的值,即求出直线的方程.AB【详解】(1)由得,又,24a =2a =c =2228b c a =-=故双曲线的方程为.22148x y -=(2)设直线的方程为,代入双曲线方程可得,l y x m =+22280x mx m ---=设,,,,则,.1(A x 1)y 2(B x 2)y 122x x m +=2128x x m =--因为||AB ==, ==1m =±所以直线的方程为.l 1y x =±19.从4面不同颜色(红、黄、蓝、绿)的旗子中,选出3面排成一排作为一种信号,共能组成多少种信号? 【答案】24【分析】分步完成:第一步选3面旗帜,第二步3面旗帜全排列,由此可得.【详解】从4面不同颜色旗子中,选出3面排成一排能组成种信号.3343C A 24=20.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm )满足关系:,设为C x ()()4011035C x x x =≤≤+()f x 隔热层建造费用与20年的能源消耗费用之和. (1)求的表达式;()f x (2)隔热层修建多厚时,总费用达到最小,并求最小值. ()f x 【答案】(1) 800()635f x x x =++()110x ≤≤(2)当隔热层修建5cm 厚时,总费用最小,最小值为70万元.【分析】(1)根据已给模型确定函数解析式; (2)利用导数求得最小值.【详解】(1)每年能源消耗费用为,建造费用为, 40()35C x x =+6x .. ()()800206635f x C x x x x ∴=+=++()110x ≤≤(2),令得或(舍. ()()22400'635f x x =-+()0f x '=5x =253x =-)当时,,当时,.∴15x ≤<()0f x '<510x <≤()0f x '>在,上单调递减,在,上单调递增.()f x ∴[15)[510]当时,取得最小值(5).∴5x =()f x f 70=当隔热层修建厚时,总费用最小,最小值为70万元.∴5cm21.三棱柱中,,,线段的中点为,且111ABC A B C -112AB AB AA AC ====120BAC ∠= 11A B M .BC AM⊥(1)求证:平面;AM ⊥ABC (2)点在线段上,且,求二面角的余弦值. P 11B C 11123B P B C =11P B A A --【答案】(1)证明见解析【分析】(1)由、根据线面垂直的判定定理可得平面;AB AM ⊥BC AM ⊥AM ⊥ABC (2)以为原点,以所在的直线为建立空间直角坐标系,求出平面、A 、、AN AC AM x y z 、、11B AA 平面的一个法向量由二面角的向量求法可得答案.1PB A 【详解】(1)三棱柱中,,111ABC A B C -11//AB A B 在中,,线段的中点为,所以,所以;11AB A △11AB AA =11A B M 11A B AM ⊥AB AM ⊥因为,平面,平面,,平面,所以BC AM ⊥BC ⊂ABC AB ⊂ABC AB BC B ⋂=AB BC ⊂、ABC 平面; AM ⊥ABC (2)做交于点,AN AC ⊥BC N 以为原点,以所在的直线为建立空间直角坐标系,A 、、AN AC AM x y z 、、则,,, ()0,0,0A )1,0B-112B -,.()0,2,0C (M 所以,,,112AB =-()BC =(AM = 因为,所以,111222,033B P B C BC ⎛⎫=== ⎪ ⎪⎝⎭32P ⎛ ⎝所以,32AP ⎛= ⎝ 设平面的一个法向量,则, 11B AA ()1111,,n x y z =11111111020n AB y n AM ⎧⋅=-+=⎪⎨⎪⋅==⎩ 解得,令,所以, 10z=1y 11x =()1n = 设平面的一个法向量,则, 1PB A ()2222,,n x y z =222221222302102n AP y n AB x y ⎧⋅=+=⎪⎪⎨⎪⋅=-=⎪⎩令,,所以, 2y =23x =21z =-()21n =- 设二面角的平面角为,则11P B A A --()0180θθ≤≤ ,121212cos cos ,n n n n n n θ⋅==== 由图知二面角的平面角为锐角,11P B A A --所以二面角11P B A A --22.已知函数,.()()2e x f x x ax a =--R a ∈(1)讨论函数的单调性;()f x (2)当时,证明:.0a =()2(ln 2)f x x x >+【答案】(1)答案见解析;(2)证明见解析.【分析】(1)求出函数的导数,再分类讨论求出不等式,的解集作()f x ()f x '()0f x '<()0f x ¢>答.(2)将不等式等价变形,再分别证明和即可作答.e 1x x >+ln 1x x ≥+【详解】(1)依题意,,令,则或()()()()222e 2e x x f x x a x a x x a '⎡⎤=+--=+-⎣⎦()0f x '=2x =-.x a =当时,,则函数在上单调递增; 2a =-()()22e 0x f x x '+≥=()f x R 当时,当时,,当时,,2a >-()2,x a ∈-()0f x '<()(),2,x a ∈-∞-∞+ ()0f x ¢>于是得在,上单调递增,在上单调递减;()f x (),2-∞-(),a +∞()2,a -当时,当时,,当时,,2a <-(),2x a ∈-()0f x '<()(),2,x a ∞∞-∈-+ ()0f x ¢>因此函数在、上单调递增,在上单调递减,()f x (),a -∞()2,-+∞(),2a -所以当时,的单调递增区间为,,单调递减区间为;2a >-()f x (),2-∞-(),a +∞()2,a -当时,在上单调递增;2a =-()f x R 当时,函数的单调递增区间为,,单调递减区间为.2a <-()f x (),a -∞()2,-+∞(),2a -(2)当时,,,,0a =()2e x f x x =0x >()222(ln 2)e (ln 2)e ln 2x x f x x x x x x x >+⇔>+⇔>+令,则,函数在上单调递增,()e 1,0x g x x x =-->()e 10x g x '=->()g x (0,)+∞,,即,(0,)∀∈+∞x ()(0)0g x g >=e 1x x >+令,,当时,,当时,, ()ln 1,0h x x x x =-->1()1h x x'=-01x <<()0h x '<1x >()0h x '>即函数在上单调递减,在上单调递增,,,即()h x (0,1)(1,)+∞(0,)∀∈+∞x ()(1)0h x h ≥=,ln 1x x ≥+于是得,而,因此,,e 1ln 2x x x >+≥+20x >22e (ln 2)x x x x >+所以成立.()2(ln 2)f x x x >+【点睛】关键点睛:利用导数探讨含参函数的单调性,求出导数后分类讨论解不等式是解决问题的关键.。

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)一、选择题(每题4分,共40分)1. 若复数z满足|z-1|=|z+1|,则z在复平面内表示的点位于()A. 实轴B. 虚轴C. 线段AB的中点D. 圆心O答案:C2. 已知函数f(x)=2x+1,若f(f(x))=3,则x等于()A. -1B. 0C. 1D. 2答案:A3. 设函数g(x)=x²-4x+c,若g(x)的图象上存在两个点A、B,使得∠AOB=90°(其中O为坐标原点),则c的取值范围是()A. (-∞, 1]B. [1, +∞)C. (-∞, 3]D. [3, +∞)答案:A4. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为()A. 1B. 3C. 5D. 7答案:B5. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,∠DCE=30°,则BD的长度为()A. 8B. 10C. 12D. 16答案:B6. 已知函数h(x)=x³-3x,若h(x)的图象上存在一个点P,使得∠AOP=90°(其中O为坐标原点),则x的取值范围是()A. (-∞, 0]B. [0, +∞)C. (-∞, 1]D. [1, +∞)答案:C7. 若等比数列{bn}的前三项分别为1、2、4,则该数列的公比为()A. 2B. 3C. 4D. 5答案:A8. 已知函数p(x)=x²-2x+1,若p(p(x))=0,则x等于()A. 0B. 1C. 2D. 3答案:B9. 设函数q(x)=|x-1|+|x+1|,则q(x)的最小值为()A. 0B. 1C. 2D. 3答案:C10. 若三角形ABC中,∠A=60°,AB=3,AC=4,则BC的长度为()A. 5B. 6C. 7D. 8答案:B二、填空题(每题4分,共40分)11. 若复数z=a+bi(a、b为实数),且|z|=2,则___。

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)一、选择题(共40分,每小题2分)1. 一次函数y = 2x - 3的图象是直线,下列说法正确的是()。

A. 过点(-3, 3)B. 过点(0, -3)C. 过点(3, 0)D. 过点(0, 3)答案:C2. 已知函数y = ax² + bx + c的图象经过点(1, 4),则a + b + c的值为()。

A. 4B. 6C. 8D. 10答案:B3. 在直角坐标系中,已知点A(2, 3),点B在x轴上,且AB = 5,则点B的坐标为()。

A. (2, 0)B. (0, -3)C. (7, 0)D. (-3, 0)答案:A4. 设函数f(x) = 2x + 3,g(x) = x² - 4,则f(g(2))的值为()。

A. 3B. 7C. 9D. 11答案:C5. 函数y = x² - 6x + 8的图象是一条抛物线,下列说法正确的是()。

A. 开口向上B. 开口向下C. 与x轴平行D. 与y轴平行答案:A二、解答题(共60分)6. 解方程组:2x - y = 3x + y = 5解答:将第一式两边同时加上第二式得到:2x - y + x + y = 3 + 53x = 8x = 8/3将x的值代入第二式得到:8/3 + y = 5y = 5 - 8/3y = 15/3 - 8/3y = 7/3因此,方程组的解为x = 8/3,y = 7/3。

7. 某商品原价为120元,现在打8折出售,求出售价格。

解答:打8折即为原价乘以0.8,所以出售价格为120元 × 0.8 = 96元。

8. 某数的5倍减去6等于30,求这个数。

解答:设这个数为x,则根据题意可以列出方程:5x - 6 = 305x = 30 + 65x = 36x = 36/5因此,这个数为36/5。

9. 已知等差数列的首项为3,公差为4,求第10项。

解答:第10项可以通过首项加上9倍公差来计算:第10项 = 3 + 9 × 4= 3 + 36= 39因此,第10项为39。

高二数学上学期期末考试试卷含答案

高二数学上学期期末考试试卷含答案

第一学期期末考试 高二 年级 数学 试卷一、选择题(本大题共12小题,每小题5分,满分60分)每小题只有一个....正确选项,请将正确选项填到答题卡处1.设集合{|(1)(2)0}A x x x =+-<, {|13}B x x =<<,则A B =( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x << D .{|23}x x <<2.下列函数中,在区间上为增函数的是( )A .B .C .D .3.已知平面向量,,且//,则=( ) A .B .C .D .4.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( )A .12B .8C .6D .46.函数()22)(x x f π=的导数是( )A .x x f π4)(=' B. x x f 24)(π=' C. x x f 28)(π=' D. x x f π16)(='7.为了得到函数的图象,可以将函数的图象( )A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度8.已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(3 ,且双曲线的一个焦点在抛物线27y x = 的准线上,则双曲线的方程为 ( )A .2212128x y -=B .2212821x y -=C .22134x y -=D .22143x y -=9.若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为( )A .318B .315C .3824+D .31624+10.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A .925 B .1625 C .310 D .1511.己知函数恒过定点A .若直线过点A ,其中是正实数,则的最小值是( )A .B .C .D . 512.已知不等式2201x m x ++>-对一切()1x ∈+∞,恒成立,则实数m 的取值范围是( ) A . 6m >- B . 6m <- C . 8m >- D . 8m <-第II 卷 (非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知命题p :∀x >0,(x +1)e x >1,则p 为 .14.设变量x ,y 满足约束条件,22,2.y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则z =x -3y 的最小值为15.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__________16.对于下列表格x 196 197 200 203 204 y136 7 m所示的五个散点,已知求得的线性回归方程为y ^=0.8x -155. 则实数m 的值为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分11分)已知0m >,p :()()260x x +-≤,q :22m x m -≤≤+ . (I )若p 是q 的充分条件,求实数m 的取值范围;(Ⅱ)若5m =,“p 或q ”为真命题,“p 且q ”为假命题,求实数x 的取值范围.18、(本小题满分11分).在锐角中,分别为角所对的边,且.(1)确定角的大小;(2)若,且的面积为,求的周长.19 . (本小题满分12分)已知数列{}n a 中,)(2,1*11N n a a a n n ∈==+,数列{}n b 是以公差为3的等差数列,且32a b =.(1) 求数列{}n a ,{}n b 的通项公式; (2) 求数列{}n n b a -的前n 项和n S .20.(本小题满分12分)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数;(2)已知这批产品中每个产品的利润y (单位:元)与产品净重x (单位:克)的关系式为3(9698),5(98104),4(104106).y x x x =≤<⎧⎪≤<⎨⎪≤≤⎩求这批产品平均每个的利润.21.(本小题满分12分)已知椭圆)0(12222>>=+b a by a x C :的焦距为32,长轴长为4.(1)求椭圆C 的标准方程;(2)直线m x y l +=:与椭圆C 交于 A ,B 两点.若OB OA ⊥,求m 的值.22. (本小题满分12 分) 已知函数(1)讨论函数 f (x)的单调性; (2)若对任意的a ∈ [1,4),都存在 (2,3]使得不等式成立,求实数m 的取值范围.高二数学期末考试参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 101112答案ABBABCADCDBA13、∃x 0>0,使得(x 0+1)0e x ≤1. 14.-8 15.32 16. 8 17. (本题11分)解:(I ):26p x -≤≤ ………………………1分p 是q 的充分条件[]2,6∴-是[]2,2m m -+的子集 ………………………2分 022426m m m m m >⎧⎪∴-≤-⇒≥∴⎨⎪+≥⎩的取值范围是[)4,+∞………………………5分(Ⅱ)当5m =时,:37q x -≤≤,由题意可知,p q 一真一假, ………………………6分p 真q 假时,由2637x x x x -≤≤⎧⇒∈∅⎨<->⎩或 ………………………8分 p 假q 真时,由26326737x x x x x <->⎧⇒-≤<-<≤⎨-≤≤⎩或或 ………………………10分 所以实数x 的取值范围是[)(]3,26,7-- ………………………11分18. (本题11分)解:(1),由正弦定理得A C A sin sin 2sin 3•=…………1分又,, …………3分又 …………5分(2)由已知得,…………7分在中,由余弦定理得…………8分即,又,(舍负)…………10分故的周长为 …………11分19 . (本题12分)解(1))(2,1*11N n a a a n n ∈==+ ,{}的等比数列是公比为数列2n a ∴, 121-⨯=∴n n a ..........................................3分 因为等差数列{}n b 的公差为3,又42232===a b ,所以233)1(2-=⨯-+=n n b b n ,..........................6分 (2))()()(2211n n n b a b a b a S -++-+-=)(2121n n b b b a a a ++-++=)(.....................8分 2)231(212-1-+--=n n n ..................................10分 122322-+-=nn n...............................12分20、 (本题12分)解: (1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.......1分 设样本容量为n .∵样本中产品净重小于100克的个数是36...........2分 ∴36n =0.300,∴n =120...........3分.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750.........4分∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.....5分 (2) 产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100, (0.100+0.150+0.125)×2=0.750, 0.075×2=0.150,........8分∴其相应的频数分别为120×0.1=12,120×0.750=90,120×0.150=18,...10分 ∴这批产品平均每个的利润为1120×(3×12+5×90+4×18)=4.65(元)...12分 20.(本题12分)解:(1)∵椭圆)0(12222>>=+b a b y a x C :的焦距为32,长轴长为4,3=∴c ,2=a ,∴1=b ,..........................................2分∴椭圆C 的标准方程为1422=+y x .........................4分 (2)设),(,2211y x B y x A )(,将直线AB的方程m x y +=为代入椭圆方程得0448522=-++m mx x . .......................6分 则58-21mx x =+,544221-=m x x , ①.又0)44(206422>--=∆m m ,解得52<m . .......................9分,由OB OA ⊥得:0)(2))((2212121212121=+++=+++=+m x x m x x m x m x x x y y x x ........11分将①代入,得5102±=m ,又∵满足52<m ,∴5102±=m .........12分22.(本题满分12分)解:(1).........2分令得:..........3分令得:...........4分所以函数f(x)的单调递增区间为:和;单调递减区间为:.........6分(2)因为由(1)知函数在(2,3]上单调递增,所以........8分若对任意的a[1,4),都存在(2,3]使得不等式成立,等价于恒成立........9分令当时,所以当时,........11分故实数m 的取值范围是:.......12分。

福建省高二上学期期末考试数学试题(解析版)

福建省高二上学期期末考试数学试题(解析版)

一、单选题1.设P 是椭圆上的动点,则P 到该椭圆的两个焦点的距离之和为( )2213y x +=A .B .C .D .【答案】B【分析】利用椭圆的定义即可求解【详解】由可得,2213y x +=23a =根据椭圆的定义可得P 到该椭圆的两个焦点的距离之和为. 2a =故选:B2.双曲线的焦距等于( )2214x y -=A .4B .2C D .【答案】D【分析】根据给定条件,利用双曲线方程求出半焦距作答.【详解】双曲线的半焦距为c ,则,解得,2214x y -=2415c =+=c =所以双曲线的焦距等于2214x y -=故选:D3.已知抛物线:,则焦点到准线的距离是( )C 23y x =A .B .C .D .1623313【答案】A【分析】将抛物线方程化为标准形式,得到焦点坐标和准线方程,得到焦点到准线的距离.【详解】抛物线:化成标准方程为抛物线, C 23y x =213x y =则焦点坐标为,准线方程为,10,12⎛⎫⎪⎝⎭112y =-故抛物线焦点到准线的距离是.C 16故选:A4.双曲线的渐近线方程是( )22132x y -=A . B .23y x =±32y x =±【答案】D【分析】根据焦点在横轴上双曲线的渐近线方程直接求解即可.【详解】由题得双曲线的方程为,所以22132x y -=a b ==所以渐近线方程为. b y x a =±=故选:D5.、、、四人并排站成一排,如果与相邻,那么不同的排法种数是( ) A B C D A B A .24种 B .12种 C .48种 D .23种【答案】B【分析】利用捆绑法求解相邻问题.【详解】由题意,因为与相邻,将与放在一起,共有种排法,将与看成一个整A B A B 22A A B 体,与、进行全排列,共有种排法,综上共有种排法,C D 33A 2323A A 12=故选:B .6.,则( ) ()4234012341x a a x a x a x a x +=++++01234a a a a a -+-+=A .1 B .3 C .0 D .3-【答案】C【分析】根据展开式,利用赋值法取即得. =1x -【详解】因为, ()4234012341x a a x a x a x a x +=++++令,可得. =1x -()401234110a a a a a -+-+=-=故选:C.7.( )322334C C C ++=A . B .C .D .36C 35C 26C 45C 【答案】B【分析】利用组合数的运算公式计算,得到答案.【详解】,其中,,,.322334C C C 13610++=++=36C 20=35C 10=2615C =45C 5=故选:B8.要将4个不同的礼物分给3位同学,每人至少1个,不同分法的种数是( ) A .36 B .48C .64D .72【分析】先将礼物分为3组,再和3位同学进行全排列即可.【详解】由题可知,有1位同学分得两个礼物,其他2为同学各得一个,可以先从4个礼物种挑出2个,将礼物分为3份,与3位同学进行全排列,故不同分法的种数是.2343C A 36=故选:A二、多选题9.已知双曲线方程为,则( ) 22832x y -=A .焦距为6 B .虚轴长为4C .实轴长为D 【答案】BCD【分析】求出双曲线的标准方程,得到,,对照选项即可求解.a =2b =6c =【详解】双曲线方程化为标准方程为:,22832x y -=221324x y -=可得:,,a =2b =6c =所以双曲线的焦距为,虚轴长为,实轴长为, 212c =24b =2a =c e a =故选:.BCD 10.已知椭圆的对称中心为坐标原点,焦点在坐标轴上,若椭圆的长轴长为6,焦距为4,则椭C 圆的标准方程可能为( )C A .B .22149x y +=22195x y +=C .D .22194x y +=22159x y +=【答案】BD【分析】由题设写出椭圆参数值,再讨论焦点的位置确定椭圆方程即可.【详解】由题意,有,,,3a =2c =5b ==∴椭圆的标准方程可能为或.C 22195x y +=22159x y +=故选:BD.11.若,则正整数x 的值是( )2155C C x x -=A .1 B .2 C .3 D .4【答案】AB【分析】由组合数的性质可以列出方程,求出正整数x 的值 【详解】由题意得:或, 21x x =-215x x +-=解得:或,经过检验,均符合题意. 1x =2x =故选:AB12.在10件产品中,有7件合格品,3件不合格品,从这10件产品中任意抽出3件,则下列结论正确的有( )A .抽出的3件产品中恰好有1件是不合格品的抽法有种 1237C C B .抽出的3件产品中至少有1件是不合格品的抽法有种1239C C C .抽出的3件产品中至少有1件是不合格品的抽法有种 1221337373C C C C C ++D .抽出的3件产品中至少有1件是不合格品的抽法有种 33107C C -【答案】ACD【分析】抽出的3件产品中恰好有1件是不合格品的抽法为不合格品1件、合格品2件,根据分步计数原理可知A 正确,B 错误;抽出的3件产品中至少有1件是不合格品的抽法分两种做法:(ⅰ)3件不合格品中有1件不合格、2件合格;2件不合格、1件合格;3件都不合格;然后利用分类计数法求解.(ⅱ)总的取法数减去抽取的三件都为合格品的取法即为所求.由此判断CD 正确 【详解】解:由题意得:对于A 、B 选项:抽出的3件产品中恰好有1件是不合格品的抽法为3件不合格品中抽取1件有13C 种取法,7件合格品种抽取2件有种取法,故共有中取法,故A 正确;27C 1237C C 对于选项C :抽出的3件产品中至少有1件是不合格品的抽法分三种情况:①抽取的3件产品中有1件不合格、有2件合格,共有种取法;②抽取的3件产品中有2件不合格、有1件合格,1237C C 共有种取法;③抽取的3件产品都不合格,种取法.故抽出的3件产品中至少有1件是不合2137C C 33C 格品的抽法有种,故B 错误,C 正确;1221337373C C C C C ++对于选项D :10件产品种抽取三件的取法有,抽出的3件产品中全部合格的取法有种,抽出310C 37C 的3件产品中至少有1件是不合格品的抽法有种,故D 正确. 33107C C -故选:ACD13.由0,1,2,3,4组成没有重复数字的三位数的个数是________ 【答案】48【分析】第一步先从非零的四个数中选择一个作为百位数字,再从剩余的四个数中选择两个排在十位和个位上,然后利用分步乘法计数原理可得出答案.【详解】第一步先从非零的四个数中选择一个作为百位数字,有种选法, 4再从剩余的四个数中选择两个排在十位和个位上,有种选法, 24A 12=由0,1,2,3,4组成没有重复数字的三位数的个数是. 41248⨯=故答案为:48.14.过抛物线的焦点弦AB 的中点的横坐标为2,则弦AB 的长为______. 22y x =【答案】5【分析】将焦点弦长转化为抛物线上点到准线的距离,进而转化为坐标表示,由中点横坐标计算可得弦长.【详解】抛物线准线方程为,设焦点为,,,22y x =12x =-F 11(,)A x y 22(,)B x y 则焦点弦, 121211122AB AF BF x x x x =+=+++=++又因为弦的中点的横坐标为2,所以,, AB 1222x x +=124x x +=所以焦点弦长. 5AB =故答案为:5.15.某学校有一块绿化用地,其形状如图所示.为了让效果更美观,要求在四个区域内种植花卉,且相邻区域颜色不同.现有五种不同颜色的花卉可供选择,则不同的种植方案共有________种.(用数字作答)【答案】180【分析】利用分步乘法计数原理即得.【详解】先在1中种植,有5种不同的种植方法,再在2中种植,有4种不同的种植方法,再在3中种植,有3种不同的种植方法,最后在4中种植,有3种不同的种植方法, 所以不同的种植方案共有(种). 5433180⨯⨯⨯=故答案为:180.16.过点的直线与椭圆相交于两点,且恰为中点,则直线的方程()2,1M l 221168x y +=,A B M ,A B l 为___________. 【答案】30x y +-=【分析】结合点差法求得直线的方程. l 【详解】椭圆2216,8,4,a b a b ====由,令得:,所以在椭圆内, 221168x y +=2x =2221,1168y y +==>M 同时,当直线的斜率不存在,即直线时,,l :2l x =((,2,A B 不是线段的中点,所以直线的斜率存在.M AB l 设,则,()()1122,,,A x y B x y 222211221,1168168x y x y +=+=两式相减并化简得,12121212816y y y y x x x x +--=⋅+-即, 211112222M l l l M y k k k x -=⋅⇒-=⋅⇒=-所以直线的方程为,即. l ()12y x -=--30x y +-=故答案为:30x y +-=四、解答题17.现有4名男生、3名女生站成一排照相.(用数字作答) (1)两端是女生,有多少种不同的站法? (2)任意两名女生不相邻,有多少种不同的站法?(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法? 【答案】(1)720;(3)2520;【分析】(1)先选2女生排两端,再将其余学生全排列,即可得结果. (2)利用插空法,把3名女生插入到4名男生所形成的5个空中,即得结果. (3)将所有人作全排列,根据甲乙女生位置的对称性,即可求结果. 【详解】(1)选2女生排两端有种方法,再排其余学生有种方法,23A 55A 所以两端是女生的不同站法有种.2535A A 720=(2)先排4名男生有种方法,再将3名女生插入5个空隙中有种方法,44A 35A 所以任意两名女生不相邻的不同站法有种.4345A A 1440=(3)7名学生的全排列为,而甲乙的顺序有2种,所以女生甲要在女生乙的右方的不同站法有77A 种. 771A 25202=18.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法? (1)任意选5人;(2)甲、乙、丙三人必需参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.【答案】(1)792种;(2)36种;(3)126种;(4)378种. 【分析】组合实际应用题,结合条件及组合的含义即求.【详解】(1)从中任取5人是组合问题,共有种不同的选法;512792C =(2)甲、乙、丙三人必须参加,则只需从另外9人中选2人,是组合问题,共有种不同的2936C =选法;(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有种不同的选法;59126C =(4)甲、乙、丙三人只能有1人参加,可分为两步:选从甲、乙、丙中选1人,有种选法,再13C 从另外9人中选4人,有种选法,共有种不同的选法.49C 1439378C C =19.已知,求 567117C C 10C m m m -=8C m【分析】由已知条件,利用组合数公式求出m 的值,即可求解的值. 8C m【详解】, 567117C C 10C m m m -= ,且, !(5)!!(6)!7!(7)!5!6!107!m m m m m m ⨯-⨯-⨯-∴-=⨯05,Z m m ≤≤∈两边乘以,得,5!!(5!)m m -67(7)(6)161076m m m ----=⨯⨯即,解得或,223420m m -+=2m =21m =,,05,Z m m ≤≤∈2m ∴=. 28887C C 2821m =⨯∴==⨯20.二项式展开式前三项的二项式系数和为22;2nx ⎛⎝(1)求的值;n (2)求展开式中二项式系数最大的项; (3)求展开式中的常数项. 【答案】(1)6 (2) 321280x (3)960【分析】(1)根据前三项的二项式系数和得到方程,求出;(2)在第一问求出的基础6n =6n =上,求出展开式中二项式系数最大的项为第4项,根据通项公式求出答案;(3)根据展开式通项公式得到.644162C 960T +==【详解】(1)∵展开式前三项的二项式系数和为22,∴,012C C C 22n n n ++=∴, 2420n n +-=∴或(舍) 6n =7n =-故的值为6n (2)由题可得:展开式中最大的二项式系数为,36C 20=∴展开式中二项式系数最大的项为第4项,即()33332C 21280T x x ==(3)设展开式中常数项为第项,即, 1r +()36662166C 2C 2rr rr r r r T x x---+==⋅令,则, 3602r-=4r =∴,644162C 960T +==故展开式中的常数项为第5项,即96021.已知抛物线上的点到焦点F 的距离为6. 2:2(0)C y px p =>(5,)M m (1)求抛物线C 的方程;(2)过点作直线l 交抛物线C 于A ,B 两点,且点P 是线段的中点,求直线l 方程. (2,1)P AB 【答案】(1). 2:4C y x =(2). :230l x y --=【分析】(1)由抛物线定义有求参数,即可写出抛物线方程. 562p+=(2)由题意设,联立抛物线方程,结合韦达定理、中点坐标求参数k ,即可得直:(1)2l x k y =-+线l 方程.【详解】(1)由题设,抛物线准线方程为, 2p x =-∴抛物线定义知:,可得, 562p+=2p =∴.2:4C y x =(2)由题设,直线l 的斜率存在且不为0,设,联立抛物线方程, :(1)2l x k y =-+有,整理得,则,又P 是线段的中点, 24(1)2y k y =-+24420y ky k -+-=4A B y y k +=AB ∴,即,故. 42k =12k =:230l x y --=22.已知椭圆的两焦点为、,为椭圆上一点,且是与的等差中()12,0F -()22,0F P 12F F 1PF 2PF 项.(1)求此椭圆方程;(2)若点满足,求的面积.P 1260F PF ∠=12PF F △【答案】(1)2211612x y +=(2)【分析】(1)设该椭圆的标准方程为,根据椭圆的定义求出的值,进一步可()222210x y a b a b +=>>a 求得的值,由此可得出该椭圆的方程;b (2)利用余弦定理结合基本不等式可求得的值,再利用三角形的面积公式可求得结果.12PF PF ⋅【详解】(1)解:设该椭圆的标准方程为,()222210x y a b a b+=>>由已知得,,所以,1212282F F PF PF a =+==4a ∴=b ==因此,该椭圆的方程为.2211612x y +=(2)解:由余弦定理可得222212121242cos60F F PF PF PF PF ==+-⋅ ,可得, ()21212123643PF PF PF PF PF PF =+-⋅=-⋅1216PF PF ⋅=所以,12121sin 602PF F S PF PF =⋅= △。

高二上学期数学期末考试试卷及答案

高二上学期数学期末考试试卷及答案

高二上学期数学期末考试试卷及答案考试时间:120分钟试题分数:150分卷Ⅰ一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数、,“”是“方程的曲线是双曲线”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数3.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为A.B.C.D.4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题是“甲降落在指定范围”,是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.B.C.D.5.若双曲线的离心率为,则其渐近线的斜率为A.B.C.D.6.曲线在点处的切线的斜率为A.B.C.D.7.已知椭圆的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线的焦点坐标为A.B.C.D.8.设是复数,则下列命题中的假命题是A.若,则B.若,则C.若,则D.若,则9.已知命题“若函数在上是增函数,则”,则下列结论正确的是A.否命题“若函数在上是减函数,则”是真命题B.逆否命题“若,则函数在上不是增函数”是真命题C.逆否命题“若,则函数在上是减函数”是真命题D.逆否命题“若,则函数在上是增函数”是假命题10.马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件11.设,,曲线在点()处切线的倾斜角的取值范围是,则到曲线对称轴距离的取值范围为A.B.C.D.12.已知函数有两个极值点,若,则关于的方程的不同实根个数为A.2B.3C.4D.5卷Ⅱ二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么等于________.14.函数在区间上的最大值是________.15.已知函数,则=________.16.过抛物线的焦点作倾斜角为的直线,与抛物线分别交于、两点(在轴左侧),则.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知z是复数,和均为实数(为虚数单位).(Ⅰ)求复数;(Ⅱ)求的模.18.(本小题满分12分)已知集合,集合若是的充分不必要条件,求实数的取值范围.19.(本小题满分12分)设椭圆的方程为点为坐标原点,点,分别为椭圆的右顶点和上顶点,点在线段上且满足,直线的斜率为.(Ⅰ)求椭圆的离心率;(Ⅱ)设点为椭圆的下顶点,为线段的中点,证明:.20.(本小题满分12分)设函数(其中常数).(Ⅰ)已知函数在处取得极值,求的值;(Ⅱ)已知不等式对任意都成立,求实数的取值范围.21.(本小题满分12分)已知椭圆的离心率为,且椭圆上点到椭圆左焦点距离的最小值为. (Ⅰ)求的方程;(Ⅱ)设直线同时与椭圆和抛物线相切,求直线的方程.22.(本小题满分12分)已知函数(其中常数).(Ⅰ)讨论函数的单调区间;(Ⅱ)当时,,求实数的取值范围.一.选择题CDBACCDABBDB二.填空题三.解答题17.解:(Ⅰ)设,所以为实数,可得,又因为为实数,所以,即.┅┅┅┅┅┅┅5分(Ⅱ),所以模为┅┅┅┅┅┅┅10分18.解:(1)时,,若是的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅4分(2)时,,符合题意;┅┅┅┅┅┅┅8分(3)时,,若是的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅12分19.解(Ⅰ)已知,,由,可得,┅┅┅┅┅┅┅3分所以,所以椭圆离心率;┅┅┅┅┅┅┅6分(Ⅱ)因为,所以,斜率为,┅┅┅┅┅┅┅9分又斜率为,所以(),所以.┅┅┅┅┅┅┅12分20.解:(Ⅰ),因为在处取得极值,所以,解得,┅┅┅┅┅┅┅3分此时,时,,为增函数;时,,为减函数;所以在处取得极大值,所以符合题意;┅┅┅┅┅┅┅6分(Ⅱ),所以对任意都成立,所以,所以.┅┅┅┅┅┅┅12分21.解:(Ⅰ)设左右焦点分别为,椭圆上点满足所以在左顶点时取到最小值,又,解得,所以的方程为.(或者利用设解出得出取到最小值,对于直接说明在左顶点时取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分(Ⅱ)由题显然直线存在斜率,所以设其方程为,┅┅┅┅┅┅┅5分联立其与,得到,,化简得┅┅┅┅┅┅┅8分联立其与,得到,,化简得,┅┅┅┅┅┅┅10分解得或所以直线的方程为或┅┅┅┅┅┅┅12分22.(Ⅰ),设,该函数恒过点.当时,在增,减;┅┅┅┅┅┅┅2分当时,在增,减;┅┅┅┅┅┅┅4分当时,在增,减;┅┅┅┅┅┅┅6分当时,在增.┅┅┅┅┅┅┅8分(Ⅱ)原函数恒过点,由(Ⅰ)可得时符合题意.┅┅┅┅┅┅┅10分当时,在增,减,所以,不符合题意.┅┅┅┅┅┅┅12分数学考试反思数学考试反思八篇数学考试反思(一):上个星期五,张老师对我们进行了数学第二单元的测试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二上学期数学期末考试试卷
一、解答题
1. 直线的倾斜角的大小为________.
2. 设直线,,

(1)若直线,,交于同一点,求m的值;
(2)设直线过点,若被直线,截得的线段恰好被点M平分,求直线的方程.
3. 如图,在四面体中,已知⊥平面,
,,为的中点.
(1)求证:;
(2)若为的中点,点在直线上,且,
求证:直线//平面.
4. 已知,命题{ |方程
表示焦点在y轴上的椭圆},命题{ |方程
表示双曲线},若命题“p∨q”为真,“p∧q”为假,求实数的取值范围.
5. 如图,已知正方形和矩形所在平面互相垂直,
,.
(1)求二面角的大小;
(2)求点到平面的距离.
6. 已知圆C的圆心为,过定点
,且与轴交于点B,D.
(1)求证:弦长BD为定值;
(2)设,t为整数,若点C到直线的距离为,求圆C的方程.
7. 已知函数(a为实数).
(1)若函数在处的切线与直线
平行,求实数a的值;
(2)若,求函数在区间上的值域;
(3)若函数在区间上是增函数,求a的取值范围.
8. 设动点是圆上任意一点,过作轴的垂线,垂足为,若点在线段上,且满足.
(1)求点的轨迹的方程;
(2)设直线与交于,两点,点
坐标为,若直线,的斜率之和为定值3,
求证:直线必经过定点,并求出该定点的坐标.
二、填空题
9. 命题“对任意的”的否定是________.
10. 设,,且//
,则实数________.
11. 如图,已知正方体的棱长为a,则异面直线
与所成的角为________.
12. 以为准线的抛物线的标准方程是________.
13. 已知命题: 多面体为正三棱锥,命题:多面体为正四面体,则命题是命题的________条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”之一)
14. 若一个正六棱柱的底面边长为,侧面对角线的长为,则它的体积为________.
15. 函数的单调递减区间为________.
16. 若双曲线的焦距为8,点在其渐近线上,则C的方程为________.
17. 如果一个圆锥的侧面积与其底面积之比是5:3,那么该圆锥的母线与底面所成角的正弦值为________.
18. 已知点在抛物线上运动,为抛物线的
焦点,点的坐标为,则的最小值是________.
19. 椭圆具有如下的光学性质:从一个焦点发出的光线经过椭圆内壁反射后恰好穿过另一个焦点.现从椭圆的左焦点发出的一条光线,经过椭圆内壁两次反射后,回到点,则光线所经过的总路程为________.
20. 已知是三个互不重合的平面,是一条直线,给出下列四个命题:
① 若,则;
② 若,则;
③ 若,则;
④ 若,,,,则
.
其中所有正确命题的序号是________.
21. 设,过定点的动直线和过定点的动直线交于点,若,则点的坐标为________.
22. 在平面直角坐标系中,已知是函数
图象上的动点,该图象在点处的切线交轴于点,过点作的垂线交轴于点,设线段的中点的横坐标为,则的最大值是________.。

相关文档
最新文档