高考数学复习题库 空间向量及其运算
2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
高中空间向量练习题及讲解讲解

高中空间向量练习题及讲解讲解### 高中空间向量练习题及讲解#### 练习题一:空间向量的坐标运算题目:设空间向量\( \vec{a} \)和\( \vec{b} \)的坐标分别为\( (1, 2, 3) \)和\( (4, -1, 2) \),求向量\( \vec{a} + \vec{b} \)的坐标。
解答:向量加法遵循坐标的分量相加原则。
对于向量\( \vec{a} \)和\( \vec{b} \),其坐标分别为\( (a_1, a_2, a_3) \)和\( (b_1,b_2, b_3) \),向量和的坐标为\( (a_1 + b_1, a_2 + b_2, a_3 +b_3) \)。
将给定的向量坐标代入公式,得到:\[ \vec{a} + \vec{b} = (1 + 4, 2 - 1, 3 + 2) = (5, 1, 5) \]#### 练习题二:空间向量的模长题目:已知空间向量\( \vec{c} \)的坐标为\( (2, 3, -1) \),求向量\( \vec{c} \)的模长。
解答:空间向量的模长可以通过以下公式计算:\[ |\vec{c}| = \sqrt{c_1^2 + c_2^2 + c_3^2} \]将向量\( \vec{c} \)的坐标代入公式,得到:\[ |\vec{c}| = \sqrt{2^2 + 3^2 + (-1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14} \]#### 练习题三:空间向量的夹角题目:设空间向量\( \vec{d} \)和\( \vec{e} \)的坐标分别为\( (1, 2, 1) \)和\( (2, 1, 3) \),求向量\( \vec{d} \)和\( \vec{e} \)的夹角。
解答:空间向量\( \vec{d} \)和\( \vec{e} \)的夹角可以通过向量的点积来求得,公式为:\[ \cos \theta = \frac{\vec{d} \cdot \vec{e}}{|\vec{d}||\vec{e}|} \]首先计算点积:\[ \vec{d} \cdot \vec{e} = 1 \times 2 + 2 \times 1 + 1 \times 3 = 2 + 2 + 3 = 7 \]然后计算模长:\[ |\vec{d}| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6} \]\[ |\vec{e}| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14} \]代入公式计算夹角的余弦值:\[ \cos \theta = \frac{7}{\sqrt{6} \times \sqrt{14}} \]最后,通过反余弦函数求得夹角\( \theta \)。
高考一轮复习 空间向量运算 知识点+例题+练习

1.空间向量的有关概念及定理(1)空间向量:在空间中,具有________和________的量叫做空间向量.(2)相等向量:方向________且模________的向量.(3)共线向量定理对空间任意两个向量a ,b (a ≠0),b 与a 共线的充要条件是________________________.(4)共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在有序实数对(x ,y ),使得p =x a +y b ,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O 有,OP →=________________或OP →=xOA →+yOB →+zOM →,其中x +y +z =____.(5)空间向量基本定理如果三个向量e 1,e 2,e 3不共面,那么对空间任一向量p ,存在惟一的有序实数组(x ,y ,z ),使得p =________________________,把{e 1,e 2,e 3}叫做空间的一个基底.2.空间向量的坐标表示及应用(1)数量积的坐标运算若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =__________________________________________________________________.(2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),若b ≠0,则a ∥b ⇔________⇔__________,________,______________,a ⊥b ⇔__________⇔________________________(a ,b 均为非零向量).(3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =________________________________,cos 〈a ,b 〉=a·b |a||b|=______________________________________________________. 若A (a 1,b 1,c 1),B (a 2,b 2,c 2),则|AB →|=______________________________.3.利用空间向量证明空间中的位置关系若直线l ,l 1,l 2的方向向量分别为v ,v 1,v 2,平面α,β的法向量分别为n 1,n 2,利用向量证明空间中平行关系与垂直关系的基本方法列表如下: 平行 垂直直线 与直线 l 1∥l 2⇔v 1∥v 2⇔v 1=λv 2(λ为非零实数)l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0 直线 与平面 ①l ∥α⇔v ⊥n 1⇔v ·n 1=0②l ∥α⇔v =x v 1+y v 2其中v 1,v 2为平面α内不共线向量,x , y 均为实数l ⊥α⇔v ∥n 1⇔v =λn 1(λ为非零实数)平面 与平面 α∥β⇔n 1∥n 2⇔n 1=λn 2(λ为非零实数)α⊥β⇔n 1⊥n 2⇔n 1·n 2=0自我检测1.若a =(2x,1,3),b =(1,-2y,9),且a ∥b ,则x =______________________,y =________.2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →用a ,b ,c 表示为________.3.在平行六面体ABCD —A ′B ′C ′D ′中,已知∠BAD =∠A ′AB =∠A ′AD =60°,AB =3,AD =4,AA ′=5,则|AC ′→|=________.4.下列4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →.其中真命题是________(填序号).5.A (1,0,1),B (4,4,6),C (2,2,3),D (10,14,17)这四个点________(填共面或不共面).探究点一 空间基向量的应用例1 已知空间四边形OABC 中,M 为BC 的中点,N 为AC 的中点,P 为OA 的中点,Q 为OB 的中点,若AB =OC ,求证:PM ⊥QN .变式迁移1如图,在正四面体ABCD中,E、F分别为棱AD、BC的中点,则异面直线AF和CE所成角的余弦值为________.探究点二利用向量法判断平行或垂直例2两个边长为1的正方形ABCD与正方形ABEF相交于AB,∠EBC=90°,点M、N分别在BD、AE上,且AN=DM.(1)求证:MN∥平面EBC;(2)求MN长度的最小值.变式迁移2如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥面BDF.探究点三利用向量法解探索性问题例3如图,平面P AC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为P A,PB,AC的中点,AC=16,P A=PC=10.(1)设G是OC的中点,证明FG∥平面BOE;(2)在△AOB内是否存在一点M,使FM⊥平面BOE?若存在,求出点M到OA,OB的距离;若不存在,说明理由.变式迁移3已知在直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.(1)求直线BE与A1C所成的角的余弦值;(2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出AF;若不存在,请说明理由.探究点三 利用向量法求二面角例3 如图,ABCD 是直角梯形,∠BAD =90°,SA ⊥平面ABCD ,SA =BC =BA =1,AD =12,求面SCD 与面SBA 所成角的余弦值大小.变式迁移3 如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC =90°,O 为BC 中点.(1)证明:SO ⊥平面ABC ;(2)求二面角A —SC —B 的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD 是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1、如图所示,已知ABCD —A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E 、B 、F 、D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.2、如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.3、如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.(1)求证:MN⊥AB,MN⊥CD;(2)求MN的长;(3)求异面直线AN与CM所成角的余弦值.4、如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD =8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.。
高中试卷-1.1 空间向量及其运算(精讲)(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!1.1 空间向量及其运算(精讲)考点一 概念的辨析【例1】(2020·全国高二课时练习)下列命题中,假命题是()A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等【答案】D【解析】A.向量是有向线段,不能比较大小.真命题.B.两向量相等:方向相同,模长相等.起点相同,则终点也相同.真命题.C.零向量:模长为0的向量.真命题.D.共线的单位向量是相等向量或相反向量. 假命题.故选:D.【一隅三反】1.(2020·全国高二课时练习)在下列命题中:①若向量,a b r r 共线,则,a b r r 所在的直线平行;②若向量,a b r r 所在的直线是异面直线,则,a b r r一定不共面;③若三个向量,a b c r r r ,两两共面,则,a b c r r r ,三个向量一定也共面;④已知三个向量,a b c r r r ,,则空间任意一个向量p r 总可以唯一表示为p xa yb zc =++r r r r.其中正确命题的个数为()A .0B .1C .2D .3【答案】A【解析】此题考查向量的知识点;对于①:根据两向量共线定义知道,两向量共线有可能两向量所在的直线重合,所以此命题错误;对于②:两个向量可以平移到一个平面内,所以此命题错误;对于③:若三个向量,,a b c r r r 两两共面,这三个向量有可能不共面,所以此命题错误;对于④:根据空间向量的基本定理知道,这三个向量要不共面才可以,所以此命题错误,所以选A2.(2020·全国高二课时练习)在下列命题中:①若a r 、b r 共线,则a r 、b r 所在的直线平行;②若a r 、b r 所在的直线是异面直线,则a r 、b r 一定不共面;③若a r 、b r 、c r 三向量两两共面,则a r 、b r 、c r 三向量一定也共面;④已知三向量a r 、b r 、c r ,则空间任意一个向量p u r 总可以唯一表示为p xa yb zc =++u r r r r .其中正确命题的个数为()A .0B .1C .2D .3【答案】A【解析】①若a r 、b r 共线,则a r 、b r 所在的直线平行或重合;所以①错;②因为向量是可以自由移动的量,因此即使a r 、b r 所在的直线是异面直线,a r 、b r 也可以共面;所以②错;③若a r 、b r 、c r 三向量两两共面,因为两平面的关系不确定,因此a r 、b r 、c r三向量不一定共面;所以③错;④若三向量a r 、b r 、c r 共面,若向量p u r 不在该平面内,则向量p u r 不能表示为p xa yb zc =++u r r r r ,所以④错.故选:A.考法二 空间向量的线性运算【例2】2020·江西赣州.高二期中(理))在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF uuu r 等于( )A .1223EF AC AB AD ®®®®=+-B .112223EF AC AB AD ®®®®=--+C .112223EF AC AB AD ®®®®=-+D .112223EF AC AB AD ®®®®=-+-【答案】B【解析】在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,所以EF EB BA AF®®®®=++1223AB AC AB AD ®®®®æö=--+ç÷èø112223AC AB AD ®®®=--+,即112223EF AC AB AD ®®®®=--+.故选:B.【一隅三反】1.(2020·南昌市八一中学)如图,空间四边形OABC 中,,,OA a OB b OC c ===uuu r r uuu r r uuu r r,且2OM MA =,BN NC =,则MN =uuuu r( )A .221332a b c ++r r r B .111222a b c +-r r r C .211322a b c -++r r r D .121232a b c -+r r r 【答案】C 【解析】因为MN ON OM =-uuuu r uuu r uuuu r ,又因为()()2211,3322a OM OA ON OB OC c b =+===+uuuu r uuu r r uuu r uuu r uuu r r r,所以211322MN a b c =-++uuuu r r r r .故选:C 2.(2020·宝山.上海交大附中高二期末)在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若,AB a AD b ==uuu r r uuu r r ,1AA c =uuur r ,则与BM uuuu r 相等的向量是( )A .1122a b c ++r r r B .1122a b c --+r r r C .1122a b c -+r r r D .1122-++r r r a b c 【答案】D 【解析】根据空间向量的线性运算可知11BM BB B M =+uuuu r uuur uuuur 11112AA B D =+uuur uuuur ()1111112AA B A A D =++uuur uuuu r uuuur ()112AA AB AD =+-+uuur uuu r uuu r 因为,AB a AD b ==uuu r r uuu r r ,1AA c =uuur r ,则()112AA AB AD +-+uuur uuu r uuu r 1122a b c =-++r r r 即1122BM a b c =-++uuuu r r r r ,故选:D.3.(2019·张家口市宣化第一中学高二月考)如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD uuu r +12(BC uuu r -BD uuu r )等于( )A .AD uuu r B .FA uuu r C .AF uuu rD .EFuuu r 【答案】C 【解析】BC uuu r -BD uuu r =DC uuur ,11()22BC BD DC DF -==uuu r uuu r uuu r uuu r ,∴AD uuu r +12(BC uuu r -BD uuu r )AD DF AF =+=uuu r uuu r uuu r .故选C .考点三 空间向量的共面问题【例3】(2020·全国高二)在下列条件中,使M 与A ,B ,C 一定共面的是()A .OM OA OB OC =--uuuu r uuu r uuu r uuu r B .111532OM OA OB OC =++uuuu r uuu r uuu r uuu r C .0MA MB MC ++=uuu r uuu r uuu u r r D .0OM OA OB OC +++=uuuu r uuu r uuu r uuu r r 【答案】C 【解析】对于A 选项,由于11111--=-¹,所以不能得出,,,M A B C 共面.对于B 选项,由于1111532++¹,所以不能得出,,,M A B C 共面.对于C 选项,由于MA MB MC =--uuu r uuu r uuu u r ,则,,MA MB MC uuu r uuur uuuu r 为共面向量,所以,,,M A B C 共面.对于D 选项,由0OM OA OB OC +++=uuuu r uuu r uuu r uuu r r 得OM OA OB OC =---uuuu r uuu r uuu r uuu r,而11131---=-¹,所以不能得出,,,M A B C 共面.故选:C 【一隅三反】1.(2020·全国高二)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++uuu v uuu v uuu v uuu v ,若P ,A ,B ,C 四点共面,则实数t =______.【答案】18【解析】P ,A ,B ,C 四点共面,且3148OP OA OB OC t =++uuu r uuu r uuu r uuu r ,31148t ++=,解得18t =.故答案为: 182.(2020·全国高二)已知点M 在平面ABC 内,并且对空间任意一点O ,有1133OM xOA OB OC =++uuuu v uuu v uuu v uuu v ,则x =________.【答案】13【解析】已知1133OM xOA OB OC =++uuuu v uuu v uuu v uuu v 且M ,A ,B ,C 四点共面,则11133x ++= ,解得x=133.(2019·随州市第一中学高二期中)空间A B C D 、、、四点共面,但任意三点不共线,若P 为该平面外一点且5133PA PB xPC PD uuu r uuu r uuu r uuu r =--,则实数x 的值为( )A .13B .13-C .23D .23-【答案】A【解析】因为空间A B C D 、、、四点共面,但任意三点不共线,对于该平面外一点P 都有5133PA PB xPC PD uuu r uuu r uuu r uuu r =--,所以51133x --=,解得13x =.故选A 4.(2020·全国高二课时练习)已知平行四边形ABCD 从平面AC 外一点O 引向量.,OE k OA OF k OB ®®®®==,,OG k OC OH k OD ®®®®==.求证:四点E ,F ,G ,H 共面【答案】证明见解析【解析】∵,OE k OA OF k OB ®®®®==;∴||OE OF k OA OB==;EF //AB ,且EF =|k |AB ;同理HG //DC ,且HG =|k |DC ,AB =DC ;∴EF //HG ,且EF =HG ;∴四边形EFGH 为平行四边形;∴四点E ,F ,G ,H 共面.考点四 空间向量的数量积【例4】(2020·全国高二课时练习)已知平行六面体ABCD ﹣A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°.(1)求AC ′的长;(如图所示)(2)求AC ¢uuuu r 与AC uuu r 的夹角的余弦值.【答案】(1;(2【解析】(1)可得AC ¢uuuu r ='AC CC +uuu r uuuu r ='AB AD AA ++uuu r uuu r uuur ,2AC ¢uuuu r =2AB AD AA ¢++uuu r uuu r uuur =22AB AD AA ¢++uuu r uuu r uuur +2(AB AD AB AA AD AA ¢¢×+×+×uuu r uuu r uuu r uuur uuu r uuur )=42+32+52+2(4×3×0+4×1153522´+´´)=85故AC ′的长等于AC ¢uuuu r=(2)由(1)可知AC ¢uuuu r =AB AD AA ¢++uuu r uuu r uuur ,AC ¢uuuu r=故AC AC ¢×uuuu r uuu r =(AB AD AA ¢++uuu r uuu r uuur )×(AB AD +uuu r uuu r )=222AB AB AD AD AA AB AA AD ¢¢+×++×+×uuu ruuu r uuu r uuu r uuur uuu r uuur uuu r =2211424303545322+´´´++´´+´´=852又AC uuu r ==5故AC ¢uuuu r 与ACuuu r的夹角的余弦值=AC AC AC AC ¢×¢×uuuu r uuu r uuuu r uuu r ==【一隅三反】1.(2019·宁夏贺兰县景博中学高二月考(理))平行六面体ABCD-A 1B 1C 1D 1中,向量1AB,AD,AA uuu r uuu r uuuu r 两两的夹角均为60°,且|AB uuu r |=1,|AD uuu r |=2,|1AA uuuu r |=3,则|1AC uuuu r |等于( )A .5B .6C .4D .8【答案】A 【解析】在平行六面体ABCD-A 1B 1C 1D 1中有,11AC AB AD CC =++uuuu v uuu v uuu v uuuu v =1AB AD AA ++uuu v uuu v uuuv 所以有1AC uuuu v =1AB AD AA ++uuu v uuu v uuuv ,于是有21AC uuuu v =21AB AD AA ++uuu v uuu v uuuv 21AC uuuu v =2220001112cos602cos602cos60AB AD AA AB AD AB AA AD AA +++××+××+××uuu v uuu v uuuv uuu v uuu v uuu v uuuv uuu v uuuv =25所以15AC =uuuu v ,答案选A2.(2020·延安市第一中学高二月考(理))四棱柱1111ABCD A B C D -的底面ABCD 为矩形,2AB =,4=AD ,16AA =,1160A AB A AD Ð=Ð=o ,则1AC的长为( )A .B .46C .D .32【答案】C 【解析】由11AC AC CC =+uuuu r uuu r uuuu r ,2222211111()2AC AC AC CC AC AC CC CC ==+=+×+uuuu r uuuu r uuu r uuuu r uuu r uuu r uuuu r uuuu r .由底面ABCD 为矩形得;241620AC =+=uuu r ,2136CC =uuuu r ,另;1160A AB A AD Ð=Ð=o ,1122()AC CC AB BC CC ×=+×uuu r uuuu r uuu r uuu r uuuu r ,01126cos 606,12AB CC BC CC ×=´´=×=uuu r uuuu r uuu r uuuur 21120363692,AC AC =++==uuuu r uuuu r 3.(2020·四川雨城�雅安中学高二月考(理))若空间四边形OABC 的四个面均为等边三角形,则cos ,OA BC uuu r uuu r 的值为( )A .12BC .12-D .0【答案】D【解析】依题意空间四边形OABC 的四个面均为等边三角形,设棱长均为a .而BC OC OB =-uuu r uuu r uuu r ,则()22cos cos 033OA OC OB OA OC OA OB a a p p ×-=×-×=×-×=uuu r uuu r uuu r uuu r uuu r uuu r uuu r 所以()cos ,0OA OC OB OA BC OA BC OA BC OA BC ×-×===××uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r .故选:D 4.(2020·全国高二课时练习).1BB ⊥平面ABC ,且△ABC 是∠B =90°的等腰直角三角形,▱A 11B A B 、▱B 11B C C 的对角线都分别相互垂直且相等,若AB =a ,求异面直线1BA 与AC 所成的角.【答案】60°【解析】如图所示.因为11,BA BA BB AC AB BC=+=+uuu r uuu r uuur uuu r uuu r uuu r 故()()1111BA AC BA BB AB BC BA AB BA BC BB AB BB BC ×=+×+=×+×+×+×uuu r uuu r uuu r uuur uuu r uuu r uuu r uuu r uuu r uuu r uuur uuu r uuur uuu r 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC ,故2110,0,0,AB BC BB AB BB BC BA AB a ×=×=×=×=-uuu r uuu r uuur uuu r uuuruuu r uuu r uuu r故21BA AC a ×=-uuu r uuu r 又111,BA AC BA AC cos BA AC×=××uuu r uuu r uuu r uuu r uuu r uuu r故11,2cos BA AC ==-uuu r uuu r .而[]1,0,BA AC p Îuuu r uuu r ,故可得1,120BA AC =°uuu r uuu r <>,又∵异面直线所成的角是锐角或直角,∴异面直线BA 1与AC 成60°角.。
2023年高考数学一轮复习第七章立体几何与空间向量6空间向量的概念与运算练习含解析

空间向量的概念与运算考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量表示若干空间向量的有向线段所在的直线互相平行或重合的向量(或平行向量)共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a =λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·b a1b1+a2b2+a3b3共线a =λb(b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角余弦值 cos 〈a ,b 〉=a ·b|a ||b |(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 234.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 为平面α的法向量. (3)空间位置关系的向量表示位置关系向量表示直线l 1,l 2的方向向量分别为n 1,n 2 l 1∥l 2 n 1∥n 2⇔n 1=λn 2(λ∈R ) l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0 直线l 的方向向量为n ,平面α的法向量为m ,l ⊄αl ∥α n ⊥m ⇔n ·m =0 l ⊥α n ∥m ⇔n =λm (λ∈R ) 平面α,β的法向量分别为n ,mα∥β n ∥m ⇔n =λm (λ∈R )α⊥βn ⊥m ⇔n ·m =0常用结论1.在平面中,A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.在空间中,P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( × )(3)在空间直角坐标系中,在Oyz 平面上的点的坐标一定是(0,b ,c ).( √ ) (4)若a ·b <0,则〈a ,b 〉是钝角.( × ) 教材改编题1.若{a ,b ,c }为空间向量的一个基底,则下列各项中,能构成空间向量的一个基底的是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 答案 C解析 ∵λa +μb (λ,μ∈R )与a ,b 共面. ∴A,B ,D 不正确.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1—→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 由题意,根据向量运算的几何运算法则, BM →=BB 1—→+B 1M —→=AA 1—→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m =________. 答案 10解析 ∵l 1⊥l 2,∴a ⊥b , ∴a ·b =-6-4+m =0,∴m =10.题型一 空间向量的线性运算例1 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N —→;(3)MP →+NC 1—→. 解 (1)∵P 是C 1D 1的中点, ∴AP →=AA 1—→+A 1P —→=AA 1—→+A 1D 1—→+D 1P —→ =AA 1—→+AD →+12DC →=a +c +12AB →=a +c +12b .(2)∵N 是BC 的中点, ∴A 1N —→=A 1A —→+AB →+BN → =-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A —→+AP →=-12a +(a +c +12b )=12a +12b +c . 又NC 1—→=NC →+CC 1—→=12BC →+AA 1—→=12AD →+AA 1—→=12c +a .∴MP →+NC 1—→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫12c +a =32a +12b +32c . 教师备选如图,在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示OG →,则下列表示正确的是( )A.14OA →+12OB →+13OC →B.12OA →+12OB →+12OC → C .-16OA →+13OB →+13OC →D.13OA →+13OB →+13OC → 答案 D解析 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →)=12OA →+23⎣⎢⎡⎦⎥⎤12OB →+OC →-OA → =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →.思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)(2022·宁波模拟)如图,在三棱锥O -ABC 中,点P ,Q 分别是OA ,BC 的中点,点D 为线段PQ 上一点,且PD →=2DQ →,若记OA →=a ,OB →=b ,OC →=c ,则OD →等于( )A.16a +13b +13cB.13a +13b +13cC.13a +16b +13cD.13a +13b +16c 答案 A解析 OD →=OP →+PD →=12OA →+23PQ →=12OA →+23(OQ →-OP →) =12OA →+23OQ →-23OP → =12OA →+23×12(OB →+OC →)-23×12OA → =16OA →+13OB →+13OC → =16a +13b +13c . (2)在正方体ABCD -A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若AF →=xAD →+yAB →+z AA 1—→,则x -y +z 等于( )A.12B .1C.32D .2 答案 B解析 AF →=AD →+DF →=AD →+12(DD 1—→+D 1C 1—→)=AD →+12(AA 1—→+A 1B 1—→)=AD →+12(AA 1—→+AB →)=AD →+12AB →+12AA 1—→,则x =1,y =12,z =12,则x -y +z =1.题型二 空间向量基本定理及其应用例2 已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题知OA →+OB →+OC →=3OM →, 所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)方法一 由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内. 方法二 因为OM →=13(OA →+OB →+OC →)=13OA →+13OB →+13OC →, 又因为13+13+13=1,所以M ,A ,B ,C 四点共面,从而M 在平面ABC 内. 教师备选如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=k AC 1—→,BN →=kBC →(0≤k ≤1).判断向量MN →是否与向量AB →,AA 1—→共面.解 因为AM →=k AC 1—→,BN →=kBC →, 所以MN →=MA →+AB →+BN → =k C 1A —→+AB →+kBC →=k (C 1A —→+BC →)+AB →=k (C 1A —→+B 1C 1—→)+AB → =k B 1A —→+AB →=AB →-k AB 1—→=AB →-k (AA 1—→+AB →) =(1-k )AB →-k AA 1—→,所以由共面向量定理知向量MN →与向量AB →,AA 1—→共面. 思维升华 证明空间四点P ,M ,A ,B 共面的方法 (1)MP →=xMA →+yMB →;(2)对空间任一点O ,OP →=OM →+xMA →+yMB →;(3)对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); (4)PM →∥AB →(或PA →∥MB →或PB →∥AM →).跟踪训练2 (1)(多选)(2022·武汉质检)下列说法中正确的是( ) A .|a |-|b |=|a +b |是a ,b 共线的充要条件 B .若AB →,CD →共线,则AB ∥CDC .A ,B ,C 三点不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点共面D .若P ,A ,B ,C 为空间四点,且有PA →=λPB →+μPC →(PB →,PC →不共线),则λ+μ=1是A ,B ,C 三点共线的充要条件答案 CD解析 由|a |-|b |=|a +b |,可得向量a ,b 的方向相反,此时向量a ,b 共线,反之,当向量a ,b 同向时,不能得到|a |-|b |=|a +b |,所以A 不正确; 若AB →,CD →共线,则AB ∥CD 或A ,B ,C ,D 四点共线,所以B 不正确; 由A ,B ,C 三点不共线,对空间任意一点O , 若OP →=34OA →+18OB →+18OC →,因为34+18+18=1,可得P ,A ,B ,C 四点共面,故C 正确; 若P ,A ,B ,C 为空间四点,且有PA →=λPB →+μPC →(PB →,PC →不共线), 当λ+μ=1时,即μ=1-λ,可得PA →-PC →=λ(PB →+CP →), 即CA →=λCB →,所以A ,B ,C 三点共线,反之也成立,即λ+μ=1是A ,B ,C 三点共线的充要条件,所以D 正确.(2)已知A ,B ,C 三点不共线,点O 为平面ABC 外任意一点,若点M 满足OM →=15OA →+45OB →+25BC →,则点M ________(填“属于”或“不属于”)平面ABC . 答案 属于解析 ∵OM →=15OA →+45OB →+25BC →=15OA →+45OB →+25(OC →-OB →)=15OA →+25OB →+25OC →,∵15+25+25=1, ∴M ,A ,B ,C 四点共面. 即点M ∈平面ABC .题型三 空间向量数量积及其应用例3 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →.(2)求异面直线AG 和CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c . 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a ·c =14. (2)AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=⎝ ⎛⎭⎪⎫12b +12c ·⎝⎛⎭⎪⎫-b +12a ⎝ ⎛⎭⎪⎫12b +12c 2·⎝ ⎛⎭⎪⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,所以异面直线AG 与CE 所成角的余弦值为23.教师备选已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM →·PN →的取值范围为( )A.[]0,4B.[]0,2C.[]1,4D.[]1,2 答案 B解析 设正方体内切球的球心为O , 则OM =ON =1,PM →·PN →=()PO →+OM →·()PO →+ON →=PO →2+PO →·()OM →+ON →+OM →·ON →, ∵MN 为球O 的直径, ∴OM →+ON →=0,OM →·ON →=-1, ∴PM →·PN →=PO →2-1, 又P 在正方体表面上移动,∴当P 为正方体顶点时,||PO →最大,最大值为3;当P 为内切球与正方体的切点时,||PO →最小,最小值为1, ∴PO →2-1∈[]0,2,即PM →·PN →的取值范围为[]0,2.思维升华 由向量数量积的定义知,要求a 与b 的数量积,需已知|a |,|b |和〈a ,b 〉,a 与b 的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使a·b 计算准确.跟踪训练3如图所示,在四棱柱ABCDA 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值. (1)解 记AB →=a ,AD →=b ,AA 1—→=c , 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1—→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6, ∴|AC 1—→|=6,即AC 1的长为 6. (2)证明 ∵AC 1—→=a +b +c ,BD →=b -a , ∴AC 1—→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =0. ∴AC 1—→⊥BD →,∴AC 1⊥BD .(3)解 BD 1—→=b +c -a ,AC →=a +b , ∴|BD 1—→|=2,|AC →|=3, BD 1—→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos〈BD 1—→,AC →〉=BD 1—→·AC →|BD 1—→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.题型四 向量法证明平行、垂直例4 如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面PAD ; (3)平面PCD ⊥平面PAD .证明 依题意,以点A 为坐标原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)BE →=(0,1,1), DC →=(2,0,0),故BE →·DC →=0, 所以BE ⊥DC .(2)因为AB ⊥AD ,又PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以AB ⊥PA ,PA ∩AD =A ,PA ,AD ⊂平面PAD , 所以AB ⊥平面PAD ,所以AB →=(1,0,0)为平面PAD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0, 所以BE ⊥AB , 又BE ⊄平面PAD , 所以BE ∥平面PAD .(3)由(2)知平面PAD 的法向量AB →=(1,0,0), PD →=(0,2,-2), DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎪⎨⎪⎧2y -2z =0,2x =0,令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0, 所以n ⊥AB →.所以平面PAD ⊥平面PCD . 教师备选如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 的中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1.证明 因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 因为AA 1⊥平面ABC ,AA 1∥BB 1,所以以过E 作平行于BB 1的垂线为z 轴,EC ,EA 所在直线分别为x 轴、y 轴, 建立如图所示的空间直角坐标系.因为AB =3,BE =5, 所以AE =2,所以E (0,0,0),C (5,0,0),A (0,2,0),B (-5,0,0),B 1(-5,0,27). A 1(0,2,7),则F ⎝⎛⎭⎪⎫52,1,72.(1)EF →=⎝ ⎛⎭⎪⎫52,1,72,AB →=(-5,-2,0),AA 1→=(0,0,7).设平面AA 1B 1B 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AA 1—→=0,所以⎩⎨⎧-5x -2y =0,7z =0,取⎩⎨⎧x =-2,y =5,z =0,所以n =(-2,5,0).因为EF →·n =52×(-2)+1×5+72×0=0,所以EF →⊥n . 又EF ⊄平面A 1B 1BA , 所以EF ∥平面A 1B 1BA . (2)因为EC ⊥平面AEA 1,所以EC →=(5,0,0)为平面AEA 1的一个法向量. 又EA ⊥平面BCB 1,所以EA →=(0,2,0)为平面BCB 1的一个法向量. 因为EC →·EA →=0,所以EC →⊥EA →, 故平面AEA 1⊥平面BCB 1.思维升华 (1)利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).(2)向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的有关定理.跟踪训练4 如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD ,设E ,F 分别为PC ,BD 的中点.求证:(1)EF ∥平面PAD ; (2)平面PAB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为PA =PD ,所以PO ⊥AD .又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又四边形ABCD 是正方形, 所以OF ⊥AD . 因为PA =PD =22AD , 所以PA ⊥PD ,OP =OA =a2.如图,以O 为坐标原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫a 2,0,0,F ⎝ ⎛⎭⎪⎫0,a2,0,D ⎝ ⎛⎭⎪⎫-a 2,0,0,P ⎝ ⎛⎭⎪⎫0,0,a 2,B ⎝ ⎛⎭⎪⎫a 2,a ,0,C ⎝ ⎛⎭⎪⎫-a 2,a ,0.因为E 为PC 的中点,所以E ⎝ ⎛⎭⎪⎫-a 4,a 2,a4. 易知平面PAD 的一个法向量为 OF →=⎝⎛⎭⎪⎫0,a 2,0,因为EF →=⎝ ⎛⎭⎪⎫a4,0,-a 4,OF →·EF →=⎝ ⎛⎭⎪⎫0,a 2,0·⎝ ⎛⎭⎪⎫a 4,0,-a 4=0.且EF ⊄平面PAD ,所以EF ∥平面PAD .(2)因为PA →=⎝ ⎛⎭⎪⎫a2,0,-a 2,CD →=(0,-a ,0),所以PA →·CD →=⎝ ⎛⎭⎪⎫a2,0,-a 2·(0,-a ,0)=0,所以PA →⊥CD →, 所以PA ⊥CD .又PA ⊥PD ,PD ∩CD =D ,PD ,CD ⊂平面PDC ,所以PA ⊥平面PDC .又PA ⊂平面PAB ,所以平面PAB ⊥平面PDC .课时精练1.已知a =(2,1,-3),b =(0,-3,2),c =(-2,1,2),则a ·(b +c )等于( ) A .18B .-18C .32D .-3 2 答案 B解析 因为b +c =(-2,-2,4), 所以a ·(b +c )=-4-2-12=-18.2.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由x +y +z =1,得P ,A ,B ,C 四点共面,当P ,A ,B ,C 四点共面时,x +y +z =1,显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.3.已知空间向量a =(1,0,1),b =(1,1,n ),且a·b =3,则向量a 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6答案 A解析 由题意,a ·b =1+0+n =3, 解得n =2,又|a |=1+0+1=2,|b |=1+1+4=6,所以cos 〈a ,b 〉=a·b |a ||b |=32×6=32,又〈a ,b 〉∈[0,π], 所以a 与b 的夹角为π6.4.直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2),则( ) A .l ∥α B .l ⊥α C .l ∥α或l ⊂αD .l 与α的位置关系不能判断 答案 B解析 直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2), 显然它们共线,所以l ⊥α.5.(多选)已知空间三点A (1,0,3),B (-1,1,4),C (2,-1,3),若AP →∥BC →,且|AP →|=14,则点P 的坐标为( ) A .(4,-2,2) B .(-2,2,4) C .(-4,2,-2) D .(2,-2,4)答案 AB解析 因为B (-1,1,4),C (2,-1,3), 所以BC →=(3,-2,-1), 因为AP →∥BC →,所以可设AP →=λBC →=(3λ,-2λ,-λ), 因为|AP →|=3λ2+-2λ2+-λ2=14,解得λ=±1,所以AP →=(3,-2,-1)或AP →=(-3,2,1), 设点P (x ,y ,z ),则AP →=(x -1,y ,z -3),所以⎩⎪⎨⎪⎧ x -1=3,y =-2,z -3=-1或⎩⎪⎨⎪⎧ x -1=-3,y =2,z -3=1,解得⎩⎪⎨⎪⎧x =4,y =-2,z =2或⎩⎪⎨⎪⎧x =-2,y =2,z =4.所以点P 的坐标为(4,-2,2)或(-2,2,4).6.(多选)已知空间中三点A (0,1,0),B (2,2,0),C (-1,3,1),则下列结论正确的有( ) A.AB →与AC →是共线向量B .与AB →共线的单位向量是(1,1,0) C.AB →与BC →夹角的余弦值是-5511D .平面ABC 的一个法向量是(1,-2,5) 答案 CD解析 对于A ,AB →=(2,1,0),AC →=(-1,2,1),不存在实数λ,使得AB →=λAC →, 所以AB →与AC →不是共线向量,所以A 错误;对于B ,因为AB →=(2,1,0),所以与AB →共线的单位向量为⎝ ⎛⎭⎪⎫255,55,0或⎝ ⎛⎭⎪⎫-255,-55,0,所以B 错误;对于C ,向量AB →=(2,1,0),BC →=(-3,1,1), 所以cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=-5511,所以C 正确;对于D ,设平面ABC 的法向量是n =(x ,y ,z ), 因为AB →=(2,1,0),AC →=(-1,2,1), 所以⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧2x +y =0,-x +2y +z =0.令x =1,则n =(1,-2,5),所以D 正确.7.已知a =(x ,1,1),b =(-2,2,y ),a ·b =0,则2x -y =________. 答案 2解析 因为a =(x ,1,1),b =(-2,2,y ),a ·b =0,所以-2x +2+y =0,2x -y =2.8.已知点A (-1,1,0),B (1,2,0),C (-2,-1,0),D (3,4,0),则AB →在CD →上的投影向量为________.答案 ⎝ ⎛⎭⎪⎫32,32,0 解析 由已知得AB →=(2,1,0),CD →=(5,5,0), ∴AB →·CD →=2×5+1×5+0=15, 又|CD →|=52,∴AB →在CD →上的投影向量为AB →·CD →|CD →|·CD →|CD →|=1552×CD →52=310CD →=⎝ ⎛⎭⎪⎫32,32,0. 9.如图所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的长;(2)求cos 〈BA 1—→,CB 1—→〉的值; (3)求证:A 1B ⊥C 1M .(1)解 以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图.B (0,1,0),N (1,0,1),∴BN →=(1,-1,1), ∴|BN →|=12+-12+12= 3.(2)解 ∵A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2),∴BA 1—→=(1,-1,2),CB 1—→=(0,1,2),∴BA 1—→·CB 1—→=3,|BA 1—→|=6,|CB 1—→|= 5. ∴cos〈BA 1—→,CB 1—→〉=BA 1—→·CB 1—→|BA 1—→||CB 1—→|=3010.(3)证明 ∵C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2, ∴A 1B —→=(-1,1,-2),C 1M —→=⎝ ⎛⎭⎪⎫12,12,0,∴A 1B —→·C 1M —→=-12+12+0=0.∴A 1B —→⊥C 1M —→, ∴A 1B ⊥C 1M .10.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB .(1)证明 如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝⎛⎭⎪⎫a ,a 2,0,P (0,0,a ), F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).因为EF →·DC →=0,所以EF →⊥DC →,即EF ⊥CD .(2)解 设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2,CB →=(a ,0,0),CP →=(0,-a ,a ),若使GF ⊥平面PCB ,则需FG →·CB →=0,且FG →·CP →=0,由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a2=0,得x =a2,由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a2=0,得z =0.所以G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即G 为AD 的中点时,GF ⊥平面PCB .11.(多选)(2022·山东百师联盟大联考)下面四个结论正确的是( )A .向量a ,b (a ≠0,b ≠0),若a⊥b ,则a·b =0B .若空间四个点P ,A ,B ,C ,PC →=14PA →+34PB →,则A ,B ,C 三点共线C .已知向量a =(1,1,x ),b =(-3,x ,9),若x <310,则〈a ,b 〉为钝角D .任意向量a ,b ,c 满足(a·b )·c =a·(b·c )答案 AB解析 由向量垂直的充要条件可得A 正确;∵PC →=14PA →+34PB →,∴14PC →-14PA →=34PB →-34PC →,即AC →=3CB →,∴A ,B ,C 三点共线,故B 正确;当x =-3时,两个向量共线,夹角为π,故C 错误;由于向量的数量积运算不满足结合律,故D 错误.12.(多选)(2022·重庆市第七中学月考)给出下列命题,其中为假命题的是( )A .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若n ⊥m ,则l ∥αB .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若〈n ,m 〉=2π3,则l 与α所成角为π6C .若两个不同的平面α,β的法向量分别为u ,v ,且u =(1,2,-2),v =(-2,-4,4),则α∥βD .已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c答案 AD解析 对于A ,由题意可得l ∥α或l ⊂α,故A 错误;对于B ,由图象可得,∠CAD =2π3,则∠DAB =π3,所以∠ADB =π6, 根据线面角的定义可得,l 与α所成角为π6,故B 正确; 对于C ,因为u =-12v =-12(-2,-4,4) =(1,2,-2),所以u ∥v ,故α∥β,故C 正确;对于D ,当空间的三个向量a ,b ,c 不共面时,对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c ,故D 错误.13.(2022·杭州模拟)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为A 1D 1,BB 1的中点,则cos∠EAF =________;EF =________.答案 25 62 解析 如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,∵正方体棱长为1,则E ⎝ ⎛⎭⎪⎫0,12,1,F ⎝⎛⎭⎪⎫1,0,12, ∴AE →=⎝ ⎛⎭⎪⎫0,12,1,AF →=⎝⎛⎭⎪⎫1,0,12, EF →=⎝ ⎛⎭⎪⎫1,-12,-12, cos 〈AE →,AF →〉=AE →·AF →|AE →||AF →|=1252×52=25, ∴cos∠EAF =25, EF =|EF →|=12+⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-122=62. 14.如图,已知四棱柱ABCD -A 1B 1C 1D 1的底面A 1B 1C 1D 1为平行四边形,E 为棱AB 的中点,AF →=13AD →,AG →=2GA 1—→,AC 1与平面EFG 交于点M ,则AM AC 1=________.答案 213解析 由题图知,设AM →=λAC 1—→(0<λ<1),由已知AC 1—→=AB →+AD →+AA 1—→=2AE →+3AF →+32AG →,所以AM →=2λAE →+3λAF →+3λ2AG →,因为M ,E ,F ,G 四点共面,所以2λ+3λ+3λ2=1, 解得λ=213.15.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是______.答案 ⎝ ⎛⎭⎪⎫43,43,83 解析 因为点Q 在直线OP 上,所以设点Q (λ,λ,2λ),则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23. 即当λ=43时,QA →·QB →取得最小值-23, 此时OQ →=⎝ ⎛⎭⎪⎫43,43,83. 16.(2022·株州模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos60°=3,所以AO 2+A 1O 2=AA 21,所以A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1—→=(0,1,3),AA 1—→·BD →=0×(-23)+1×0+3×0=0,所以BD →⊥AA 1—→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1—→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1—→=0,n 1·DA 1—→=0, 又A 1C 1—→=(0,2,0),DA 1—→=(3,0,3),则⎩⎨⎧ 2y 1=0,3x 1+3z 1=0,取n 1=(1,0,-1),因为BP ∥平面DA 1C 1,所以n 1⊥BP →,即n 1·BP →=-3-3λ=0,解得λ=-1,即点P 在C 1C 的延长线上,且|CP →|=|CC 1—→|.。
人教版高中数学选择性必修第一册1.1.1空间向量及其线性运算精讲精练同步训练

人教版高中数学选择性必修第一册1.1.1空间向量及其线性运算精讲精练同步训练【考点梳理】考点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作AB →,其模记为|a |或|AB →|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为-a 共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a ,都有0∥a相等向量方向相同且模相等的向量称为相等向量考点二空间向量的线性运算空间向加法a +b =OA →+AB →=OB→量的线性运算减法a -b =OA →-OC →=CA →数乘当λ>0时,λa =λOA →=PQ →;当λ<0时,λa =λOA →=MN →;当λ=0时,λa =0运算律交换律:a +b =b +a ;结合律:a +(b +c)=(a +b )+c ,λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb .考点三共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb .2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量.考点四共面向量1.共面向量如图,如果表示向量a 的有向线段OA →所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .【题型归纳】题型一:空间向量的有关概念1.给出下列命题:①空间向量就是空间中的一条有向线段;②在正方体1111ABCD A B C D -中,必有11=AC AC ;③a b =是向量a b =的必要不充分条件;④若空间向量,,m n p 满足,∥∥m n n p ,则∥m p .其中正确的命题的个数是A .1B .2C .3D .02.给出下列命题①空间中所有的单位向量都相等;②方向相反的两个向量是相反向量;③若,a b 满足a b >,且,a b 同向,则a b >;④零向量没有方向;⑤对于任意向量,a b ,必有a b a b +≤+.其中正确命题的序号为()A .①②③B .⑤C .④⑤D .①⑤3.下列关于空间向量的说法中正确的是()A .若向量a ,b 平行,则a ,b 所在直线平行B .若||||a b =,则a ,b 的长度相等而方向相同或相反C .若向量AB ,CD 满足AB CD >,则AB CD >D .相等向量其方向必相同题型二:空间向量的线性运算(加减法)4.如图,在正方体1111ABCD A B C D -中,点M ,N 分别是面对角线1A B 与11B D 的中点,若DA a =,DC b =,1DD c =,则MN =()A .()12c b a +-B .()12a b c +-C .()12a c -D .()12c a -5.空间四边形ABCD 各边及对角线长均为2,E ,F ,G 分别是AB ,AD ,DC 的中点,则GE GF ⋅=()A .12B .1C .2D .226.空间四边形OABC 中,,,OA a OB b OC c ===.点M 在OA 上,且2OM MA =,N 为BC 的中点,则MN 等于()A .12a -2132b c+B .-211322a b c++C .12a 12b +-23cD .2233a b +-12c题型三:空间两个向量共线的有关问题7.已知空间向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是().A .A 、B 、DB .A 、B 、CC .B 、C 、DD .A 、C 、D8.已知空间中两条不同的直线,m n ,其方向向量分别为,a b →→,则“,R a b λλ→→∀∈≠”是“直线,m n 相交”的()A ..充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.下列命题中正确的是().A .若a 与b 共线,b 与c 共线,则a 与c 共线.B .向量a ,b ,c 共面,即它们所在的直线共面C .若两个非零空间向量AB 与CD 满足0AB CD +=,则//C B D A D .若//a b ,则存在唯一的实数λ,使a bλ=题型四:空间共面向量定理10.已知A 、B 、C 三点不共线,点O 是平面ABC 外一点,则在下列各条件中,能得到点M 与A 、B 、C 一定共面的是()A .111222OM OA OB OC =++B .1313O OB OCM OA =-+C .OM OA OB OC =++D .2OM O OB OCA =--11.下列结论错误的是().A .三个非零向量能构成空间的一个基底,则它们不共面B .两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线C .若a 、b 是两个不共线的向量,且c a b λμ=+r r r(R λμ∈、且0λμ⋅≠),则{}a b c ,,构成空间的一个基底D .若OA 、OB 、OC 不能构成空间的一个基底,则O 、A 、B 、C 四点共面12.在下列结论中:①若向量,a b 共线,则向量,a b 所在的直线平行;②若向量,a b 所在的直线为异面直线,则向量,a b 一定不共面;③若三个向量,,a b c r v v 两两共面,则向量,,a b c rv v 共面;④已知空间的三个向量,,a b c rv v ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p xa yb zc =++u r rv v .其中正确结论的个数是()A .0B .1C .2D .3【双基达标】一、单选题13.在正方体ABCD —A 1B 1C 1D 1中,已知下列各式:①()1AB BC CC ++;②()11111AA A D D C ++;③()111AB BB B C ++;④()11111AA A B B C ++.其中运算的结果为向量1AC uuu r的有()A .1个B .2个C .3个D .4个14.①若A 、B 、C 、D 是空间任意四点,则有0AB BC CD DA +++=;②a b a b -=+是a 、b 共线的充要条件;③若a 、b 共线,则a 与b 所在直线平行;④对空间任意一点O 与不共线的三点A 、B 、C ,若OP xOA yOB zOC =++uu u r uu r uu u r uuu r(其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面.其中不正确命题的个数是()A .1B .2C .3D .415.若空间中任意四点O ,A ,B ,P 满足OP =m OA +n OB ,其中m +n =1,则()A .P ∈直线AB B .P ∉直线ABC .点P 可能在直线AB 上,也可能不在直线AB 上D .以上都不对16.在正方体1111ABCD A B C D -中,点P 满足113AP AB AA λ=+([]0,1λ∈)若平面//BDP 平面11B CD ,则实数λ的值为()A .14B .13C .12D .2317.如图,在平行六面体ABCD -A ′B ′C ′D ′中,设AB a →=,AD b →=r ,AA c →'=,则下列与向量A C →'相等的表达式是()A .a b c -++B .a b c--+C .a b c --D .a b c+-r r r 18.如图,在四面体OABC 中,M ,N 分别是OA ,BC 的中点,则MN =()A .111222OB OC OA+-B .111222OA OC OB--C .111222OB OC OA++D .111222OA OC OB+-19.已知空间四边形ABCD 中,AB a =,CB b =,AD c =uuu r r,则CD 等于()A .a b c +-B .a b c --+C .a b c -++D .a b c-+-20.下列说法:①若两个空间向量相等,则表示它们有向线段的起点相同,终点也相同;②若向量AB →,CD →满足AB CD →→>,且AB →与CD →同向,则AB CD →→>;③若两个非零向量AB →与CD →满足0AB CD →→→+=,则AB →,CD →为相反向量;④AB CD →→=的充要条件是A 与C 重合,B 与D 重合.其中错误的个数为()A .1B .2C .3D .421.在空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OB 上,且3OM MB =,N 为AC 的中点,则NM =()A .131242a b c-+-B .121232a b c-++C .131242a b c++D .121232a b c-+22.如图,在平行六面体1111ABCD A B C D -中,1AA a =,AB b =,AD c =uuu r r点P 在1AC 上,且1:2:3A P PC =,则AP =().A .233555a b c++B .322555a b c++C .223555a b c-++D .322555a b c--【高分突破】一:单选题23.四棱锥P ABCD -中,底面ABCD 是平行四边形,点E 为棱PC 的中点,若23AE x AB yBC z AP =++,则x y z ++等于()A .1B .1112C .116D .224.已知正方体1111ABCD A B C D -中,11114AE A C =,若1()AE x AA y AB AD =++,则()A .1x =,12y =B .12x =,y =1C .1x =,13y =D .1x =,14y =25.如图,在平行六面体1111ABCD A B C D -中,M 在AC 上,且12AM MC =,N 在1A D 上,且12A N ND =.设AB a =,AD b =,1AA c =,则MN =A .111333a b c-++B .1133a b c+-C .112333a b c--D .1133a b c-++26.在四面体OABC 中,空间的一点M 满足1146OM OA OB OC λ=++,若M ,A ,B ,C 共面,则λ=()A .712B .13C .512D .1227.在正方体1111ABCD A B C D -中,若点M 是侧面11CDD C 的中心,且1AM x AA y AD z AB =-+,则,,x y z 的值分别为()A .12,1,12-B .12,1-,12-C .12-,1,12D .12,1-,1228.已知点P 为三棱O -ABC 的底面ABC 所在平面内的一点,且()12OP OA mOB nOC m n R =+-∈,,则m n ,的值可能为()A .112m n ==-,B .112m n ==,C .112m n =-=-,D .312m n =-=-,29.如图,在三棱柱111ABC A B C -中,M 为11AC 的中点,设1,,AB a AA c BC b ===,则下列向量与BM 相等的是()A .1122-++a b cB .1122a b c++C .1122a b c--+D .1122a b c-+30.空间A 、B 、C 、D 四点共面,但任意三点不共线,若P 为该平面外一点且5133PA PB xPC AD =--,则实数x的值为()A .13B .13-C .23D .23-31.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a =,11A D b =,1A A c =,则下列向量中与1B M 相等的向量是()A .1122-++a b cB .1122a b c++C .1122a b c-+D .1122a b c--+32.如图,在空间四边形OABC 中,OA a =,OB b =,OC c =.点M 在OA 上,且2OM MA =,N 是BC 的中点,则MN =()A .121232a b c-+B .211322a b c-++C .112223a b c+-D .221332a b c+-二、多选题33.如图所示,M 是四面体OABC 的棱BC 的中点,点N 在线段OM 上,点P 在线段AN 上,且3AP PN =,23ON OM =,设OA a =,OB b =,OC c =,则下列等式成立的是()A .1122OM b c =-B .1133AN b c a=+-C .113444AP b c a=--D .111444OP a b c=++34.已知正方体1111ABCD A B C D -的中心为O ,则下列结论中正确的有()A .OA OD +与11OB OC +是一对相反向量B .OB OC -与11OA OD -是一对相反向量C .OA OB OC OD +++与1111OA OB OC OD +++是一对相反向量D .1OA OA -与1OC OC -是一对相反向量35.如图,在正方体1111ABCD A B C D -中,下列各式中运算的结果为1AC uuu r的有A .AB BC CD++B .11111AA B C D C ++C .111AB C C B C -+D .111AA DC B C ++36.已知A ,B ,C 三点不共线,O 为平面ABC 外的任一点,则“点M 与点A ,B ,C 共面”的充分条件的是()A .2OM OA OB OC=--B .OM OA OB OC =+-C .1123OM OA OB OC =++D .111236OM OA OB OC =++三、填空题37.如果两个向量,a b 不共线,则p 与,a b 共面的充要条件是___________.38.已知非零向量1e ,2e 不共线,则使12ke e +与12e ke +共线的k 的值是________.39.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB +12BC -32DE -AD 化简的结果为________.40.已知点M 在平面ABC 内,并且对不在平面ABC 内的任意一点O ,都有1133AM xOA OB OC =++,则x 的值为_______.41.如图,M 是四面体OABC 的棱BC 的中点,点N 在线段OM 上,点P 在线段AN 上,且12MN ON =,34AP AN =,用向量OA ,OB ,OC 表示OP ,则OP =_______.四、解答题42.在空间四边形ABCD 中,连结AC 、BD ,BCD 的重心为G ,化简1322AB BC DG AD +--.43.如图所示,在三棱柱111ABC A B C -中,M 是1BB 的中点,化简下列各式:(1)1AB BA +;(2)111AB B C C C ++;(3)AM BM CB --;(4)112AA AB AM +-.44.如图,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且112A E ED =,F 在对角线A 1C 上,且123A F FC =,求证:E ,F ,B 三点共线.45.如图,已知,,,,,,,,O A B C D E F G H 为空间的9个点,且,,OE kOA OF kOB OH kOD ===,,,0,0AC AD m AB EG EH mEF k m =+=+≠≠,求证:(1),,,A B C D 四点共面,,,,E F G H 四点共面;(2)AC EG ∥;(3)OG kOC =.【答案详解】1.B【详解】有向线段可以表示向量,但不是向量,故①不正确;根据正方体1111ABCD A B C D -中,向量AC 与11AC 的方向相同,模也相等,则11AC AC=,故②正确;命题③显然正确;命题④不正确,向量的平行不具有传递性,比如当n 为零向量时,零向量与任何向量都平行,则,m n 不一定平行.故选B .2.B【详解】对于①,长度相等,方向也相同的向量才是相等的向量,两个单位向量,方向不同时,不相等,故①错误;对于②,长度相等且方向相反的两个向量是相反向量,仅仅方向相反不是相反向量,故②错误;对于③,向量是既有大小有有方向的量,向量的长度(模)能够比较大小,但向量不能比较大小的,故③错误;对于④,根据规定,零向量与任意向量都平行,故零向量是有方向的,只是没有确定的方向,故④错误;对于⑤,a b a b +≤+为向量模的不等式,由向量的加法的几何意义可知是正确的,故⑤正确.综上,正确的命题只有⑤,故选:B .3.D【详解】A 中,对于非零向量a ,b 平行,则a ,b 所在的直线平行或重合;B 中,||||a b =只能说明a ,b 的长度相等而方向不确定;C 中,向量作为矢量不能比较大小;D 中,由相等向量的定义知:方向必相同;故选:D.4.D【详解】因为点M ,N 分别是面对角线1A B 与11B D 的中点,DA a =,DC b =,1DD c =,所以11MN MB BB B N=++111111 22A B BB B D =++()()111122A A AB BB BC CD =++++()()1122c b c a b =-+++--()12c a =-故选:D.5.A【详解】空间四边形ABCD 各边及对角线长均为2,所以四边形ABCD 构成的四面体ABCD 是正四面体,四个面是等边三角形,因为E ,F ,G 分别是AB ,AD ,DC 的中点,所以//AC FG ,1//2AC FG ,()1122GE GB BE BC BD BA =+=-++,12GF CA =,所以()()1144GE GF BC BD BA CA BC CA BD CA BA CA ⋅=-+-⋅=-⋅+⋅-⋅()14BC CA BD BA BC BA CA ⎡⎤=-⋅+⋅--⋅⎣⎦()14BC CA BD BA BD BC BA CA =-⋅+⋅-⋅-⋅()1cos120cos 60cos 60cos 604BC CA BD BA BD BC BA CA =-⋅+⋅-⋅-⋅1111112222422222⎛⎫=--⨯+⨯-⨯-⨯= ⎪⎝⎭.故选:A.6.B解:因为2OM MA =,所以2233OM OA a ==,N 为BC 的中点,则()111222ON OB OC b c =+=+,()2121132322MN MO ON OA OB OC a b c =+=-++=-++.故选:B.7.A【详解】因为242BD BC CD a b AB =+=+=,所以//BD AB ,又,BD AB 有公共点B ,所以A 、B 、D 三点共线,故选项A 正确;显然,AB BC 不共线,所以A 、B 、C 三点不共线,故选项B 错误;显然,BC CD 不共线,所以B 、C 、D 三点不共线,故选项C 错误;因为48AC AB BC a b =+=-+,所以,AC CD 不共线,从而A 、C 、D 三点不共线,故选项D 错误.故选:A.8.B【详解】由,R a b λλ→→∀∈≠可知,a 与b 不共线,所以两条不同的直线,m n 不平行,可能相交,也可能异面,所以“,R a b λλ→→∀∈≠”不是“直线,m n 相交”的充分条件;由两条不同的直线,m n 相交可知,a 与b 不共线,所以,R a b λλ→→∀∈≠,所以“,R a b λλ→→∀∈≠”是“直线,m n 相交”的必要条件,综上所述:“,R a b λλ→→∀∈≠”是“直线,m n 相交”的必要不充分条件.故选:B.9.CA 中,若0b =,则a 与c 不一定共线;B 中,共面向量的定义是平行于同一平面的向量,表示这些向量的有向线段所在的直线不一定共面;C 中,∵0AB CD +=,∴AB CD =-,∴AB 与CD 共线,故//C B D A 正确;D 中,若0b =,0a ≠,则不存在λ,使a b λ=.故选:C10.B【详解】若1x y z ++=,且OM xOA yOB zOC =++,则()1OM xOA yOB x y OC =++--,则()()OM OC x OA OC y OB OC -=-+-,即xCA yCB CM =+,所以,点M 、A 、B 、C 共面.对于A 选项,1111222++≠,A 选项中的点M 、A 、B 、C 不共面;对于B 选项,111133-+=,B 选项中的点M 、A 、B 、C 共面;对于C 选项,1111++≠,C 选项中的点M 、A 、B 、C 不共面;对于D 选项,2111--≠,D 选项中的点M 、A 、B 、C 不共面.故选:B.11.C【详解】A 选项,三个非零向量能构成空间的一个基底,则三个非零向量不共面,故A 正确;B 选项,三个非零向量不共面,则此三个向量可以构成空间的一个基底,若两个非零向量与任何一个向量都不能构成空间的一个基底,则这三个向量共面,则已知的两个向量共线,如图,故B 正确;C 选项,∵满足c a b λμ=+r r r ,∴a ,b ,c 共面,不能构成基底,故C 错误,D 选项,因为OA 、OB 、OC 共起点,若O ,A ,B ,C 四点不共面,则必能作为空间的一个基底,故D 正确,故选C .12.A【详解】平行向量就是共线向量,它们的方向相同或相反,未必在同一条直线上,故①错.两条异面直线的方向向量可通过平移使得它们在同一平面内,故②错.三个向量两两共面,这三个向量未必共面,如三棱锥P ABC -中,,,PA PB PC 两两共面,但它们不是共面向量,故③错.根据空间向量基本定理,,,a b c 需不共面才成立,故④错.故选:A .13.D【详解】①:()111AB BC CC AC CC AC ++=+=,故①正确;②:()111111111AA A D D C AD D C AC ++=+=,故②正确;③:()1111111AB BB B C AB B C AC ++=+=,故③正确;④:()111111111AA A B B C AB B C AC ++=+=,故④正确.所以4个式子的运算结果都是1AC ,故选:D.14.C【详解】①中四点恰好围成一封闭图形,正确;②中当a 、b 同向时,应有a b a b +=+,故错误;③中a 、b 所在直线可能重合,故错误;④中需满足1x y z ++=,才有P 、A 、B 、C 四点共面,故错误.故选:C15.A【详解】因为m +n =1,所以m =1-n ,所以OP →=(1-n )·OA →+n OB →,即OP OA →→-=n (OB OA →→-),即AP n AB →→=,所以AP →与AB →共线.又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈直线AB .故选:A16.D【详解】如下图,由正方体性质知:面11//B CD 面1BDA ,要使面//BDP 面11B CD,∴P 在面1BDA 上,即1,,P B A 共面,又113AP AB AA λ=+,[]0,1λ∈,∴113λ+=,可得23λ=.故选:D17.D【详解】由题意:A C A A AB BC AA AB AD c a b a b c→→→→→→→'''=++=-++=-++=+-故选:D.18.A【详解】在四面体OABC 中,M ,N 分别是OA ,BC 的中点,()()11112222111111222222MN MA AN OA AB AC OA OB OA OC OA OA OB OC OA OB OC OA ∴=+=++=+-+-=++-=+-故选:A .19.C【详解】由向量的运算法则,可得CD CB BA AD CB AB AD a b c =++=-+=-++.故选:C.20.C【详解】①错误.两个空间向量相等,其模相等且方向相同,但与起点和终点的位置无关.②错误.向量的模可以比较大小,但向量不能比较大小.③正确.0AB CD →→→+=,得AB CD →→=-,且AB →,CD →为非零向量,所以AB →,CD →为相反向量.④错误.由AB CD →→=,知AB CD →→=,且AB →与CD →同向,但A 与C ,B 与D 不一定重合.故选:C21.A 【详解】()()31311314242242NM OM ON OB OA OC b a c a b c =-=-+=-+=-+-.故选:A22.B【详解】因为1:2:3A P PC =,可得1125A P A C =,根据空间向量的运算法则,可得111125AP AA A P AA A C =+=+112()5AA AC AA =+-1111323232322()()555555555AA AC AA AB BC AA AB AD AA AB BC =+=++=++==++,又由1AA a =,AB b =,AD c =uuu r r ,所以322555AP a b c =++.故选:B.23.B【详解】因为()AE AB BC CE AB BC EP AB BC AP AE=++=++=++-,所以2AE AB BC AP =++,所以111222AE AB BC AP =++,所以111,2,3222x y z ===,解得111,,246x y z ===,所以11111++24612x y z ++==,故选:B.24.D【详解】由空间向量的运算法则,可得11111111()44AE AA A E AA AC AA AB AD =+=+=++,因为1()AE x AA y AB AD =++,所以11,4x y ==.故选:D.25.A【详解】解:因为M 在AC 上,且12AM MC =,N 在1A D 上,且12A N ND =,所以13AM AC =,1123A N A D =,在平行六面体1111ABCD ABCD -中,AB a =,AD b =,1AA c =,所以AC a b =+u u u r r r ,1A D b c =-,所以11111233MN MA AA A N AC AA A D =++=-++12()()33a b c b c =-+++-111333a b c =-++,故选:A .26.A因为M ,A ,B ,C 共面,则11146λ++=,得712λ=.故选:A【点睛】本题考查空间四点共面定理,属于基础题型.27.D【详解】如图,在正方体中,AM AB BC CM =++,BC AD =,()()111122CM CD CC AB AA =+=-+,所以()112AM AB AD AB AA =++-+11122AB AD AA =++,所以12x =,1y =-,12z =故选:D28.C 【详解】()12OP OA mOB nOC m n R =+-∈,,且P ,A ,B ,C 共面,∴11122m n m n +-=⇒-=,只有1 12m n =-=-,符合,故选:C.29.A【详解】因为1,,AB a AA c BC b ===,如图,依题意,有()11111111111122BM BA AA A M BA AA A C BA AA B C B A =++=++=++-()111111122222BA AA BC BA AB BC AA a b c =++-=-++=-++.故选:A30.C【详解】因为空间A 、B 、C 、D 四点共面,但任意三点不共线,则AB m AC n AD =+,又点P 为该平面外一点,则()PA PB m PC PA nAD -=-+,所以(1)m PA PB mPC nAD +=++,又5133PA PB xPC AD =--,由平面向量的基本定理得:513x -=,即23x =,故选:C .31.A 如图,由空间向量的线性运算可得:()1111111111111222B M B B BM A A BD A A B D c A D A B =+=+=+=+-,()111222c b a a b c =+-=-++,故选:A32.B【详解】由题,在空间四边形OAB ,OA a =,OB b =,OC c =.点M 在OA 上,且2OM MA =,N 是BC 的中点,则1122ON c b =+.所以211322MN ON MO a b c =+=-++故选:B【点睛】本题主要考查空间向量加法与减法运算,需理解向量加法与减法的几何意义,属于基础题.33.BD【详解】由已知得,23AN ON OA OM OA =-=-211322OB OC OA ⎛⎫=+- ⎪⎝⎭1133OB OC OA =+-1133b c a =+-,分析各个选项:对于A ,利用向量的四边形法则,11112222OM OB OC b c =+=+,A 错;对于B ,利用向量的四边形法则和三角形法则,得23AN ON OA OM OA =-=-211322OB OC OA ⎛⎫=+- ⎪⎝⎭1133OB OC OA =+-1133b c a =+-,B 对;对于C ,因为点P 在线段AN 上,且3AP PN =,所以,411333AN AP b c a ==+-,所以,311114333444AP b c a b c a ⎛⎫=+-=+- ⎪⎝⎭,C 错;对于D ,113444OP OA AP a b c a =+=++-111444a b c =++,D 对故选:BD34.ACD∵O 为正方体的中心,∴1OA OC =-,1OD OB =-,故()11OA OD OB OC +=-+,同理可得()11OB OC OA OD +=-+,故()1111OA OB OC OD OA OB OC OD +++=-+++,∴A 、C 正确;∵OB OC CB -=uu u r uuu r uu r ,1111OA O A D D =-,∴OB OC -与11OA OD -是两个相等的向量,∴B 不正确;∵11OA OA AA =-,111OC OC C C AA -==-,∴()11OA OA OC OC -=--,∴D 正确.故选:ACD35.BCD【详解】A .1A AB BC CD AD C ++=≠,故错误;B .11111111111AA BC DC AA AD DC AC ++=++=,故正确;C .1111111111AB C C BC AB CC BC AB BB BC AC -+=++=++=,故正确;D .111111111AA DC BC AA AB BC AC ++=++=,故正确.故选:BCD.36.BD【详解】当MA m MB n MC =+时,可知点M 与点,,A B C 共面,所以()()MO OA m MO OB n MO OC +=+++,所以()1x y OM OA xOB yOC +-=-++,所以11111OA mOB nOC m n OM OA OB OC m n m n m n m n -++==-+++-+-+-+-,不妨令11x m n -=+-,1m y m n =+-,1n z m n =+-,且此时1x y z ++=,因为()()21101+-+-=≠,()1111++-=,111111236++=≠,1111236++=,由上可知:BD 满足要求.故选:BD.37.由空间向量共面定理可得,若向量,a b 不共线,则p 与,a b 共面的充要条件是存在实数对(),x y ,使p xa yb =+.故答案为:存在实数对(),x y ,使p xa yb =+.38.±1【详解】若12ke e +与12e ke +共线,则()1212ke e e ke λ+=+因为非零向量1e ,2e 不共线,所以1k k λλ=⎧⎨=⎩,即21k =,所以1k =±,故答案为:±139.0【详解】如图,取BC 的中点F ,连结DF ,则DF 必经过点E ,则32DF DE =,∴1322AB BC DE AD +--AB BF DF DA =+-+AF FD DA =++0=.故答案为:0.40.23-由题设,1133AM OM OA xOA OB OC =-=++,∴11(1)33OM x OA OB OC =+++,又,,,A B C M 共面,∴111133x +++=,可得23x =-.故答案为:23-41.111444OA OB OC ++【详解】由题意OP ()33132132=444434432OB OC OA AN OA ON OA OA OM OA ++=+-=+⨯=+⨯⨯=111444OA OB OC ++故答案为:111444OA OB OC ++42.0【详解】设E 为BC 的中点,则12BC BE =,又G 为BCD △的重心,则32DG DE =,所以()()130.22AB BC DG AD AB BE DE AD AB BE AD DE AE AE +--=+--=+-+=-=43.(1)11AB BA AA +=.(2)111111111AB B C C C A B B C C C AC ++=++=.(3)AM BM CB AM MB BC AC --=++=.(4)1102AA AB AM BM AB MA AB BM MA +-=++=++=.44.设1,,AB a AD b AA c ===,∵112A E ED =,123A F FC =,∴11123A E A D =,1125A F A C =,而11A D AD b ==∴123A E b =,111222()()()555A F AC AA AB AD AA a b c =-=+-=+-.∴1122()53EF A F A E a b c =-=--,又1123EB EA A A AB a b c =++=--,∴25EF EB =,即E ,F ,B 三点共线.45.证明:(1),0AC AD m AB m =+≠,∴A 、B 、C 、D 四点共面.,0EG EH mEF m =+≠,∴E 、F 、G 、H 四点共面.(2)()()()EF OH OE OF OE OD OA OB OA EG EH m m k km =+=-+-=-+-(),//k AD km AB k AD m AB k AC AC EG =+=+=∴.(3)()OG OE EG kOA k AC k OA AC kOC =+=+=+=.。
高考数学考点36 空间直角坐标系、空间向量及其运算

温馨提示:考点36 空间直角坐标系、空间向量及其运算1.(2014·广东高考理科)已知向量a=(1,0,-1),则下列向量中与a 成60°夹角的 是 ( ) A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)【解题提示】直接利用向量的夹角与数量积公式逐一验证.【解析】选B.(1,0,-1)·(-1,1,0)=-1,夹角不可能为60°,(1,0,-1)·(1,-1,0)=1,且|(1,0,-1)|=|(1,-1,0)|=,夹角恰好为60°.关闭Word 文档返回原板块高中数学公式及常用结论大全1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式()()()()card A B card B C card C A card A B C ---+(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->-⇔11()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表13.14.四种命题的相互关系互 否15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数. 22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=. (2)函数()y f x =图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. 26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+0()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm na a-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)n a =.(2)当n为奇数时,a =;当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.(2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a a m nm n +<.38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cosx x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ). 48.二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式 3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.51.正弦定理212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩2sin sin sin a b cR A B C ===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解 sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤.s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤. tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈. tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈. sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.61.a 与b 的数量积(或内积) a ·b =|a ||b |cos θ.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ). 65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λ a 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式 ''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小. (2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大. 73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-. 75.无理不等式(1)()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (2)2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (3)2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数. (2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直直线系方程0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左. 85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程. ②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b +=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b+=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b-=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 101.抛物线px y 22=上的动点可设为P ),2(2y py或或)2,2(2pt pt P P (,)x y ,其中22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-; (3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =. 105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <. 当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F bkx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ).(3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量. 117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA y MB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++. 121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e 122.向量的直角坐标运算 设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直 设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉=.推论 222222*********3123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量) 128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+. 特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+. 特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量). 132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ). 136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =',d EA AF =.d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =).139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比. 145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=,其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.(3) 球与正四面体的组合体: 棱长为a的正四面体的内切球的半径为,外接球的半径为4a . 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理)12n N m m m =+++.150.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤). 注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1m mn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n nA A mA -+=+.(6)1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质(1)m n C =mn n C - ;(2) m n C +1-m n C =m n C 1+.注:规定10=nC . 155.组合恒等式 (1)11m m n n n m C C m --+=;(2)1m m n n n C C n m -=-;(3)11mm nn n C C m--=; (4)∑=nr r n C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C .(6)n nn r n n n nC C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n nC C C C C C . (8)1321232-=++++n n n n n nn nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n nn p n p n n n m p m C C C N mm=⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n =1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m =⋅=-.。
2023年高考数学一轮复习精讲精练(新高考专用)专题38:空间向量及其运算 (练习版)

专题38:空间向量及其运算精讲温故知新1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b a λλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中(4)与a共线的单位向量为a±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习题库空间向量及其运算
空间向量及其运算
一.选择题
1.若{a,b,c}为空间的一组基底,则下列各项中,能构成基
底的一组向量是( ). A.{a,a+b,a-b} B.{b,a+b,a-b}
C.{c,a+b,a-b}
D.{a+b,a-b,a+2b} 解析若c.a+b.a-
b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则
a.b.c为共面向量,此与{a,b,c}为空间向量的一组基底矛盾,
故c,a+b,a-b可构成空间向量的一组基底. 答案 C
2.以下四个命题中正确的是( ). A.空间的任何一个向量都可
用其他三个向量表示 B.若{a,b,c}为空间向量的一组基底,则
{a+b,b+c,c+a}构成空间向量的另一组基底 C.△ABC为直角
三角形的充要条件是·=0 D.任何三个不共线的向量都可构成空
间向量的一组基底解析若a+b.b+c.c+a为共面向量,则a+b =λ(b+c)+μ(c+a),(1-μ)a=(λ-1)b+(λ+μ)c,λ,
μ不可能同时为1,设μ≠1,则a=b+c,则a.b.c为共面向
量,此与{a,b,c}为空间向量基底矛盾. 答案 B
3.有下列命题:①若p=xa+yb,则p与a,b共面;②若
p与a,b共面,则p=xa+yb. ③若=x+y,则P,M,A.B共
面;④若P,M,A,B共面,则=x+y. 其中真命题的个数是( ).
A.1
B.2
C.3
D.4 解析其中①③为正确命题. 答案 B
4. 如图,在底面ABCD为平行四边形的四棱柱ABCD-
A1B1C1D1中,M是AC与BD的交点,若=a,=b,=c则下列向量中与相等的向量是( )
A.-a+b+c
B.a+b+c
C.a-b+c
D.-a-b+c 解析=+=++=-a+b+c. 答案 A
5.如图所示,已知空间四边形OABC,OB=OC,且∠AOB=
∠AOC=,则cos〈,〉的值为( ). A.0 B. C. D. 解析设=a,=b,=c 由已知条件〈a,b〉=〈a,c〉=,且|b|=
|c|,·=a·(c-b)=a·c-a·b =|a||c|-|a||b|=0,
∴cos〈,〉=0. 答案 A
6.如图,在大小为45°的二面角A-EF-D中,四边形ABFE,CDEF都是边长为1的正方形,则B,D两点间的距离是( )
A. B. C.1 D. 解析=++,∴||2=||2+||2+||2+2·+2·+2·=1+1+1-=3-,故||=. 答案 D
7.下列命题中①若a∥b,b∥c,则a∥c;②不等式|a+b|<|a|+|b|的充要条件是a与b不共线;③若非零向量c垂直于不共线的向量a和b,d=λa+μb(λ.μ∈R,且λμ≠0),则c⊥d. 正确命题的个数是( ). A.0 B.1 C.2 D.3 解析只有命题③是正确命题. 答案 B
二.填空题
8.如图所示,已知空间四边形OABC,其对角线为OB.AC,M.N 分别为OA.BC的中点,点G在线段MN上,且=2,若=x+y+z,
则x,y,z的值分别为________________. 解析∵=+=+=
+(-)
=+-=+×(+)-× =++∴x,y,z的值分别为,,. 答案,,
9. 设R,向量,且,则解析 . 答案10.在平行六面体(即六个面都是平行四边形的四棱柱)ABCD-A′B′C′D′中,AB=1,AD=2,AA′=3,∠BAD=90°,∠BAA′=∠DAA′=60°,则AC′的长为________. 解析如图,=++=++,所以|AC′|
=||=|++| ===. 答案11.已知ABCD-A1B1C1D1为正方体,①(++)2=32;②·(-)=0;③向量与向量的夹角是60°;④正方体ABCD-A1B1C1D1的体积为|··|.其中正确命题
的序号是________. 解析由⊥,⊥,⊥⊥,得(++)2=3()2,
故①正确;②中-=,由于AB1⊥A1C,故②正确;③中A1B与
AD1两异面直线所成角为60°,但与的夹角为120°,故③不正确;④中|··|=0.故④也不正确. 答案①②12.如图,空间四
边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,
∠OAB=60°,则OA与BC所成角的余弦值等于________. X 解析设=a,=b,=c. OA与BC所成的角为θ,·=a(c-b)=a·c -a·b =a·(a+)-a·(a+)
=a2+a·-a2-a·=24-16. ∴cos θ===. 答案
三.解答题13.已知非零向量e1,e2不共线,如果=e1+e2,=2e1+8e2,=3e1-3e2,求证:A.B.C.D共面. 证明令λ(e1
+e2)+μ(2e1+8e2)+v(3e1-3e2)=0. 则(λ+2μ+3v)e1+(λ+8μ-3v)e2=0. ∵e1,e2不共线,∴易知是其中一组解,则-5++=0. ∴A.B.C.D共面.14.如右图,在棱长为a的正方体ABCD A1B1C1D1中,G为△BC1D的重心,
(1)试证A
1.G.C三点共线;
(2)试证A1C⊥平面BC1D;
(3)求点C到平面BC1D的距离. 解析
(1)证明=++=++,可以证明:=(++)=,∴∥即A
1.G.C三点共线.
(2)证明设=a,=b,=c,则|a|=|b|=|c|=a,且a·b=b·c=c·a=0,∵=a+b+c,=c-a,∴·=(a+b+c)·(c-a)=c2-a2=0,∴⊥,即CA1⊥BC1,同理可证:⊥,因此A1C⊥平面BC1D.
(3)
∵=a+b+c,∴2=a2+b2+c2=3a2,即||=a,因此||
=a.即C到平面BC1D的距离为a.15.把边长为a的正方形ABCD沿对角线AC折起成直二面角,点E.F分别是AD.BC的中点,点O是原正方形的中心,求:
(1)EF的长;
(2)折起后∠EOF的大小. 解析如图,以O点为原点建立空间直角坐标系O-xyz,则A(0,-a,0), B(a,0,0),C(0,a,0),D(0,0,a),E(0,-a,a), F(a,a,0).
(1)||2=2+2+2=a2,∴|EF|=a.
(2)=,=,·=0×a+×+a×0=-, ||=,||=,cos〈,〉==-,∴∠EOF=120°.16.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB.AD.CD的中点,计算:
(1)·;
(2)·;
(3)EG的长; (4)异面直线AG与CE所成角的余弦值. 解析设=a,=b,=c. 则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
(1)==c-a,=-a,=b-c,
(2)·=·(-a)
=a2-a·c=,·=(c-a)·(b-c)
=(b·c-a·b-c2+a·c)=-;
(3)=++=a+b-a+c-b =-a+b+c, ||2=a2+b2+c2-a·b+b·c-c·a =,则||=. (4)=b+c,=+=-b+a, cos〈,〉==-,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为.。