高考数学一轮复习 第八章立体几何8.6空间向量及其运算教学案 新人教B版
高三数学一轮复习第8讲空间向量的应用教案

第八讲 空间向量的应用一、考情分析在高考的立体几何试题中,平行或垂直的证明、空间角与空间距的求解是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是复习的难点.空间向量的引入有利于解决这些问题,为立体几何增添了活力,新思想、新方法与时俱进,很多较难的空间的证明或计算问题,就有了解决的通法,减少学生学习度量问题的困难.本讲主要帮助考生理解并领悟向量工具的威力,运用向量方法简捷地解决这些问题.二、知识归纳及例析 (一)平行的证明(1)两条直线平行的证明思路:a b a b a b λ⇔⇔=(a b 、 分别是a b 、的方向向量).(2)直线与平面平行的证明思路:法1:0a a n a n α⇔⊥⇔⋅=(a n 、 分别是a α、的方向向量、法向量);法2:12a a xe ye α⇔=+(a 分别是a 的方向向量,12e e 、 是平面α的一个基底).(3)两个平面平行的证明思路:1212n n n n αβλ⇔⇔=(12n n 、 分别是平面αβ、的法向量). 例1:(04年湖南卷)在底面是菱形的四棱锥P ABCD -中,3ABC PA AC a π∠===,,221PB PD a E PD PE ED ==∈=,,::.(1)证明:PA ⊥平面ABCD .(2)在棱PC 上是否存在一点F ,使BF 平面AEC ?解析:(1)∵底面ABCD 是菱形,3ABC π∠=,∴PA AD AC a ===,在PAB ∆中,222PA AB PB +=,∴PA AB ⊥,同理,PA AD ⊥,故PA ⊥平面ABCD .(2)建立直角坐标系,如图,设点F 是棱PC 上一点,()01PF PC λλ=<<,则:2033a a AE ⎛⎫= ⎪⎝⎭,,,302a AC ⎛⎫= ⎪⎪⎝⎭,,,)()()31112aBF BP PF BP PC a λλλλ⎛⎫=+=+=-+- ⎪ ⎪⎝⎭,,, 令BF x AC y AE =+,解之得:113222x y λ==-=,,, ∴当点F 是棱PC 的中点时,BF AC AE 、 、 共面, 又∵BF ⊄平面AEC ,∴当点F 是棱PC 的中点时,BF 平面AEC . (二)垂直的证明(1)两条直线垂直的证明思路0a b a b a b ⊥⇔⊥⇔⋅=(a b 、 分别是a b 、的方向向量).(2)直线与平面垂直的证明思路法1:a a n a n αλ⊥⇔⇔=(a n 、 分别是a α、的方向向量、法向量); 法2:11220a e a e a a e a e α⎧⎧⊥⋅=⎪⎪⊥⇔⇔⎨⎨⊥⋅=⎪⎪⎩⎩(a 分别是a 的方向向量,12e e 、 是平面α的一个基底).(3)两个平面垂直的证明思路12120n n n n αβ⊥⇔⊥⇔⋅=(12n n 、 分别是平面αβ、的法向量).例2:(05年湖北卷)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底面12ABCD AB BC PA E ===,,,是PD 的中点. (Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥平面PAC ,并求出N 点到AB 和PA 的距离.解析:(Ⅰ)建立如图所示的空间直角坐标系,设AC PB 、 的夹角为θ,则:(310)(302)AC PB ==-,,, ,,,∴cos 2AC PB AC PBθ⋅===故AC 与PB 所成角的余弦值为1473. (Ⅱ)由于N 点在侧面PAB 内,故可设()0N x z ,,,则:1(1)2NEx z =--,,, ∵NE ⊥平面PAC ,∴0601NE AP x NE AC z ⎧⎧⋅==⎪⎪⇒⎨⎨⋅=⎪⎪⎩=⎩,即01)N ,; 从而N 点到AB 和PA 的距离分别为1.例3:(05年浙江卷)如图,在三棱锥P ABC -中,AB BC AB BC kPA ⊥==,,点O D 、分别是AC PC 、的中点,OP ⊥底面ABC . (1)当12k =时,求直线PA 与平面PCB 所成角的大小; (2)当k 取何值时,O 在平面PCB 内的射影恰好为PCB ∆的重心?解析:∵OP ABC ⊥平面,OA OC AB BC ==,, ∴OA OB OA OP OB OP ⊥⊥⊥,,;建立如图所示的空间直角坐标系,设AB a =,则:000000222A a B a C a ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,, 设OP h =,则:()00P h ,,;(1)当12k =时,2PA a h ==,,202PA a ⎛⎫= ⎪ ⎪⎝⎭,,,可求得平面PBC 的法向量1,1,n ⎛=- ⎝, ∴210cos 30PA n PAn PA n⋅〈〉==, ,设直线PA 与平面PCB 所成角为θ,则:sin cos PAn θ=<>=, 故直线PA 与平面PCB 所成角为arcsin.(2)PBC ∆的重心11663663G a a h OG a h ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,, ∵OG PBC ⊥平面,∴OG PB ⊥,又∵02PB a h ⎛⎫=- ⎪ ⎪⎝⎭,,,∴22110632OG PB a h h a ⋅=-=⇒=,此时,PA a ==,即1k =;反之,当1k =时,三棱锥O PBC -为正三棱锥,∴O 在平面PCB 内的射影恰好为PCB ∆的重心. (三)求空间距离问题构成空间的点、线、面之间有六种距离,这里着重研究点面之距的求法,异面直线间的距离、线面距离;面面距离都可化为点面距离来求.(1)求点面距离设n 是平面α的法向量,在α内取一点B , 则A 到α的距离为cos AB n d AB nθ==.(2)求异面直线的距离在a 上取一点A , 在b 上取一点B , 设a b 、 分别为异面直线a b 、的方向向量,设异面直线a b 、的公共的垂直向量为n()n a n b ⊥⊥, ,则异面直线a b 、的距离为:cos AB n d AB nθ⋅==(此方法移植于点面距离的求法).例4:正方体1AC 的棱长为a ,求异面直线1AC BC 、的距离.解析:建立直角坐标系,如图,设异面直线1AC BC 、的公共的垂直向量为()1n x y =,,,则:()101110n AC n n BC ⎧⋅=⎪⇒=-⎨⋅=⎪⎩,, , ∵AB 在()111n =-,,上的投影长为:33AB n an⋅=. ∴异面直线1AC BC 、. (四)求空间角问题空间的角主要有:异面直线所成的角、直线和平面所成的角、二面角. (1)求异面直线所成的角设a b 、 分别为异面直线a b 、的方向向量,异面直线成角的范围是02πα⎛⎤∈ ⎥⎝⎦,,而向量的夹角的范围是[]0θπ∈,,则:cos cos arccosa b a b a ba bαθα==⇒=.例5:三棱柱111OAB O A B -中,平面1OB ⊥平面132OABO OB AOB ππ∠=∠=,,,12OB O O ==,OA =,求异面直线11A B AO 、所成的角.解析:本题宜于运用向量法解决.法1:设1OA a OB b OO c ===, , ,则: ∵11AO a c A B a b c =-+=-+-, , ∴()()22112431A B AO a ca b c b c c a b a ⋅=-+-+-=⋅--⋅+=-+=,()22211277AO a c a c A B a b c =+-⋅==-+-=, ∴11111cos 7A B AO A B AOα⋅==,1arccos 7α=.故异面直线11A B AO 、所成的角1arccos7. 法2:建立直角坐标系,如图所示,则:()(1131331AO A B =-=-,,, ,,∴11111cos 7A B AO A B AO α⋅==,1arccos 7α=.故异面直线11A B AO 、所成的角1arccos 7. (2)求线面角问题设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角arcsinl n l nα=.例6:如图,正三棱柱111ABC A B C -中,1AA AB a ==,, 求直线1AC 与平面11AA B 所成的角.解析:本题运用向量法有以下两种解法:法1:建立直角坐标系,如图所示,则1C AM ∠即为所求;13222a a AC a a AM ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭,,, 0,, ,∴13cos AC AM <>=, . 故直线1AC 与平面11AA B 所成的角6π. 法2:显然平面11AA B 的法向量为()00n λ=,,,则:11111cos sin cos 2AC n AC n AC n AC nθ⋅<>==-⇒=<>= , , . 故直线1AC 与平面11AA B 所成的角6π. (3)求二面角问题 法一:设l αβ=,在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角arccosa b a bα=.法二:设12n n 、 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角1212arccosn n n n α⋅=.例7:(05年江西卷)如图,在长方体1AC 中,112AD AA AB ===,,点E 在棱AD 上移动.(1)证明:11D E A D ⊥;(2)AE 等于何值时,二面角1D EC D --的大小为4π. 解析:建立直角坐标系,如图所示,(1)∵11(101)(11)0DA D E x ⋅=-=,,,,,∴11DA D E ⊥. (2)设平面1D EC 的法向量(1)n a c =,,,则: 11(120)(021)(001)CE x D C DD =-=-=,,, ,,, ,,,∴()102120n D C n x n CE ⎧⋅=⎪⇒=-⎨⋅=⎪⎩,,.∴112cos422n DD n DD π⋅==⇒=,∴321+=x (不合,舍去),322-=x . 故当2AE =1D EC D --的大小为4π. 例8:(05年北京卷)如图,在直四棱柱1111ABCD A B C D -中,2AB AD ==,DC =1AA AD DC AC BD =⊥⊥,,垂足为E .(Ⅰ)求证:1BD A C ⊥;(Ⅱ)求二面角11A BD C --的大小; (Ⅲ)求异面直线AD 与1BC 所成角的大小. 解析:(I )在直四棱柱1111ABCD A B C D -中, ∵1A A ⊥底面ABCD ,∴AC 是1A C 在平面ABCD 上的射影,∵BD AC ⊥,∴1BD A C ⊥;(II )连结1111A E C E A C 、、,∵1BD A C ⊥,BD AC ⊥,∴BD ⊥平面11ACC A ; ∴11A EC ∠为二面角11A BD C --的平面角.在底面ABCD中,AD DC⊥,111112A D AD DC DC AA ====,,AC BD ⊥,∴11114132AC AE EC A E C E =====,,,, 在11A EC ∆中,2221111A C A E C E =+ ,112A EC π∠=,故二面角11A BD C --的大小为2π. (III )如图,建立空间直角坐标,坐标原点为E ,则:1(010)(0)0)(0A D B C -,,,,,,,,∴1(310)(3AD BC =-=-,,, , ∴11336215AD BC AD BC ⋅=+===,,∴111cos 2AD BC AD BC AD BC ⋅<>===, 故异面直线AD 与1BC 所成角的大小为arccos 5. 三、课后反思.。
高考数学一轮复习 第8章 立体几何 第6节 空间向量及其运算课件 理

a=(a1,a2,a3),b=(b1,b2,b3) a+b= 8 _(_a_1_+_b_1_,_a_2_+__b_2,__a_3_+__b_3)_____ a-b= 9 __(_a1_-__b_1,__a_2-__b_2_,__a_3-__b_3_) ____
数量积 共线 垂直
a·b=a1b1+a2b2+a3b3 a∥b⇒ 10 ___a_1=__λ_b_1,__a_2_=_λ_b_2_,_a_3_=__λ_b3____ (λ∈R,b≠0)
a⊥b⇔ 11 ___a_1_b1_+__a_2b_2_+__a3_b_3_=_0____________
夹角公式
a1b1+a2b2+a3b3 cos〈a,b〉= 12 ____a_21_+__a_22_+__a_23___b_21_+__b_22+__b_23_
12/11/2021
第九页,共四十九页。
故选 C.
12/11/2021
第十七页,共四十九页。
2
12/11/2021
课 堂 ·考 点 突 破
第十八页,共四十九页。
考点一 空间向量及其运算
|题组突破|
1.如图所示,在平行六面体 ABCD-A1B1C1D1 中,M 为 A1C1 与 B1D1
的交点.若A→B=a,A→D=b,A→A1=c,则下列向量中与B→M相等的是( )
►常用结论 a1=λb1,
设 a=(a1,a2,a3),b=(b1,b2,b3),则 a∥b(b≠0)⇔a2=λb2,这一形式不能随便 a3=λb3.
写成ab11=ab22=ab33.只有在 b 与三个坐标轴都不平行时,才能这样写,这是因为:若 b 与坐 标平面 xOy 平行,则 b3=0,这样ab33就无意义了.
2024届高考一轮复习数学教案(新人教B版):空间向量与立体几何

必刷大题14空间向量与立体几何1.(2022·新高考全国Ⅰ改编)如图,直三棱柱ABC -A 1B 1C 1的体积为4,△A 1BC 的面积为22.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求平面ABD 与平面BCD 夹角的正弦值.解(1)设点A 到平面A 1BC 的距离为h ,因为直三棱柱ABC -A 1B 1C 1的体积为4,所以1A A BC V -=13S △ABC ·AA 11111433ABC A B C V -==,又△A 1BC 的面积为22,1113A A BC A BC V S h -=△=13×22h =43,所以h =2,即点A 到平面A 1BC 的距离为2.(2)取A 1B 的中点E ,连接AE ,则AE ⊥A 1B .因为平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B ,AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC ,又BC ⊂平面A 1BC ,所以AE ⊥BC .又AA 1⊥平面ABC ,BC ⊂平面ABC ,所以AA 1⊥BC .因为AA 1∩AE =A ,AA 1,AE ⊂平面ABB 1A 1,所以BC ⊥平面ABB 1A 1,又AB ⊂平面ABB 1A 1,所以BC ⊥AB .以B 为坐标原点,分别以BC →,BA →,BB 1—→的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,由(1)知,AE =2,所以AA 1=AB =2,A 1B =22.因为△A 1BC 的面积为22,所以22=12·A 1B ·BC ,所以BC =2,所以A (0,2,0),B (0,0,0),C (2,0,0),A 1(0,2,2),D (1,1,1),E (0,1,1),则BD →=(1,1,1),BA →=(0,2,0).设平面ABD 的法向量为n =(x ,y ,z ),n ·BD →=0,n ·BA →=0,x +y +z =0,2y =0,令x =1,得n =(1,0,-1).又平面BDC 的一个法向量为AE →=(0,-1,1),所以cos 〈AE →,n 〉=AE →·n |AE →|·|n |=-12×2=-12.设平面ABD 与平面BCD 的夹角为θ,则sin θ=1-cos 2〈AE →,n 〉=32,所以平面ABD 与平面BCD 夹角的正弦值为32.2.如图,四棱锥P -ABCD 的底面为正方形,PA ⊥平面ABCD ,M 是PC 的中点,PA =AB .(1)求证:AM ⊥平面PBD ;(2)设直线AM 与平面PBD 交于O ,求证:AO =2OM .证明(1)由题意知,AB ,AD ,AP 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,设PA =AB =2,则P (0,0,2),B (2,0,0),D (0,2,0),C (2,2,0),M (1,1,1),PB →=(2,0,-2),PD →=(0,2,-2),AM →=(1,1,1),设平面PBD 的法向量为n =(x ,y ,z ),n ·PB →=2x -2z =0,n ·PD →=2y -2z =0,取x =1,得n =(1,1,1),∵AM →=n ,∴AM ⊥平面PBD .(2)如图,连接AC 交BD 于点E ,则E 是AC 的中点,连接PE ,∵AM ∩平面PBD =O ,∴O ∈AM 且O ∈平面PBD ,∵AM ⊂平面PAC ,∴O ∈平面PAC ,又平面PBD ∩平面PAC =PE ,∴O ∈PE ,∴AM ,PE 的交点就是O ,连接ME ,∵M 是PC 的中点,∴PA ∥ME ,PA =2ME ,∴△PAO ∽△EMO ,∴PA ME =AO OM =21,∴AO =2OM .3.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ∥CD ,PA =AB =2CD =2,∠ADC =90°,E ,F 分别为PB ,AB 的中点.(1)求证:CE ∥平面PAD ;(2)求点B 到平面PCF 的距离.(1)证明连接EF (图略),∵E ,F 分别为PB ,AB 的中点,∴EF ∥PA ,∵EF ⊄平面PAD ,PA ⊂平面PAD ,∴EF ∥平面PAD ,∵AB ∥CD ,AB =2CD ,∴AF ∥CD ,且AF =CD .∴四边形ADCF 为平行四边形,即CF ∥AD ,∵CF ⊄平面PAD ,AD ⊂平面PAD ,∴CF ∥平面PAD ,∵EF ∩CF =F ,EF ,CF ⊂平面EFC ,∴平面PAD ∥平面EFC ,CE ⊂平面EFC ,则CE ∥平面PAD .(2)解∵∠ADC =90°,AB ∥CD ,∴AB ⊥AD ,CF ⊥AB ,又PA ⊥平面ABCD ,∴PA ⊥CF ,又PA ∩AB =A ,∴CF ⊥平面PAB ,∴CF ⊥PF .设CF =x ,则S △AFC =12×1×x =x 2,S △PFC =12×5×x =52x ,设点A 到平面PCF 的距离为h ,由V P -AFC =V A -PFC ,得13×x 2×2=13×5x 2×h ,则h =255.∵点F 为AB 的中点,∴点B 到平面PCF 的距离等于点A 到平面PCF 的距离,为255.4.(2022·全国乙卷)如图,四面体ABCD 中,AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.(1)证明因为AD =CD ,E 为AC 的中点,所以AC ⊥DE .在△ADB 和△CDB 中,因为AD =CD ,∠ADB =∠CDB ,DB =DB ,所以△ADB ≌△CDB ,所以AB =BC .因为E 为AC 的中点,所以AC ⊥BE .又BE ∩DE =E ,BE ,DE ⊂平面BED ,所以AC ⊥平面BED ,又AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)解由(1)可知AB =BC ,又∠ACB =60°,AB =2,所以△ABC 是边长为2的正三角形,则AC =2,BE =3,AE =1.因为AD =CD ,AD ⊥CD ,所以△ADC 为等腰直角三角形,所以DE =1.所以DE 2+BE 2=BD 2,则DE ⊥BE .由(1)可知,AC ⊥平面BED .连接EF ,因为EF ⊂平面BED ,所以AC ⊥EF ,当△AFC 的面积最小时,点F 到直线AC 的距离最小,即EF 的长度最小.在Rt △BED 中,当EF 的长度最小时,EF ⊥BD ,EF =DE ·BE BD =32.方法一由(1)可知,DE ⊥AC ,BE ⊥AC ,所以EA ,EB ,ED 两两垂直,以E 为坐标原点,EA ,EB ,ED 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (1,0,0),B (0,3,0),D (0,0,1),C (-1,0,0),AB →=(-1,3,0),DB →=(0,3,-1).易得DF =12,FB =32,所以3DF →=FB →.设F (0,y ,z ),则DF →=(0,y ,z -1),FB →=(0,3-y ,-z ),所以3(0,y ,z -1)=(0,3-y ,-z ),得y =34,z =34,即,34,所以CF →,34,设平面ABD 的法向量为n =(x 1,y 1,z 1),·AB →=-x 1+3y 1=0,·DB →=3y 1-z 1=0,不妨取y 1=1,则x 1=3,z 1=3,n =(3,1,3).记CF 与平面ABD 所成的角为α,则sin α=|cos 〈CF →,n 〉|=|CF →·n ||CF →||n |=437.所以CF 与平面ABD 所成角的正弦值为437.方法二因为E 为AC 的中点,所以点C 到平面ABD 的距离等于点E 到平面ABD 的距离的2倍.因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC .因为V D -AEB =V E -ADB ,所以13·12AE ·BE ·DE =13·S △ABD ·d 2,其中d 为点C 到平面ABD 的距离.在△ABD 中,BA =BD =2,AD =2,所以S △ABD =72,所以d =2217.由(1)知AC ⊥平面BED ,EF ⊂平面BED ,所以AC ⊥EF ,所以FC =FE 2+EC 2=72.记CF 与平面ABD 所成的角为α,则sin α=d CF =437.所以CF 与平面ABD 所成角的正弦值为437.方法三如图,过点E 作EM ⊥AB 交AB 于点M ,连接DM ,过点E 作EG ⊥DM 交DM 于点G .因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC ,又AB ⊂平面ABC ,所以DE ⊥AB ,又EM ∩DE =E ,EM ,DE ⊂平面DEM ,所以AB ⊥平面DEM ,又EG ⊂平面DEM ,所以AB ⊥EG ,又AB ∩DM =M ,AB ,DM ⊂平面ABD ,所以EG ⊥平面ABD ,则EG 的长度等于点E 到平面ABD 的距离.因为E 为AC 的中点,所以EG 的长度等于点C 到平面ABD 的距离的12.因为EM =AE ·sin 60°=32,所以EG =DE ·EM DM =DE ·EM DE 2+EM 2=217,所以点C 到平面ABD 的距离d =2217.FC =FE 2+EC 2=72.记CF 与平面ABD 所成的角为α,则sin α=d CF =437.所以CF 与平面ABD 所成角的正弦值为437.5.(2023·青岛模拟)如图①,在梯形ABCD 中,AB ∥DC ,AD =BC =CD =2,AB =4,E 为AB 的中点,以DE 为折痕把△ADE 折起,连接AB ,AC ,得到如图②的几何体,在图②的几何体中解答下列问题.(1)证明:AC ⊥DE ;(2)请从以下两个条件中选择一个作为已知条件,求平面DAE 与平面AEC 夹角的余弦值.①四棱锥A -BCDE 的体积为2;②直线AC 与EB 所成角的余弦值为64.(1)证明在图①中,连接CE (图略),因为DC ∥AB ,CD =12AB ,E 为AB 的中点,所以DC ∥AE ,且DC =AE ,所以四边形ADCE 为平行四边形,所以AD =CE =CD =AE =2,同理可证DE =2,在图②中,取DE 的中点O ,连接OA ,OC (图略),则OA =OC =3,因为AD =AE =CE =CD ,所以DE ⊥OA ,DE ⊥OC ,因为OA ∩OC =O ,OA ,OC ⊂平面AOC ,所以DE ⊥平面AOC ,因为AC ⊂平面AOC ,所以DE ⊥AC .(2)解若选择①:由(1)知DE ⊥平面AOC ,DE ⊂平面BCDE ,所以平面AOC ⊥平面BCDE ,且交线为OC ,所以过点A 作AH ⊥OC 交OC 于点H (图略),则AH ⊥平面BCDE ,因为S 四边形BCDE =23,所以四棱锥A -BCDE 的体积V A -BCDE =2=13×23·AH ,所以AH =OA =3,所以AO 与AH 重合,所以AO ⊥平面BCDE ,建立如图所示的空间直角坐标系,则O (0,0,0),C (-3,0,0),E (0,1,0),A (0,0,3),易知平面DAE 的一个法向量为CO →=(3,0,0),设平面AEC 的法向量为n =(x ,y ,z ),因为CE →=(3,1,0),CA →=(3,0,3),·CE →=3x +y =0,·CA →=3x +3z =0,取n =(1,-3,-1),设平面DAE 与平面AEC 的夹角为θ,则cos θ=|CO →·n ||CO →||n |=33×5=55,所以平面DAE 与平面AEC 夹角的余弦值为55.若选择②:因为DC ∥EB ,所以∠ACD 即为异面直线AC 与EB 所成的角,在△ADC 中,cos ∠ACD =AC 2+4-44AC=64,所以AC =6,所以OA 2+OC 2=AC 2,即OA ⊥OC ,因为DE ⊥平面AOC ,DE ⊂平面BCDE ,所以平面AOC ⊥平面BCDE ,且交线为OC ,又OA ⊂平面AOC ,所以AO ⊥平面BCDE ,建立如图所示的空间直角坐标系,则O (0,0,0),C (-3,0,0),E (0,1,0),A (0,0,3),易知平面DAE 的一个法向量为CO →=(3,0,0),设平面AEC 的法向量为n =(x ,y ,z ),因为CE →=(3,1,0),CA →=(3,0,3),·CE →=3x +y =0,·CA →=3x +3z =0,取n =(1,-3,-1),设平面DAE 与平面AEC 的夹角为θ,则cos θ=|CO →·n ||CO →||n |=33×5=55,所以平面DAE 与平面AEC 夹角的余弦值为55.6.(2022·连云港模拟)如图,在三棱锥A -BCD 中,△ABC 是正三角形,平面ABC ⊥平面BCD ,BD ⊥CD ,点E ,F 分别是BC ,DC 的中点.(1)证明:平面ACD ⊥平面AEF ;(2)若∠BCD =60°,点G 是线段BD 上的动点,问:点G 运动到何处时,平面AEG 与平面ACD 的夹角最小.(1)证明因为△ABC 是正三角形,点E 是BC 的中点,所以AE ⊥BC ,又因为平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,AE ⊂平面ABC ,所以AE ⊥平面BCD ,又因为CD ⊂平面BCD ,所以CD ⊥AE ,因为点E ,F 分别是BC ,CD 的中点,所以EF ∥BD ,又因为BD ⊥CD ,所以CD ⊥EF ,又因为AE ∩EF =E ,AE ⊂平面AEF ,EF ⊂平面AEF ,所以CD ⊥平面AEF ,又因为CD ⊂平面ACD ,所以平面ACD ⊥平面AEF .(2)解在平面BCD 中,过点E 作EH ⊥BD ,垂足为H ,此时EH ∥CD ,即H 为BD 的中点,设BC =4,则EA =23,DF =FC =1,EF = 3.以E 为原点,以EH ,EF ,EA 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则E (0,0,0),A (0,0,23),C (-1,3,0),D (1,3,0),设G (1,y ,0)(-3≤y ≤3),则EA →=(0,0,23),AD →=(1,3,-23),CD →=(2,0,0),EG →=(1,y ,0),设平面AEG 的法向量为n 1=(x 1,y 1,z 1),n 1·EA →=23z 1=0,n 1·EG →=x 1+yy 1=0,令y 1=-1,得n 1=(y ,-1,0),设平面ACD 的法向量为n 2=(x 2,y 2,z 2),2·CD →=2x 2=0,2·AD →=x 2+3y 2-23z 2=0,令z 2=1,得n 2=(0,2,1),设平面AEG 与平面ACD 的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|-2|5·y 2+1=25·y 2+1,当y =0时,cos θ最大,此时平面AEG 与平面ACD 的夹角θ最小,故当点G 为BD 的中点时,平面AEG 与平面ACD 的夹角最小.。
北师大版版高考数学一轮复习第八章立体几何立体几何中的向量方法教学案理

一、知识梳理1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则l1与l2所成的角θa与b的夹角β范围错误![0,π]求法cos θ=错误!cos β=错误!2.直线与平面所成角的求法设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=错误!.3.求二面角的大小(1)如图1,AB,CD分别是二面角α—l—β的两个面内与棱l垂直的直线,则二面角的大小θ=〈错误!,错误!〉.(2)如图23,n1,n2分别是二面角α—l—β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).常用结论利用空间向量求距离(1)两点间的距离设点A(x1,y1,z1),点B(x2,y2,z2),则|AB|=|错误!|=错误!.(2)点到平面的距离如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为|错误!|=错误!.二、教材衍化1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角的大小为________.解析:cos〈m,n〉=错误!=错误!=错误!,即〈m,n〉=45°.所以两平面所成二面角为45°或180°—45°=135°.答案:45°或135°2.在正方体ABCD—A1B1C1D1中,E是C1D1的中点,则异面直线DE与AC夹角的余弦值为________.解析:如图建立空间直角坐标系,设DA=1,A(1,0,0),C(0,1,0),E错误!,则错误!=(—1,1,0),错误!=错误!,设异面直线DE与AC所成的角为θ,则cos θ=|cos〈错误!,错误!〉|=错误!.答案:错误!3.正三棱柱(底面是正三角形的直棱柱)ABC—A1B1C1的底面边长为2,侧棱长为2错误!,则AC1与侧面ABB1A1所成的角为________.解析:以C为原点建立空间直角坐标系,如图所示,得下列坐标:A(2,0,0),C1(0,0,2错误!).点C1在侧面ABB1A1内的射影为点C2错误!.所以错误!=(—2,0,2错误!),错误!=错误!,设直线AC1与平面ABB1A1所成的角为θ,则cos θ=错误!=错误!=错误!.又θ∈错误!,所以θ=错误!.答案:错误!一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)两直线的方向向量的夹角就是两条直线所成的角.()(2)已知a=(—2,—3,1),b=(2,0,4),c=(—4,—6,2),则a∥c,a⊥b.()(3)已知向量m,n分别是直线l的方向向量和平面α的法向量,若cos〈m,n〉=—错误!,则直线l与平面α所成的角为120°.()(4)已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角的大小为45°.()答案:(1)×(2)√(3)×(4)×二、易错纠偏错误!错误!(1)异面直线所成角的取值范围出错;(2)二面角的取值范围出错;(3)直线和平面所成的角的取值范围出错.1.已知2a+b=(0,—5,10),c=(1,—2,—2),a·c=4,|b|=12,则以b,c为方向向量的两直线的夹角为________.解析:由题意得,(2a+b)·c=0+10—20=—10,即2a·c+b·c=—10.因为a·c=4,所以b·c=—18,所以cos〈b,c〉=错误!=错误!=—错误!,所以〈b,c〉=120°,所以两直线的夹角为60°.答案:60°2.在正方体ABCD—A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为________.解析:以A为坐标原点,建立如图所示的空间直角坐标系,设棱长为1,则A1(0,0,1),E错误!,D(0,1,0),所以错误!=(0,1,—1),错误!=错误!.设平面A1ED的法向量为n1=(1,y,z),则错误!即错误!解得错误!故n1=(1,2,2).又平面ABCD的一个法向量为n2=(0,0,1),所以cos〈n1·n2〉=错误!,故平面A1ED与平面ABCD所成的锐二面角的余弦值为错误!.答案:错误!3.已知向量m,n分别是直线l的方向向量、平面α的法向量,若cos〈m,n〉=—错误!,则l 与α所成的角为________.解析:设l与α所成的角为θ,则sin θ=|cos〈m,n〉|=错误!,所以θ=30°.答案:30°异面直线所成的角(师生共研)如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值.【解】(1)证明:因为四边形ABCD是菱形,所以AC⊥BD.因为PA⊥平面ABCD,所以PA⊥BD.又因为AC∩PA=A,所以BD⊥平面PAC.(2)设AC∩BD=O.因为∠BAD=60°,PA=AB=2,所以BO=1,AO=CO=错误!.如图,以O为坐标原点,建立空间直角坐标系,则P(0,—错误!,2),A(0,—错误!,0),B(1,0,0),C(0,错误!,0).所以错误!=(1,错误!,—2),错误!=(0,2错误!,0).设PB与AC所成角为θ,则cos θ=错误!=错误!=错误!.即PB与AC所成角的余弦值为错误!.错误!用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系.(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量.(3)利用向量的夹角公式求出向量夹角的余弦值.(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.如图,在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为错误!,求线段AH的长.解:如图,以A为原点,分别以错误!,错误!,错误!的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:错误!=(0,2,0),错误!=(2,0,—2).设n=(x,y,z)为平面BDE的法向量,则错误!即错误!不妨设z=1,可取n=(1,0,1).又错误!=(1,2,—1),可得错误!·n=0.因为MN错误!平面BDE,所以MN∥平面BDE.(2)依题意,设AH=h(0≤h≤4),则H(0,0,h),进而可得错误!=(—1,—2,h),错误!=(—2,2,2).由已知,得|cos〈错误!,错误!〉|=错误!=错误!=错误!,整理得10h2—21h+8=0,解得h=错误!或h=错误!.所以,线段AH的长为错误!或错误!.直线与平面所成的角(师生共研)如图,在几何体ACD—A1B1C1D1中,四边形ADD1A1与四边形CDD1C1均为矩形,平面ADD1A1⊥平面CDD1C1,B1A1⊥平面ADD1A1,AD=CD=1,AA1=A1B1=2,E为棱AA1的中点.(1)证明:B1C1⊥平面CC1E;(2)求直线B1C1与平面B1CE所成角的正弦值.【解】(1)证明:因为B1A1⊥平面ADD1A1,所以B1A1⊥DD1,又DD1⊥D1A1,B1A1∩D1A1=A1,所以DD1⊥平面A1B1C1D1,又DD1∥CC1,所以CC1⊥平面A1B1C1D1.因为B1C1平面A1B1C1D1,所以CC1⊥B1C1.因为平面ADD1A1⊥平面CDD1C1,平面ADD1A1∩平面CDD1C1=DD1,C1D1⊥DD1,所以C1D1⊥平面ADD1A1.经计算可得B1E=错误!,B1C1=错误!,EC1=错误!,从而B1E2=B1C错误!+EC错误!,所以在△B1EC1中,B1C1⊥C1E.又CC1,C1E平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E.(2)如图,以点A为坐标原点,建立空间直角坐标系,依题意得A(0,0,0),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0),则错误!=(—1,1,—1),错误!=(1,—2,—1).设平面B1CE的法向量为m=(x,y,z),则错误!即错误!消去x得y+2z=0,不妨设z=1,可得m=(—3,—2,1)为平面B1CE的一个法向量,易得错误!=(1,0,—1),设直线B1C1与平面B1CE所成角为θ,则sin θ=|cos〈m,错误!〉|=错误!=错误!=错误!,故直线B1C1与平面B1CE所成角的正弦值为错误!.错误!(1)利用向量求直线与平面所成的角有两个思路:1分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);2通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l与平面α的夹角为θ,直线l的方向向量l与平面α的法向量n的夹角为β,则θ=错误!—β或θ=β—错误!.[提醒] 求解直线和平面所成角,要注意直线的方向向量与平面法向量的夹角和所求角之间的关系,线面角的正弦值等于两向量夹角的余弦值的绝对值.(2020·蚌埠模拟)如图,四棱锥P—ABCD中,底面ABCD为菱形,PD=PB,H 为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD∥平面AMHN.(1)证明:MN⊥PC;(2)设H为PC的中点,PA=PC=错误!AB,PA与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.解:(1)证明:如图1,连接AC交BD于点O,连接PO.因为四边形ABCD为菱形,所以BD⊥AC,且O为BD的中点.因为PD=PB,所以PO⊥BD,因为AC∩PO=O,且AC,PO平面PAC,所以BD⊥平面PAC.因为PC平面PAC,所以BD⊥PC.因为BD∥平面AMHN,且平面AMHN∩平面PBD=MN,所以BD∥MN,所以MN⊥PC.(2)由(1)知BD⊥AC且PO⊥BD,因为PA=PC,且O为AC的中点,所以PO⊥AC,所以PO⊥平面ABCD,因为PA与平面ABCD所成的角为∠PAO,所以∠PAO=60°,所以AO=错误!PA,PO=错误!PA.因为PA=错误!AB,所以BO=错误!PA.以O为坐标原点,错误!,错误!,错误!的方向分别为x轴,y轴,z轴的正方向,建立如图2所示的空间直角坐标系,记PA=2,则O(0,0,0),A(1,0,0),B错误!,C(—1,0,0),D错误!,P(0,0,错误!),H错误!,所以错误!=错误!,错误!=错误!,错误!=错误!.设平面AMHN的法向量为n=(x,y,z),则错误!即错误!令x=2,解得y=0,z=2错误!,所以n=(2,0,2错误!)是平面AMHN的一个法向量.记AD与平面AMHN所成角为θ,则sin θ=|cos〈n,错误!〉|=错误!=错误!.所以AD与平面AMHN所成角的正弦值为错误!.二面角(师生共研)(2019·高考全国卷Ⅰ)如图,直四棱柱ABCD—A1B1C1D1的底面是菱形,AA1=4,AB =2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角AMA1N的正弦值.【解】(1)证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME =错误!B1C.又因为N为A1D的中点,所以ND=错误!A1D.由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形MNDE为平行四边形,MN∥ED.又MN错误!平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,错误!的方向为x轴正方向,建立如图所示的空间直角坐标系,则A(2,0,0),A1(2,0,4),M(1,错误!,2),N(1,0,2),错误!=(0,0,—4),错误!=(—1,错误!,—2),错误!=(—1,0,—2),错误!=(0,—错误!,0).设m=(x,y,z)为平面A1MA的法向量,则错误!所以错误!可取m=(错误!,1,0).设n=(p,q,r)为平面A1MN的法向量,则错误!所以错误!可取n=(2,0,—1).于是cos〈m,n〉=错误!=错误!=错误!,所以二面角AMA1N的正弦值为错误!.错误!利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.(2019·高考全国卷Ⅲ)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B—CG—A的大小.解:(1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB平面ABC,所以平面ABC⊥平面BCGE.(2)作EH⊥BC,垂足为H.因为EH平面BCGE,平面BCGE⊥平面ABC,所以EH⊥平面ABC.由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=错误!.以H为坐标原点,错误!的方向为x轴的正方向,建立如图所示的空间直角坐标系,则A(—1,1,0),C(1,0,0),G(2,0,错误!),错误!=(1,0,错误!),错误!=(2,—1,0).设平面ACGD的法向量为n=(x,y,z),则错误!即错误!所以可取n=(3,6,—错误!).又平面BCGE的法向量可取为m=(0,1,0),所以cos n,m=错误!=错误!.因此二面角BCGA的大小为30°.利用空间向量求距离(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABCA1B1C1中,△ABC是边长为2的正三角形,AA1=2错误!,D是CC1的中点,E是A1B1的中点.(1)证明:DE∥平面A1BC;(2)求点A到平面A1BC的距离.【解】(1)证明:如图,取A1B的中点F,连接FC,FE.因为E,F分别是A1B1,A1B的中点,所以EF∥BB1,且EF=错误!BB1.又在平行四边形BB1C1C中,D是CC1的中点,所以CD∥BB1,且CD=错误!BB1,所以CD∥EF,且CD=EF.所以四边形CFED是平行四边形,所以DE∥CF.因为DE错误!平面A1BC,CF平面A1BC,所以DE∥平面A1BC.(2)法一:(等体积法)因为BC=AC=AB=2,AA1=2错误!,三棱柱ABCA1B1C1为直三棱柱,所以V三棱锥A1—ABC=错误!S△ABC×AA1=错误!×错误!×22×2错误!=2错误!.又在△A1BC中,A1B=A1C=2错误!,BC=2,BC边上的高h=错误!=3错误!,所以S△A1BC=错误!BC·h=3错误!.设点A到平面A1BC的距离为d,则V三棱锥A—A1BC =错误!S△A1BC×d=错误!×3错误!×d=错误!d.因为V三棱锥A1—ABC =V三棱锥A—A1BC,所以2错误!=错误!d,解得d=错误!,所以点A到平面A1BC的距离为错误!.法二:(向量法)由题意知,三棱柱ABCA1B1C1是正三棱柱.取AB的中点O,连接OC,OE.因为AC=BC,所以CO⊥AB.又平面ABC⊥平面ABB1A1,平面ABC∩平面ABB1A1=AB,所以CO⊥平面ABB1A1.因为O为AB的中点,E为A1B1的中点,所以OE⊥AB,所以OC,OA,OE两两垂直.如图,以O为坐标原点,以OA,OE,OC所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则C(0,0,错误!),A(1,0,0),A1(1,2错误!,0),B(—1,0,0).则错误!=(2,2错误!,0),错误!=(1,0,错误!).设平面A1BC的法向量为n=(x,y,z),则由错误!可得错误!整理得错误!令x=错误!,则y=—1,z=—错误!.所以n=(错误!,—1,—错误!)为平面A1BC的一个法向量.而错误!=(2,0,0),所以点A到平面A1BC的距离d=错误!=错误!=错误!.错误!求解点到平面的距离可直接转化为求向量在平面的法向量上的射影的长.如图,设点P在平面α外,n为平面α的法向量,在平面α内任取一点Q,则点P到平面α的距离d=错误!.[提醒] 该题中的第(2)问求解点到平面的距离时,利用了两种不同的方法——等体积法与向量法,显然向量法直接简单,不必经过过多的逻辑推理,只需代入坐标准确求解即可.如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2错误!,求点A到平面MBC的距离.解:如图,取CD的中点O,连接OB,OM,因为△BCD与△MCD均为正三角形,所以OB⊥CD,OM⊥CD,又平面MCD⊥平面BCD,平面MCD∩平面BCD=CD,OM平面MCD,所以MO⊥平面BCD.以O为坐标原点,直线OC,BO,OM分别为x轴,y轴,z轴,建立空间直角坐标系.因为△BCD与△MCD都是边长为2的正三角形,所以OB=OM=错误!,则O(0,0,0),C(1,0,0),M(0,0,错误!),B(0,—错误!,0),A(0,—错误!,2错误!),所以错误!=(1,错误!,0).错误!=(0,错误!,错误!).设平面MBC的法向量为n=(x,y,z),由错误!得错误!即错误!取x=错误!,可得平面MBC的一个法向量为n=(错误!,—1,1).又错误!=(0,0,2错误!),所以所求距离为d=错误!=错误!.[基础题组练]1.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,错误!长为错误!,错误!长为错误!,其中B1与C在平面AA1O1O的同侧.则异面直线B1C与AA1所成的角的大小为()A.错误!B.错误!C.错误!D.错误!解析:选B.以O为坐标原点建系如图,则A(0,1,0),A1(0,1,1),B1错误!,C错误!.所以错误!=(0,0,1),错误!=(0,—1,—1),所以cos〈错误!,错误!〉=错误!=错误!=—错误!,所以〈错误!,错误!〉=错误!,所以异面直线B1C与AA1所成的角为错误!.故选B.2.如图,已知长方体ABCDA1B1C1D1中,AD=AA1=1,AB=3,E为线段AB上一点,且AE=错误!AB,则DC1与平面D1EC所成的角的正弦值为()A.错误!B.错误!C.错误!D.错误!解析:选A.如图,以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则C1(0,3,1),D1(0,0,1),E(1,1,0),C(0,3,0),所以错误!=(0,3,1),错误!=(1,1,—1),错误!=(0,3,—1).设平面D1EC的法向量为n=(x,y,z),则错误!即错误!即错误!取y=1,得n=(2,1,3).因为cos〈错误!,n〉=错误!=错误!=错误!,所以DC1与平面D1EC所成的角的正弦值为错误!,故选A.3.二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2错误!.则该二面角的大小为()A.150°B.45°C.60°D.120°解析:选C.如图所示,二面角的大小就是〈错误!,错误!〉.因为错误!=错误!+错误!+错误!,所以错误!2=错误!2+错误!2+错误!2+2(错误!·错误!+错误!·错误!+错误!·错误!)=错误!2+错误!2+错误!2+2错误!·错误!,所以错误!·错误!=错误![(2错误!)2—62—42—82]=—24.因此错误!·错误!=24,cos〈错误!,错误!〉=错误!=错误!,又〈错误!,错误!〉∈[0°,180°],所以〈错误!,错误!〉=60°,故二面角为60°.4.如图,正三棱柱ABCA1B1C1的所有棱长都相等,E,F,G分别为AB,AA1,A1C1的中点,则B1F与平面GEF所成角的正弦值为________.解析:设正三棱柱的棱长为2,取AC的中点D,连接DG,DB,分别以DA,DB,DG所在的直线为x轴,y轴,z轴建立空间直角坐标系,如图所示,则B1(0,错误!,2),F(1,0,1),E错误!,G(0,0,2),错误!=(1,—错误!,—1),错误!=错误!,错误!=(1,0,—1).设平面GEF的法向量为n=(x,y,z),则错误!即错误!取x=1,则z=1,y=错误!,故n=(1,错误!,1)为平面GEF的一个法向量,所以|cos〈n,错误!〉|=错误!=错误!,所以B1F与平面GEF所成角的正弦值为错误!.答案:错误!5.如图所示,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.(1)求证:BD⊥平面ACFE;(2)当直线FO与平面BED所成的角为45°时,求异面直线OF与BE所成角的余弦值的大小.解:(1)证明:因为四边形ABCD是菱形,所以BD⊥AC.因为AE⊥平面ABCD,BD⊂平面ABCD,所以BD⊥AE.又因为AC∩AE=A,AC,AE⊂平面ACFE.所以BD⊥平面ACFE.(2)以O为原点,OA,OB所在直线分别为x轴,y轴,过点O且平行于CF的直线为z轴(向上为正方向),建立空间直角坐标系,则B(0,错误!,0),D(0,—错误!,0),E(1,0,2),F(—1,0,a)(a>0),错误!=(—1,0,a).设平面EBD的法向量为n=(x,y,z),则有错误!即错误!令z=1,则n=(—2,0,1),由题意得sin 45°=|cos〈错误!,n〉|=错误!=错误!=错误!,解得a=3或a=—错误!(舍去).所以错误!=(—1,0,3),错误!=(1,—错误!,2),cos〈错误!,错误!〉=错误!=错误!,故异面直线OF与BE所成角的余弦值为错误!.6.(2020·湖北十堰4月调研)如图,在三棱锥P—ABC中,M为AC的中点,PA⊥PC,AB⊥BC,AB=BC,PB=错误!,AC=2,∠PAC=30°.(1)证明:BM⊥平面PAC;(2)求二面角B—PA—C的余弦值.解:(1)证明:因为PA⊥PC,AB⊥BC,所以MP=MB=错误!AC=1,又MP2+MB2=BP2,所以MP⊥MB.因为AB=BC,M为AC的中点,所以BM⊥AC,又AC∩MP=M,所以BM⊥平面PAC.(2)法一:取MC的中点O,连接PO,取BC的中点E,连接EO,则OE∥BM,从而OE⊥AC.因为PA⊥PC,∠PAC=30°,所以MP=MC=PC=1.又O为MC的中点,所以PO⊥AC.由(1)知BM⊥平面PAC,OP⊂平面PAC,所以BM⊥PO.又BM∩AC=M,所以PO⊥平面ABC.以O为坐标原点,OA,OE,OP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示,由题意知A错误!,B错误!,P错误!,错误!=错误!,错误!=(1,—1,0),设平面APB的法向量为n=(x,y,z),则错误!令x=1,得n=(1,1,错误!)为平面APB的一个法向量,易得平面PAC的一个法向量为π=(0,1,0),cos〈n,π〉=错误!,由图知二面角B—PA—C为锐角,所以二面角B—PA—C的余弦值为错误!.法二:取PA的中点H,连接HM,HB,因为M为AC的中点,所以HM∥PC,又PA⊥PC,所以HM⊥PA.由(1)知BM⊥平面PAC,则BH⊥PA,所以∠BHM为二面角B—PA—C的平面角.因为AC=2,PA⊥PC,∠PAC=30°,所以HM=错误!PC=错误!.又BM=1,则BH=错误!=错误!,所以cos∠BHM=错误!=错误!,即二面角B—PA—C的余弦值为错误!.7.(2020·合肥模拟)如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M为棱AE的中点.(1)求证:平面BDM∥平面EFC;(2)若DE=2AB,求直线AE与平面BDM所成角的正弦值.解:(1)证明:连接AC,交BD于点N,连接MN,则N为AC的中点,又M为AE的中点,所以MN∥EC.因为MN错误!平面EFC,EC平面EFC,所以MN∥平面EFC.因为BF,DE都垂直底面ABCD,所以BF∥DE.因为BF=DE,所以四边形BDEF为平行四边形,所以BD∥EF.因为BD错误!平面EFC,EF平面EFC,所以BD∥平面EFC.又MN∩BD=N,所以平面BDM∥平面EFC.(2)因为DE⊥平面ABCD,四边形ABCD是正方形,所以DA,DC,DE两两垂直,如图,建立空间直角坐标系.设AB=2,则DE=4,从而D(0,0,0),B(2,2,0),M(1,0,2),A(2,0,0),E (0,0,4),所以错误!=(2,2,0),错误!=(1,0,2),设平面BDM的法向量为n=(x,y,z),则错误!得错误!令x=2,则y=—2,z=—1,从而n=(2,—2,—1)为平面BDM的一个法向量.因为错误!=(—2,0,4),设直线AE与平面BDM所成的角为θ,则sin θ=|cos〈n·错误!〉|=错误!=错误!,所以直线AE与平面BDM所成角的正弦值为错误!.[综合题组练]1.(2020·河南联考)如图所示,在四棱锥P—ABCD中,底面ABCD为平行四边形,平面PAD⊥平面ABCD,△PAD是边长为4的等边三角形,BC⊥PB,E是AD的中点.(1)求证:BE⊥PD;(2)若直线AB与平面PAD所成角的正弦值为错误!,求平面PAD与平面PBC所成的锐二面角的余弦值.解:(1)证明:因为△PAD是等边三角形,E是AD的中点,所以PE⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PE平面PAD,所以PE⊥平面ABCD,所以PE⊥BC,PE⊥BE.又BC⊥PB,PB∩PE=P,所以BC⊥平面PBE,所以BC⊥BE.又BC∥AD,所以AD⊥BE.又AD∩PE=E且AD,PE平面PAD,所以BE⊥平面PAD,所以BE⊥PD.(2)由(1)得BE⊥平面PAD,所以∠BAE就是直线AB与平面PAD所成的角.因为直线AB与平面PAD所成角的正弦值为错误!,即sin∠BAE=错误!,所以cos∠BAE=错误!.所以cos∠BAE=错误!=错误!=错误!,解得AB=8,则BE=错误!=2错误!.由(1)得EA,EB,EP两两垂直,所以以E为坐标原点,EA,EB,EP所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则点P(0,0,2错误!),A(2,0,0),D(—2,0,0),B(0,2错误!,0),C(—4,2错误!,0),所以错误!=(0,2错误!,—2错误!),错误!=(—4,2错误!,—2错误!).设平面PBC的法向量为m=(x,y,z),由错误!得错误!解得错误!令y=1,可得平面PBC的一个法向量为m=(0,1,错误!).易知平面PAD的一个法向量为n=(0,1,0),设平面PAD与平面PBC所成的锐二面角的大小为θ,则cos θ=错误!=错误!=错误!.所以平面PAD与平面PBC所成的锐二面角的余弦值为错误!.2.(2020·河南郑州三测)如图1,△ABC中,AB=BC=2,∠ABC=90°,E,F分别为边AB,AC的中点,以EF为折痕把△AEF折起,使点A到达点P的位置(如图2),且PB=BE.(1)证明:EF⊥平面PBE;(2)设N为线段PF上的动点(包含端点),求直线BN与平面PCF所成角的正弦值的最大值.解:(1)证明:因为E,F分别为边AB,AC的中点,所以EF∥BC.因为∠ABC=90°,所以EF⊥BE,EF⊥PE,又BE∩PE=E,所以EF⊥平面PBE.(2)取BE的中点O,连接PO,因为PB=BE=PE,所以PO⊥BE.由(1)知EF⊥平面PBE,EF平面BCFE,所以平面PBE⊥平面BCFE.又PO⊂平面PBE,平面PBE∩平面BCFE=BE,所以PO⊥平面BCFE.过点O作OM∥BC交CF于点M,分别以OB,OM,OP所在的直线为x轴,y轴,z轴建立空间直角坐标系,如图所示,则B错误!,P错误!,C错误!,F错误!,错误!=错误!,错误!=错误!,由N为线段PF上一动点,得错误!=λ错误!(0≤λ≤1),则可得N错误!,错误!=错误!.设平面PCF的法向量为m=(x,y,z),则错误!即错误!取y=1,则x=—1,z=错误!,所以m=(—1,1,错误!)为平面PCF的一个法向量.设直线BN与平面PCF所成的角为θ,则sin θ=|cos〈错误!,m〉|=错误!=错误!=错误!≤错误!=错误!(当且仅当λ=错误!时取等号),所以直线BN与平面PCF所成角的正弦值的最大值为错误!.3.(2020·山东淄博三模)如图1,已知正方形ABCD的边长为4,E,F分别为AD,BC的中点,将正方形ABCD沿EF折成如图2所示的二面角,且二面角的大小为60°,点M在线段AB上(包含端点),连接AD.(1)若M为AB的中点,直线MF与平面ADE的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60°?若存在,求此时二面角MECF 的余弦值;若不存在,说明理由.解:(1)因为直线MF平面ABFE,故点O在平面ABFE内,也在平面ADE内,所以点O在平面ABFE与平面ADE的交线(即直线AE)上(如图所示).因为AO∥BF,M为AB的中点,所以△OAM≌△FBM,所以OM=MF,AO=BF,所以AO=2.故点O在EA的延长线上且与点A间的距离为2.连接DF,交EC于点N,因为四边形CDEF为矩形,所以N是EC的中点.连接MN,则MN为△DOF的中位线,所以MN∥OD,又MN平面EMC,OD错误!平面EMC,所以直线OD∥平面EMC.(2)由已知可得EF⊥AE,EF⊥DE,又AE∩DE=E,所以EF⊥平面ADE.所以平面ABFE⊥平面ADE,易知△ADE为等边三角形,取AE的中点H,则易得DH⊥平面ABFE,以H为坐标原点,建立如图所示的空间直角坐标系,则E(—1,0,0),D(0,0,错误!),C(0,4,错误!),F(—1,4,0),所以错误!=(1,0,错误!),错误!=(1,4,错误!).设M(1,t,0)(0≤t≤4),则错误!=(2,t,0),设平面EMC的法向量为m=(x,y,z),则错误!⇒错误!取y=—2,则x=t,z=错误!,所以m=错误!为平面EMC的一个法向量.要使直线DE与平面EMC所成的角为60°,则错误!=错误!,所以错误!=错误!,整理得t2—4t +3=0,解得t=1或t=3,所以存在点M,使得直线DE与平面EMC所成的角为60°,取ED的中点Q,连接QA,则错误!为平面CEF的法向量,易得Q错误!,A(1,0,0),所以错误!=错误!.设二面角M—EC—F的大小为θ,则|cos θ|=错误!=错误!=错误!.因为当t=2时,cos θ=0,平面EMC⊥平面CDEF,所以当t=1时,cos θ=—错误!,θ为钝角;当t=3时,cos θ=错误!,θ为锐角.综上,二面角M—EC—F的余弦值为±错误!.。
高考数学一轮复习 第八章 立体几何与空间向量 8.5 空间向量及其应用教学案 理

§8.5空间向量及其应用2.(1)共线向量定理空间两个向量a与b(b≠0)共线的充要条件是存在唯一的实数λ,使得a=λb.(2)共面向量定理共面向量定理的向量表达式:p=x a+y b,其中x,y∈R,a,b为不共线向量.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在唯一的有序实数组{x,y,z},使得p=x a+y b+z c,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a,b,在空间任取一点O,作OA→=a,OB→=b,则∠AOB叫做向量a,b的夹角,记作〈a,b〉,其范围是0≤〈a,b〉≤π,若〈a,b〉=π2,则称a与b互相垂直,记作a⊥b.②两向量的数量积已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b 的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①(λa)·b=λ(a·b).②交换律:a·b=b·a.③分配律:a·(b+c)=a·b+a·c.4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).5.(1)直线的方向向量直线的方向向量是指和这条直线平行(或在这条直线上)的有向线段所表示的向量,一条直线的方向向量有无数个.(2)平面的法向量直线l⊥平面α,取直线l的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量.(3)位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a,b共面.( √)(2)在向量的数量积运算中(a·b)c=a(b·c).( ×)(3)对于非零向量b,由a·b=b·c,则a=c.( ×)(4)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ )题组二 教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →) =c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos120°+0+2×1×cos120°) =2,∴|EF →|=2,∴EF 的长为 2. 题组三 易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A .垂直 B .平行C .异面D .相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD . 5.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =______.答案 18解析 ∵P ,A ,B ,C 四点共面, ∴34+18+t =1,∴t =18. 6.设μ,v 分别是两个不同平面α,β的法向量,μ=(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,μ·v =-2×3+2×(-2)+5×2=0,μ⊥v ,所以α⊥β;当v =(4,-4,-10)时,v =-2μ,μ∥v ,所以α∥β.空间向量的线性运算例1 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →; (2)A 1N →; (3)MP →+NC1→. 解 (1)∵P 是C 1D 1的中点,∴AP →=AA 1→+A 1D 1——→+D 1P →=a +AD →+12D 1C 1——→=a +c +12AB →=a +12b +c .(2)∵N 是BC 的中点,∴A 1N →=A 1A →+AB →+BN →=-a +b +12BC → =-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝ ⎛⎭⎪⎫a +c +12b=12a +12b +c , 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , ∴MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝⎛⎭⎪⎫a +12c=32a +12b +32c . 思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中. (3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________. 答案 12AB →+12AD →+AA 1→解析 ∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA1→=12AB →+12AD →+AA 1→. (2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于( ) A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c )答案 B解析 NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ). 共线定理、共面定理的应用例2 如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH . 证明 (1)连接BG , 则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH → =EF →+EH→,由共面向量定理的推论知E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE → =12AD →-12AB → =12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .思维升华 证明三点共线和空间四点共面的方法比较111在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行? 解 (1)∵AM →=kAC 1→,BN →=kBC →, ∴MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1——→)+AB → =kB 1A →+AB →=AB →-kAB 1→ =AB →-k (AA 1→+AB →) =(1-k )AB →-kAA1→, ∴由共面向量定理知向量MN →与向量AB →,AA 1→共面. (2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内, 又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内; 当0<k ≤1时,MN ∥平面ABB 1A 1.空间向量数量积及其应用例3 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点. (1)求证:EG ⊥AB ; (2)求EG 的长;(3)求异面直线AG 和CE 所成角的余弦值. (1)证明 设AB →=a ,AC →=b ,AD →=c ,由题意知EG →=12(AC →+AD →-AB →)=12(b +c -a ),所以EG →·AB →=12(a ·b +a ·c -a 2) =12⎝ ⎛⎭⎪⎫1×1×12+1×1×12-1=0.故EG →⊥AB→,即EG ⊥AB .(2)解 由题意知EG →=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22.(3)解 AG →=12(AC →+AD →)=12b +12c , CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE→|AG →||CE →|=⎝ ⎛⎭⎪⎫12b +12c ·⎝ ⎛⎭⎪⎫-b +12a ⎝ ⎛⎭⎪⎫12b +12c 2·⎝ ⎛⎭⎪⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,所以异面直线AG 与CE 所成角的余弦值为23.思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角. (3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°. (1)求AC1→的长;(2)求BD 1→与AC →夹角的余弦值.解 (1)记AB →=a ,AD →=b ,AA1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,∴|AC1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1,∴cos〈BD 1→,AC →〉=BD 1→·AC→|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.向量法证明平行、垂直例4 如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.求证:(1)CM ∥平面PAD ; (2)平面PAB ⊥平面PAD .证明 以C 为坐标原点,CB 为x 轴,CD 为y 轴,CP 为z 轴建立如图所示的空间直角坐标系Cxyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4,∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝⎛⎭⎪⎪⎫32,0,32, ∴DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎪⎫32,0,32. (1)设n =(x ,y ,z )为平面PAD 的一个法向量,则⎩⎨⎧DP →·n =0,DA →·n =0,即⎩⎪⎨⎪⎧-y +2z =0,23x +3y =0,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0, ∴n ⊥CM→.又CM ⊄平面PAD , ∴CM ∥平面PAD .(2)方法一 由(1)知,BA →=(0,4,0),PB →=(23,0,-2), 设平面PAB 的一个法向量m =(x 0,y 0,z 0),则⎩⎨⎧BA →·m =0,PB →·m =0,即⎩⎪⎨⎪⎧4y 0=0,23x 0-2z 0=0,令x 0=1,得m =(1,0,3),又∵平面PAD的一个法向量n=(-3,2,1),∴m·n=1×(-3)+0×2+3×1=0,∴m⊥n,∴平面PAB⊥平面PAD.方法二如图,取AP的中点E,连接BE,则E(3,2,1),BE→=(-3,2,1).∵PB=AB,∴BE⊥PA.又∵BE→·DA→=(-3,2,1)·(23,3,0)=0,∴BE→⊥DA→,∴BE⊥DA.又PA∩DA=A,PA,DA⊂平面PAD,∴BE⊥平面PAD.又∵BE⊂平面PAB,∴平面PAB⊥平面PAD.思维升华(1)用向量证明平行的方法①线线平行,只需证明两直线的方向向量是共线向量.②线面平行,证明直线的方向向量能用平面的两个基底表示,或证明直线的方向向量与平面的法向量垂直.③面面平行,证明两平面的法向量是共线向量.(2)用向量证明垂直的方法①线线垂直,只需证明两直线的方向向量互相垂直.②线面垂直,证明直线的方向向量与平面的法向量是共线向量.③面面垂直,证明两平面的法向量互相垂直.跟踪训练4 如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=2AB,B1C1∥BC且B1C1=12BC,二面角A1-AB-C是直二面角.求证: (1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明 由二面角A 1-AB -C 是直二面角,四边形A 1ABB 1为正方形,可得AA 1⊥平面BAC .又∵AB =AC ,BC =2AB ,∴AB 2+AC 2=BC 2, ∴∠CAB =90°且CA ⊥AB , ∴AB ,AC ,AA 1两两互相垂直.以A 为坐标原点,AC ,AB ,AA 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Axyz .设AB =2,则A (0,0,0),B (0,2,0),A 1(0,0,2),C (2,0,0),C 1(1,1,2),B 1(0,2,2).(1)A 1B 1——→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0), 设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎨⎧n ·A 1A →=0,n ·AC→=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0.取y =1,则n =(0,1,0).∴A 1B 1——→=2n ,即A 1B 1——→∥n , ∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1——→=(1,1,0),A 1C →=(2,0,-2), 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1),则⎩⎨⎧m ·A 1C 1——→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). ∴AB1→·m =0×1+2×(-1)+2×1=0,∴AB 1→⊥m .又AB 1⊄平面A 1C 1C ,∴AB 1∥平面A 1C 1C .1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6) D .(6,6,-6)答案 B解析 由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( )A .-2B .-143C.145D .2答案 D解析 由题意知a ·(a -λb )=0,即a 2-λa ·b =0,所以14-7λ=0,解得λ=2.3.已知a =(1,0,1),b =(x,1,2),且a·b =3,则向量a 与b 的夹角为( )A.5π6B.2π3C.π3D.π6答案 D解析 ∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.4.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c . 其中正确命题的个数是( ) A .0B .1C .2D .3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.5.已知空间向量a ,b 满足|a |=|b |=1,且a ,b 的夹角为π3,O 为空间直角坐标系的原点,点A ,B 满足OA →=2a +b ,OB →=3a -b ,则△OAB 的面积为( )A.523B.543C.743D.114 答案 B 解析 |OA →|=2a +b2=4|a |2+|b |2+4a ·b =7,同理|OB →|=7,则cos∠AOB =OA →·OB→|OA →||OB →|=6|a |2-|b |2+a ·b 7=1114,从而有sin∠AOB =5314,∴△OAB 的面积S =12×7×7×5314=534,故选B.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( ) A.3B.2C .1D.3-2 答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2, 故|BD →|=3- 2.7.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=________.答案 -9解析 由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.8.已知a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,则c =________.答案 (3,-2,2)解析 因为a ∥b ,所以x-2=4y =1-1(y ≠0),解得x =2,y =-4,此时a =(2,4,1),b =(-2,-4,-1), 又因为b ⊥c ,所以b ·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2).9.已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13VC →,VM →=23VB →,VN →=23VD →.则VA 与平面PMN 的位置关系是________. 答案 平行解析 如图,设VA →=a ,VB →=b , VC →=c ,则VD →=a +c -b , 由题意知PM →=23b -13c ,PN →=23VD →-13VC → =23a -23b +13c . 因此VA →=32PM →+32PN →,∴VA →,PM →,PN →共面.又VA ⊄平面PMN ,∴VA ∥平面PMN . 10.已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1——→+A 1B 1——→)2=3A 1B 1——→2; ②A 1C →·(A 1B 1——→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确的序号是________. 答案 ①②解析 ①中,(A 1A →+A 1D 1→+A 1B 1——→)2=A 1A →2+A 1D 1——→2+A 1B 1——→2=3A 1B 1——→2,故①正确;②中,A 1B 1——→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确. 11.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点. (1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. 方法一 ∵CC ′⊥平面ABC 且CA ⊥CB ,∴以点C 为原点,分别以CA ,CB ,CC ′所在直线为x 轴,y 轴,z 轴建立空间直角坐标系(图略).令AC =BC =AA ′=2,则A (2,0,0),B (0,2,0),C ′(0,0,2),A ′(2,0,2),B ′(0,2,2),E (0,2,1),D (1,1,0),(1)证明 ∴CE →=(0,2,1),A ′D →=(-1,1,-2),∵CE →·A ′D →=0+2-2=0,∴CE →⊥A ′D →,∴CE ⊥A ′D . (2)解 AC ′→=(-2,0,2), ∴cos〈CE →,AC ′→〉=CE →·AC ′→|CE →||AC ′→|=25·8=1010,即异面直线CE 与AC ′所成角的余弦值为1010.方法二 设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |, 且a ·b =b ·c =c ·a =0.(1)证明 CE →=b +12c ,A ′D →=-c +12b -12a , ∴CE →·A ′D →=-b ·c -12c 2+12b 2+14b ·c -12a ·b -14a ·c =0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c )·⎝⎛⎭⎪⎫b +12c =12c 2=12|a |2,∴cos〈AC ′→,CE →〉=AC ′→·CE→|AC ′→||CE →|=12|a |22×52|a |2=1010, 即异面直线CE 与AC ′所成角的余弦值为1010.12.如图,正方形ABCD 的边长为22,四边形BDEF 是平行四边形,BD 与AC 交于点G ,O 为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .证明 取BC 中点H ,连接OH ,则OH ∥BD , 又四边形ABCD 为正方形,∴AC ⊥BD ,∴OH ⊥AC , 故以O 为原点,建立如图所示的空间直角坐标系Oxyz ,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0). BC →=(-2,-2,0),CF→=(1,0,3),BF →=(-1,-2,3). (1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·BC →=0,n ·CF→=0,即⎩⎪⎨⎪⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE →=BF→=(-1,-2,3),∴AE →=AD →+DE →=BC →+BF→ =(-2,-2,0)+(-1,-2,3) =(-3,-4,3),∴AE →·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF . (2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0, ∴CF →⊥AF →,CF →⊥AE →,即CF ⊥AF ,CF ⊥AE , 又AE ∩AF =A ,AE ,AF ⊂平面AEF ,∴CF ⊥平面AEF .13.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定答案 C解析 ∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD → =12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形.14.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________. 答案 56解析 连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN → =12a +23⎝ ⎛⎭⎪⎫12b +12c -12a =16a +13b +13c .又OG →=xOA→+yOB →+zOC →,所以x =16,y =13,z =13,因此x +y +z =16+13+13=56.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________. 答案 (1,1,2)解析 由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,平面PBC ⊥底面ABCD .求证: (1)PA ⊥BD ;(2)平面PAD ⊥平面PAB .证明 (1)取BC 的中点O ,连接PO , ∵△PBC 为等边三角形,∴PO ⊥BC ,∵平面PBC ⊥底面ABCD ,平面PBC ∩底面ABCD =BC ,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO =3,∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3), ∴BD →=(-2,-1,0),PA →=(1,-2,-3),∵BD →·PA→=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD→,∴PA ⊥BD . (2)取PA 的中点M ,连接DM ,则M ⎝⎛⎭⎪⎪⎫12,-1,32. ∵DM →=⎝ ⎛⎭⎪⎪⎫32,0,32,PB →=(1,0,-3), ∴DM →·PB →=32×1+0×0+32×(-3)=0.∴DM →⊥PB→,即DM ⊥PB .∵DM →·PA→=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥PA→,即DM ⊥PA .又∵PA ∩PB =P ,PA ⊂平面PAB ,PB ⊂平面PAB , ∴DM ⊥平面PAB .∵DM ⊂平面PAD ,∴平面PAD ⊥平面PAB .。
人教B版高考总复习一轮数学精品课件 第8章立体几何与空间向量 第5节空间向量及其运算

=
x1 x2 +y1 y2 +z1 z2
x21 +y21 +z21 x22 +y22 +z22
.
5.空间向量的坐标与空间向量的平行、垂直
假设空间中两个向量a,b满足a=(x1,y1,z1),b=(x2,y2,z2),则:(1)当a≠0时,
a∥b⇔b=λa⇔(x2,y2,z2)=λ(x1,y1,z1)⇔
,那么对空间中的任意一个向量p,
存在唯一的有序实数组(x,y,z),使得p= xa+yb+zc
特别地,当a,b,c不共面时,可知xa+yb+zc=0⇔x=y=z=0.
.
(3)相关概念
线性组合
①线性组合:表达式xa+yb+zc一般称为向量a,b,c的____________
或 线性表达式 .
②基底:空间中不共面的三个向量a,b,c组成的集合{a,b,c},常称为空间向量
第5节 空间向量及其运算
课标解读
1.掌握空间直角坐标系,会用空间直角坐标系刻画点的位置;会推导空间两
点间的距离公式.
2.理解空间向量的概念,理解空间向量的基本定理及其意义,掌握空间向量
的正交分解及其坐标表示.
3.掌握空间向量的线性运算及其坐标表示.
4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的
= + = − =
1
1 )= (c+2b),则
3
=
1
− 1
3
=
1
− (
3
1
1
+ =- (a+b)+ (c+2b)=- + + .
高考数学大一轮复习 第八章 立体几何与空间向量 8.6 空间向量及其运算教案 理(含解析)

§8.6 空间向量及其运算2.已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则角∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,通常规定0≤〈a ,b 〉≤π. 3.两条异面直线所成的角把异面直线平移到一个平面内,这时两条直线的夹角(锐角或直角)叫做两条异面直线所成的角.4.数量积及坐标运算 (1)两个向量的数量积: ①a·b =|a||b |cos 〈a ,b 〉; ②a ⊥b ⇔a·b =0(a ,b 为非零向量); ③|a |2=a·a ,|a |=x 2+y 2+z 2.(2)向量的坐标运算:a =(a 1,a 2,a 3),b =(b 1,b 2,b 3) 向量和 a +b =(a 1+b 1,a 2+b 2,a 3+b 3) 向量差 a -b =(a 1-b 1,a 2-b 2,a 3-b 3)数量积 a·b =a 1b 1+a 2b 2+a 3b 3 数乘向量λa =(λa 1,λa 2,λa 3)共线a∥b (b ≠0)⇔a 1=λb 1,a 2=λb 2,a 3=λb 3a ∥b ⇔a 1b 1=a 2b 2=a 3b 3(b 与三个坐标平面都不平行)垂直 a⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0夹角公式cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗?提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果. 题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( √ )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ ) (6)若a·b <0,则〈a ,b 〉是钝角.( × ) 题组二 教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( ) A.-12a +12b +cB.12a +12b +cC.-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →) =12+22+12+2(1×2×cos120°+0+2×1×cos120°) =2,∴|EF →|=2,∴EF 的长为 2. 题组三 易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A.垂直B.平行C.异面D.相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), ∴AB →=-3CD →, ∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________. 答案 2 6 解析 ∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0, ∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =______.答案 18解析 ∵P ,A ,B ,C 四点共面, ∴34+18+t =1,∴t =18. 题型一 空间向量的线性运算例1 如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →; (2)MP →+NC 1→.解 (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P → =a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝ ⎛⎭⎪⎫a +c +12b =12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c . 思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案 12AB →+12AD →+AA 1→解析 ∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. (2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于( )A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c ) 答案 B解析 NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ). 题型二 共线定理、共面定理的应用例2 如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点. (1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH . 证明 (1)连接BG , 则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH → =EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB → =12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .思维升华 证明三点共线和空间四点共面的方法比较跟踪训练2 如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM =kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行? 解 (1)∵AM →=kAC 1→,BN →=kBC →, ∴MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1—→)+AB → =kB 1A →+AB →=AB →-kAB 1→ =AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面. (2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内, 又由(1)知MN →与AB →,AA 1→共面, ∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内; 当0<k ≤1时,MN ∥平面ABB 1A 1. 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值. (1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ), ∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos60°+a 2cos60°-a 2)=0. ∴MN →⊥AB →,即MN ⊥AB . 同理可证MN ⊥CD .(2)设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p=12⎝ ⎛⎭⎪⎫q 2-12q ·p +r ·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2cos60°+a 2cos60°-12a 2cos60° =12⎝⎛⎭⎪⎫a 2-a 24+a 22-a 24=a22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°. (1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1, ∴cos〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( )A.(0,3,-6)B.(0,6,-20)C.(0,6,-6)D.(6,6,-6)答案 B解析 由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ) A.0B.1C.2D.3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32B.-2C.0D.32或-2 答案 B解析 当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为( ) A.(3,0,0) B.(0,3,0) C.(0,0,3) D.(0,0,-3)答案 C解析 设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2, 解得z =3.5.已知a =(1,0,1),b =(x,1,2),且a·b =3,则向量a 与b 的夹角为( )A.5π6B.2π3C.π3D.π6 答案 D解析 ∵a·b =x +2=3,∴x =1,∴b =(1,1,2), ∴cos〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( ) A.3B.2C.1D.3- 2 答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2, 故|BD →|=3- 2.7.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=________. 答案 -9解析 由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.8.已知a =(x ,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,则c =________. 答案 (3,-2,2) 解析 因为a ∥b ,所以x-2=4y =1-1, 解得x =2,y =-4,此时a =(2,4,1),b =(-2,-4,-1), 又因为b ⊥c ,所以b ·c =0, 即-6+8-z =0,解得z =2,于是c =(3,-2,2).9.已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13VC →,VM →=23VB →,VN →=23VD →.则VA 与平面PMN 的位置关系是________.答案 平行解析 如图,设VA →=a ,VB →=b ,VC →=c ,则VD →=a +c -b ,由题意知PM →=23b -13c , PN →=23VD →-13VC →=23a -23b +13c . 因此VA →=32PM →+32PN →, ∴VA →,PM →,PN →共面.又VA ⊄平面PMN ,∴VA ∥平面PMN .10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1—→+A 1B 1—→)2=3A 1B 1—→2;②A 1C →·(A 1B 1—→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案 ①②解析 ①中,(A 1A →+A 1D 1—→+A 1B 1—→)2=A 1A →2+A 1D 1—→2+A 1B 1—→2=3A 1B 1—→2,故①正确;②中,A 1B 1—→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →). (1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解 (1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解 (1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB →=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95. 因此存在点E ,使得OE →⊥b ,此时E 点的坐标为⎝ ⎛⎭⎪⎫-65,-145,25. 13.(2018·本溪模拟)如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案 56解析 连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA → =12b +12c -12a , OG →=OM →+MG →=12OA →+23MN → =12a +23⎝ ⎛⎭⎪⎫12b +12c -12a =16a +13b +13c . 又OG →=xOA →+yOB →+zOC →,所以x =16,y =13,z =13, 因此x +y +z =16+13+13=56. 14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC中点,则△AMD 是( )A.钝角三角形B.锐角三角形C.直角三角形D.不确定 答案 C解析 ∵M 为BC 中点,∴AM →=12(AB →+AC →), ∴AM →·AD →=12(AB →+AC →)·AD → =12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________.答案 (1,1,2)解析 由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a , ∴CE →·A ′D →=-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |, AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos〈AC ′→,CE →〉=AC ′→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010, 即异面直线CE 与AC ′所成角的余弦值为1010.。
高考数学一轮复习第八章立体几何第6节空间向量及运算课件理

⑦cos〈a,b〉=
a1b1+a2b2+a3b3
.
a21+a22+a32· b12+b22+b23
1.判断下列结论的正误.(正确的打“√”,错误的打
“×”)
(1)空间中任意两非零向量 a,b 共面.(
)
(2)若 A,B,C,D 是空间任意四点,则有A→B+B→C+C→D+
D→A=0.(
)
(3)对于向量 a,b,若 a·b=0,则一定有 a=0 或 b=0.(
B.(-1,-3,2)
C.-12,32,-1
D.( 2,-3,-2 2)
[解析] 可知-12a=-12,32,-1,选 C.
[答案] C
4.若向量 a=(2,2,0),b=(1,3,z),且〈a,b〉=π3,则
实数 z=(
)
A. 22
B.5
C.± 22
D.±5
[解析] ∵cos〈a,b〉=cosπ3=|aa|· ·|bb|
其中真命题的个数是(
)
A.1
B.2
C.3
D.4
[解析] ①正确,②中若 a,b 共线,p 与 a 不共线,则 p =xa+yb 就不成立.③正确.④中若 M,A,B 共线,点 P 不在此直线上,则M→P=xM→A+yM→B不正确.
[答案] B
6.已知 a=(1-t,1-t,t),b=(2,t,t),则|b-a|的最小 值为________.
)
(4)若 a·b<0,则〈a,b〉是钝角.(
)
(5) 两 向 量 夹 角 的 范 围 与 两 异 面 直 线 所 成 角 的 范 围 相
同.(
)
[答案] (1)√ (2)√ (3)× (4)× (5)×
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.6 空间向量及其运算考纲要求1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示. 3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b≠0),a∥b 的充要条件是存在实数λ,使得______.(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使________.(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得______________.其中,{a ,b ,c }叫做空间的一个______.推论:设O ,A ,B ,C 是不共面的四点,则对空间任一点P ,都存在唯一的一个有序实数组{x ,y ,z },使OP uu u r=____________.2.两个向量的数量积(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA uu r =a ,OB uu u r=b ,则______叫做向量a ,b 的夹角,记作〈a ,b 〉.通常规定____≤〈a ,b 〉≤____.若〈a ,b 〉=____,则称向量a ,b 互相垂直,记作a⊥b .(2)两向量的数量积.两个非零向量a ,b 的数量积a²b =______________. (3)向量的数量积的性质(e 是单位向量):①a²e =|a|______________;②a⊥b ⇔a²b =____;③|a |2=a²a =____;④|a²b |____|a||b|. (4)向量的数量积满足如下运算律:①(λa )²b =λ(a²b );②a ²b =______(交换律); ③a ²(b +c )=____________(分配律). 3.空间向量的坐标运算(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则 a±b =____________________; λa =________________(λ∈R ); a²b =________________;a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=____;a∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); |a |2=a²a ⇒|a |=a 21+a 22+a 23(向量模与向量之间的转化);cos 〈a ,b 〉=a²b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23.(2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2), 则AB →=(x 2-x 1,y 2-y 1,z 2-z 1), |AB →|= x 2-x 1 2+ y 2-y 1 2+ z 2-z 1 2.1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ).A .0B .1C .2D .32.已知向量a =(1,1,0),b =(-1, 0,2),且k a +b 与2a -b 互相垂直,则k 的值为( ).A .1B .15C .35D .753.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ).A . 2,12B .-13,12C .-3,2D .2,24.已知四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则点D 的坐标为________.5.已知a =(1,2,-2),b =(0,2,4),则a ,b 的夹角的余弦值为__________.一、空间向量的线性运算【例1-1】如图所示,在平行六面体ABCD A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 分别表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→.【例1-2】已知O 是空间中任意一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →,则2x +3y +4z =__________.方法提炼空间向量的概念及运算是由平面向量延伸而来的,要用类比的思想去掌握.在空间向量的加、减、数乘等线性运算中,要选择适当的向量为基底,用基向量表示出相关向量后再进行向量的运算,同时还要以相应的图形为指导.请做演练巩固提升1 二、空间向量的数量积【例2】已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设AB →=a ,AC →=b ,(1)若|c |=3,且c ∥BC →,求向量c ; (2)求向量a 与向量b 的夹角的余弦值;(3)若k a +b 与k a -2b 互相垂直,求实数k 的值. 方法提炼1.两个向量的数量积,其结果是数量,而不是向量,这是与空间向量的加、减、数乘等线性运算最大的区别.2.利用两空间向量的数量积运算公式,可以求向量的模、求两个向量的夹角、证明两个向量垂直等.请做演练巩固提升3三、空间向量的坐标运算【例3-1】 已知:a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,求:(1)a ,b ,c ;(2)a +c 与b +c 所成角的余弦值.【例3-2】如图,在直三棱柱ABC A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,AA 1的中点.(1)求|BN →|;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M . 方法提炼空间向量的坐标运算使向量的运算摆脱了形的制约,可以将空间元素的位置关系转化成数量关系,将逻辑推理转化成数量计算,可以化繁为简,因此是处理空间问题的一种重要工具和方法.请做演练巩固提升2正确构建空间直角坐标系【典例】 (12分)如图所示,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点A的坐标是⎝ ⎛⎭⎪⎫32,12,0,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°.(1)求OD →的坐标;(2)设AD →和BC →的夹角为θ,求cos θ的值.规范解答:(1)如图所示,过D 作DE ⊥BC ,垂足为E .在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD = 3.∴DE =CD sin 30°=32. OE =OB -BD cos 60°=1-12=12.∴D 点坐标为⎝ ⎛⎭⎪⎫0,-12,32,即OD →的坐标为⎝⎛⎭⎪⎫0,-12,32.(6分)(2)依题意,OA →=⎝ ⎛⎭⎪⎫32,12,0,OB →=(0,-1,0),OC →=(0,1,0),∴AD →=OD →-OA →=⎝ ⎛⎭⎪⎫-32,-1,32,BC →=OC →-OB →=(0,2,0).(8分)由AD →和BC →的夹角为θ,得cos θ=AD →²BC →|AD →||BC →|=-32³0+ -1 ³2+32³0⎝ ⎛⎭⎪⎫-322+ -1 2+⎝ ⎛⎭⎪⎫32202+22+02=-105. ∴cos θ=-105.(12分) 答题指导:解答空间向量的计算问题时,还有以下几点容易造成失分,在备考时要高度关注:(1)对向量运算法则特别是坐标运算的法则掌握不熟练导致失误; (2)不能熟练地运用向量共线、垂直的充要条件将问题转化. 另外,平时要重视运算的训练,强化计算速度及准确度的训练以及熟练掌握向量运算的方法.1.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且分MN 所成的比为2,现用基向量OA →,OB →,OC →表示向量OG →,设OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别是( ).A .x =13,y =13,z =13B .x =13,y =13,z =16C .x =13,y =16,z =13D .x =16,y =13,z =132.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ).A .-2B .-143C .145D .23.如图,在30°的二面角αl β的棱上有两点A ,B ,点C ,D 分别在α,β内,且AC ⊥AB ,BD ⊥AB ,AC =BD =AB =1,则CD 的长度为________.4.已知O (0,0,0),A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →²QB →取最小值时,点Q 的坐标是__________.5.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(2)求BD1与AC夹角的余弦值.参考答案基础梳理自测知识梳理1.(1)a =λb (2)p =x a +y b (3)p =x a +y b +z c 基底 x OA uu r +y OB uu u r +z OC uuu r2.(1)∠AOB 0 ππ2(2)|a||b|cos 〈a ,b 〉 (3)①cos 〈a ,e 〉 ②0 ③a 2④≤ (4)②b²a ③a²b +a²c3.(1)(a 1±b 1,a 2±b 2,a 3±b 3) (λa 1,λa 2,λa 3) a 1b 1+a 2b 2+a 3b 3 0 基础自测1.A 解析:①错,向量a ,b 所在的直线可能重合;②错,向量a ,b 可以平行移动到同一平面内;③错,如从三棱锥的一个顶点出发的三条棱所对应的三个向量;④错,a ,b ,c 要求不共面.2.D 解析:k a +b =(k -1,k,2),2a -b =(3,2,-2). ∵(k a +b )⊥(2a -b ),∴3(k -1)+2k -4=0,解得k =75.3.A 解析:∵a ∥b ,∴2μ-1=0,∴μ=12,排除C ,D 两项.代入A ,B 选项验证可得,λ=2成立. 4.(5,13,-3) 解析:设D (x ,y ,z ),则AB uu u r =DC uuu r ,∴(-2,-6,-2)=(3-x,7-y ,-5-z ). ∴⎩⎪⎨⎪⎧3-x =-2,7-y =-6,-5-z =-2.解得⎩⎪⎨⎪⎧x =5,y =13,z =-3.∴D (5,13,-3).5.-215 5 解析:∵a ²b =1³0+2³2+(-2)³4=-4,且|a |=12+22+(-2)2=3,|b |=0+22+42=25,∴cos θ=a ²b |a ||b |=-43³25=-215 5.考点探究突破【例1-1】 解:(1)AP uu u r =1AA uuu r +11A D uuuu r +1D P uuu r =a +c +12b .(2)1A N uuu r =1A A uuu r +AB uu u r +BN uuu r =-a +b +12c .(3)MP uuu r +1NC uuu r =1MA uuu r +11A D uuuu r +1D P uuu r +NC uuu r +1CC uuu r=12a +c +12b +12c +a =32a +12b +32c . 【例1-2】 -1 解析:∵A ,B ,C ,D 四点共面,∴OA uu r =m OB uu u r +n OC uuu r +p OD uuu r ,且m +n +p =1.由条件知OA uu r =(-2x )OB uu u r +(-3y )OC uuu r +(-4z )OD uuu r,∴(-2x )+(-3y )+(-4z )=1. ∴2x +3y +4z =-1.【例2】 解:(1)∵c ∥BC uu u r,∴c =k BC uu u r,k ∈R .又∵BC uu u r=(-2,-1,2),∴可设c =(-2k ,-k,2k ).又∵|c |=4k 2+k 2+4k 2=3|k |=3, ∴k =±1.∴c =(-2,-1,2)或c =(2,1,-2). (2)∵a =AB uu u r =(1,1,0),b =AC uuu r=(-1,0,2),∴a ²b =-1,|a |=2,|b |=5,∴cos θ=a ²b |a ||b |=-110=-1010.(3)∵k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2),k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4), ∵k a +b 与k a -2b 互相垂直,∴(k a +b )²(k a -2b )=(k -1)(k +2)+k 2-8=0,解得k =2或k =-52.【例3-1】 解:(1)因为a ∥b ,所以x -2=4y =1-1,解得x =2,y =-4,这时a =(2,4,1),b =(-2,-4,-1). 又因为b ⊥c ,所以b ²c =0, 即-6+8-z =0,解得z =2, 于是c =(3,-2,2).(2)由(1)得a +c =(5,2,3),b +c =(1,-6,1),因此a +c 与b +c 所成角的余弦值为cos θ=5-12+338²38=-219.【例3-2】 解:如图所示,建立以C 为原点的空间直角坐标系C xyz ,(1)依题意得B (0,1,0),N (1,0,1),则|BN uuu r |=(1-0)2+(0-1)2+(1-0)2= 3.(2)依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2),∴1BA uuu r =(1,-1,2),1CB uuu r=(0,1,2). ∴1BA uuu r ²1CB uuu r =3,|1BA uuu r |=6,|1CB uuu r|=5,∴cos〈1BA uuu r ,1CB uuu r 〉=1111||||BA CB BA CB ⋅uuu r uuu ruuu r uuu r =3010.(3)证明:依题意得C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2,∴1C M uuuu r =⎝ ⎛⎭⎪⎫12,12,0. 又1A B uuu r=(-1,1,-2),∴1A B uuu r ²1C M uuuu r =-12+12+0=0.∴1A B uuu r ⊥1C M uuuu r,即A 1B ⊥C 1M .演练巩固提升1.D 解析:由题图可知OG =OM +MG ,而MG uuu r =23MN uuu r ,MN uuu r =MA u u u r +AB uu u r +BN uuu r=12OA uu r +OB uu u r -OA uu r +12BC uu u r =-12OA uu r+OB uu u r +12(OC uuu r -OB uu u r ) =-12OA uu r +12OB uuu r +12OC uuu r .OG uuu r =12OA uu r +21113222OA OB OC ⎛⎫-++ ⎪⎝⎭uu r uu u r uuu r=16OA uu r +13OB uuu r +13OC uuu r .∴x =16,y =13,z =13.2.D 解析:a -λb =(λ-2,1-2λ,3-λ). 由a ⊥(a -λb )得-2(λ-2)+1-2λ+9-3λ=0, 解得λ=2.3.3- 3 解析:∵BD ⊥AB ,CA ⊥AB ,∴AC uuu r 与BD uu ur 的夹角为30°.∵|CD uu u r|=|CA uu r +AB uu u r +BD uu u r |,∴|CD uu u r |2=|CA uu r +AB uu u r +BD uu u r |2=|CA uu r |2+|AB uu u r |+|BD uu u r |2+2CA uu r ²AB uu u r +2AB uu u r ²BD uu u r +2CA uu r ²BD uu u r=3+2|CA uu r|²|BD uu u r |cos 150°=3- 3.∴|CD uu u r|=3- 3.4.⎝ ⎛⎭⎪⎫43,43,83 解析:设OQ uuu r =λOP uu u r =(λ,λ,2λ),则QA uu r =(1-λ,2-λ,3-2λ),QB uu u r=(2-λ,1-λ,2-2λ). ∴QA uu r ²QB uu u r =(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23. ∴当λ=43时,QA uu r ²QB uu u r 取最小值为-23.此时,OQ uuu r =⎝ ⎛⎭⎪⎫43,43,83,即Q 点的坐标是⎝ ⎛⎭⎪⎫43,43,83.5.解:记AB uu u r =a ,AD u u u r =b ,1AA uuu r=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ²b =b ²c =c ²a =12.(1)|1AC uuu r |2=(a +b +c )2=a 2+b 2+c 2+2(a ²b +b ²c +c ²a )=1+1+1+2³⎝ ⎛⎭⎪⎫12+12+12=6,∴|1AC uuu r|=6,即AC 1的长为 6.(2)1BD uuu r=b +c -a ,AC uuu r =a +b ,∴|1BD uuu r |=2,|AC uuu r |=3,1BD uuu r ²AC uuur=(b +c -a )²(a +b )=b 2-a 2+a ²c +b ²c =1.∴cos〈1BD uuu r ,AC uuu r 〉=11||||BD AC BD AC uuu r uuu ruuur uuu r =66. ∴AC 与BD 1夹角的余弦值为66.。