高一数学学习知识重点情况总结
高一数学的重点知识点总结

高一数学的重点知识点总结在高一数学学习中,有许多重点知识点需要注意和掌握。
下面将从数列与函数、平面向量和立体几何这三个方面总结出高一数学的重点知识点。
一、数列与函数1. 数列的概念与性质:数列的概念,通项公式,数列的性质(有界性、单调性、奇偶性、周期性)。
2. 等差数列:等差数列的概念与性质,通项公式,前n项和公式,求前n项和的应用。
3. 等比数列:等比数列的概念与性质,通项公式,前n项和公式,求前n项和的应用。
4. 递推数列:递推数列的概念与性质,求通项公式,求前n项和的方法及应用。
5. 函数的概念与性质:函数的定义,函数的图像与性质(单调性、奇偶性、周期性)。
6. 一次函数:一次函数表示与性质,函数图像与性质,求解一次方程与不等式。
7. 二次函数:二次函数的概念与性质,函数图像与性质,求解二次方程与不等式,二次函数的最值问题。
8. 已知函数求导:导数的概念与性质,常见函数求导的公式,复合函数的求导法则,参数方程求导。
9. 函数的应用:函数的模型与表示,函数的最值问题,函数的增减性与极值问题。
二、平面向量1. 平面向量的概念与性质:平面向量的定义,向量的模与方向,零向量与单位向量,平面向量的加法与减法,数量积与几何应用。
2. 平面向量的数量积:数量积的概念与性质,数量积的计算公式,平面向量之间的夹角。
3. 平面向量的几何应用:向量共线与垂直,向量的投影与单位向量,线段的中点与向量表示,平面向量的垂直平分线。
三、立体几何1. 立体几何的概念与性质:立体几何的基本概念,点、线、面的性质,立体交线的性质。
2. 空间几何体:立体的表面积与体积,直方体、长方体、正方体、棱锥、棱台等几何体的性质,几何体的应用。
3. 空间向量:空间向量的概念与性质,空间向量的加法与减法,数量积与向量夹角,立体几何的向量表示。
4. 空间点与平面:空间两点距离,空间三点共线问题,平面的方程与性质,平面相关问题的解决方法。
以上是高一数学的重点知识点总结,通过对这些知识点的熟练掌握和深入理解,能够为高一数学的学习打下坚实的基础。
高一数学知识点总结(15篇)

高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。
总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。
高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇函数。
2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。
高一数学知识点全部总结

高一数学知识点全部总结一、代数1.1 一元二次方程一元二次方程是高一数学的重点内容之一,一元二次方程的定义是形式为ax^2+bx+c=0的方程,其中a≠0。
解一元二次方程的方法有因式分解、配方法、公式法等。
1.2 不等式高一数学的不等式内容主要包括一元一次不等式、一元二次不等式以及一元三次不等式的求解方法,包括图像法、取值范围法、代数法等。
1.3 二次函数二次函数是高一数学代数部分的重点内容,涉及了函数的定义、性质、图像、极值、单调性、解析式等多个方面的内容。
1.4 基本初等函数高一数学还包括了基本初等函数的概念和性质,包括幂函数、指数函数、对数函数、三角函数等的定义、性质及其在实际问题中的应用。
1.5 绝对值函数绝对值函数也是高一数学中的一个重要内容,主要包括了绝对值函数的性质、图像及其在实际问题中的应用。
1.6 平面直角坐标系中的直线和圆平面直角坐标系中的直线和圆也是高一数学的重要内容,主要包括了直线的方程、性质、圆的方程、性质及其在实际问题中的应用。
1.7 数列数列也是高一数学的一个重要内容,包括等差数列、等比数列、递推数列等的概念、性质、求和公式及其在实际问题中的应用。
1.8 集合与函数高一数学的内容还包括了集合的基本概念、基本运算、集合的关系和函数的概念、性质、运算、基本初等函数的图像等内容。
1.9 二项式定理二项式定理是高一数学中的一个重要概念,包括二项式的展开式、二项式系数、二项式定理的应用等方面的内容。
1.10 逻辑与命题关系逻辑与命题关系也是高一数学的一个知识点,主要包括了命题、充分必要条件、等价命题、逻辑联结词、命题公式等内容。
二、几何2.1 几何图形的性质高一数学的几何内容主要包括了基本的几何图形的性质,包括直线、角、三角形、四边形、圆等的基本性质、判定方法和应用题。
2.2 相似三角形相似三角形是高一数学中的重点内容,主要包括了相似三角形的性质、判定方法及其在实际问题中的应用。
高一数学知识点重点总结

高一数学知识点重点总结数学,作为一门科学的基础学科,对于高中学生来说是必修课程之一。
在高一这个学习阶段,我们将接触到许多新的数学知识点,包括代数、几何、概率等。
本文将对高一数学知识点进行重点总结,以便同学们能够更好地掌握和复习这些知识。
一、代数1. 数的性质与运算:数的分类、数的加减乘除运算、运算性质、整数、有理数等。
这是代数学习的基础,需要同学们牢固掌握。
2. 一元二次方程:解一元二次方程的方法、韦达定理、求根公式的应用等。
一元二次方程是高中数学的重点,同学们需要理解其原理,并能够熟练运用解题。
3. 幂指数运算:幂的性质、指数函数的概念与性质、幂指数运算的法则等。
幂指数运算是高中数学中的重要内容,同学们需掌握幂的运算法则,并能够灵活应用于解题。
二、几何1. 图形的性质:三角形、四边形、圆的性质和判定方法,如三角形的内角和、直角三角形的性质、圆与直线的交点等。
2. 三角函数:正弦、余弦、正切等三角函数的定义与性质,解三角函数的基本方程等。
三角函数是几何中的重要概念,同学们需要掌握三角函数的定义及其运用。
3. 向量:向量的定义与性质、向量的运算、向量的共线性与垂直等。
向量是几何中的重要工具,同学们需要能够利用向量解决几何问题。
三、概率1. 随机事件与概率:随机事件的概念、基本事件、必然事件与不可能事件、概率的定义与性质等。
概率是数学中的重要分支,同学们需要理解概率的概念和计算方法。
2. 离散型随机变量与概率分布:随机变量的概念、离散型随机变量与连续型随机变量的区别、概率分布的计算等。
随机变量和概率分布是概率中的重要内容,同学们需要能够理解和应用概率分布相关的知识。
3. 统计图表与统计指标:频数分布表、直方图、折线图、饼图等统计图表的制作与分析,中心值与离散程度等统计指标的计算与应用。
统计图表和统计指标是概率中的重要内容,同学们需要能够根据给定数据制作统计图表,并能够运用统计指标进行数据分析和判断。
高一数学知识点总结归纳9篇

高一数学知识点总结归纳9篇第一篇:函数与导数高一数学中的第一个重点是函数与导数。
函数是数学中非常重要的概念,它描述了变量之间的关系。
函数可分为多种类型,如一次函数、二次函数、指数函数和对数函数等。
导数是函数的一个重要性质,它描述了函数在某一点的变化率。
导数的计算方法有一元函数求导和常见函数求导等。
第二篇:二次函数与一元二次方程接下来,在高一数学中学习的另一个知识点是二次函数与一元二次方程。
二次函数是一种特殊类型的函数,其最高次项为二次。
掌握二次函数的图像、顶点、对称轴等特性,能够更好地理解它的性质。
一元二次方程是二次函数的一个具体应用,通过解一元二次方程可以求得未知数的值,是解决实际问题的重要数学方法。
第三篇:平面几何与向量平面几何与向量也是高一数学的重点之一。
平面几何是研究点、直线、圆等在平面上的关系和性质。
在学习平面几何时,需掌握如何证明两个三角形相似、如何证明两条直线垂直等内容。
向量是一种具有大小和方向的量,可以用来表示平面上的位移、力等。
掌握向量的加减、数量积和向量积等运算,能够解决一些几何问题。
第四篇:立体几何在高一数学中还要学习立体几何的相关知识。
立体几何是研究点、线、面在空间中的关系和性质。
学习立体几何时,需了解如何计算几何体的体积和表面积,如三棱锥、四棱锥和球等。
同时,还要熟练掌握一些立体几何的性质,如平行四边形的性质、平行线的性质等。
第五篇:三角函数与三角恒等变换高一数学还涉及三角函数与三角恒等变换的学习。
三角函数是研究角与边之间关系的函数,常见的三角函数有正弦函数、余弦函数和正切函数等。
掌握三角函数的性质和图像变化规律,能够解决一些相关的几何问题。
此外,还需掌握一些重要的三角恒等变换,如和差化积、倍角公式,以及三角函数的图像变换等。
第六篇:排列组合与概率在高一数学中,学习排列组合与概率也是必不可少的。
排列组合是研究多个元素组合的方法和问题。
掌握排列、组合和二项式定理等的计算方法,能够解决一些实际问题,如抽奖、选课等。
高一数学知识点总结范文(五篇)

高一数学知识点总结范文一、直线与方程(1)直线的倾斜角定义:____轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与____轴平行或重合时,我们规定它的倾斜角为____度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时。
当时,;当时,不存在。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于____1,所以它的方程是____=____1。
②斜截式:____,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)⑤一般式:(A,B不全为0)注意:○1各式的适用范围○2特殊的方程如:平行于____轴的直线:(b为常数);平行于y轴的直线:(a为常数);(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系(ⅰ)斜率为k的直线系:____,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。
(5)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(6)两条直线的交点相交交点坐标即方程组的一组解。
高一数学知识点归纳整理总结

高一数学知识点归纳整理总结数学作为一门基础学科,是学生在高中阶段必修的科目之一。
在高一学年,学生们接触到了许多新的数学知识点,这些知识点的掌握对于学生的学习进度和理解能力至关重要。
因此,本文将对高一数学知识点进行归纳整理总结,帮助同学们更好地掌握这些知识。
一、代数与函数1.1 代数基础知识高一数学的代数部分主要包括集合与运算、数集与数系、代数式的概念、整式与分式、因式分解与根式等内容。
1.2 一元一次方程与不等式一元一次方程与不等式是代数部分的重点内容,包括一元一次方程与一元一次不等式的解法,以及应用题的解题策略等。
1.3 二次函数与一元二次方程二次函数与一元二次方程是高一数学的核心内容之一。
学习二次函数的图像、性质、变形与图像应用等,以及一元二次方程的解法与应用。
1.4 一次函数与不等式一次函数与不等式是数学中常见的函数与方程类型。
学习一次函数与一次不等式的图像、性质、变形与应用等内容。
1.5 分式与分式方程分式与分式方程是高一数学中的拓展内容。
学习分式的性质与简化、分式方程的解法与应用,以及分式不等式的解法与应用等。
二、几何与向量2.1 平面几何初步平面几何是高中数学的重要组成部分。
学习平面图形的性质、判定方法,以及平面几何相关定理的证明与应用等。
2.2 相似与全等三角形相似与全等三角形是几何部分的核心内容。
学习相似三角形的判定、性质与应用,以及全等三角形的判定与证明等。
2.3 解析几何初步解析几何是高中数学的重要内容之一。
学习平面直角坐标系与距离公式,直线和曲线的方程,以及解析几何在平面几何中的应用。
2.4 向量初步向量是几何部分的重要内容。
学习向量的基本概念、运算规则,以及向量的线性运算、数量积与向量积的性质与应用。
三、概率与统计3.1 随机事件的概率概率与统计是数学的实际应用部分。
学习随机事件的概念、概率计算方法,以及概率在实际问题中的应用。
3.2 统计与统计图表统计与统计图表是高一数学的重点内容。
高一数学所有知识点总结归纳

高一数学所有知识点总结归纳高一数学是学生在高中阶段学习数学的第一年,是基础扎实、知识积累的重要阶段。
在这一年里,学生将接触到许多数学的基本概念和方法,并逐渐拓展自己的数学思维。
为了让大家更好地复习和巩固基础知识,本文将对高一数学的所有知识点进行总结归纳。
一、集合与函数1. 集合的基本概念- 集合的定义、元素和特点- 空集、全集和子集- 并集、交集和差集的运算2. 函数与映射- 函数的定义和性质- 函数的分类及其表示法- 函数的运算、复合函数和反函数3. 集合与函数的应用- 关系与函数的区别与联系- 函数在实际问题中的应用二、数列与数列的极限1. 数列的概念与表示- 数列的定义和性质- 等差数列和等比数列2. 数列的通项与前n项和- 递推公式与通项公式- 前n项和的计算和性质3. 数列的极限- 数列极限的概念及性质- 数列极限的计算和判断三、平面向量与解析几何1. 平面向量的基本概念- 平面向量的定义和性质- 平面向量的线性运算和数量积2. 平面向量的应用- 向量的共线与垂直- 向量的模、夹角和投影- 平面向量在几何中的应用3. 解析几何- 平面直角坐标系与向量表示- 直线和圆的方程- 直线与圆的性质和判断条件四、三角函数与三角恒等变换1. 三角函数的定义和性质- 正弦、余弦、正切等基本概念- 三角函数的周期性和奇偶性2. 三角函数的运算- 三角函数的和差、倍角、半角公式 - 三角函数的积化和差化积3. 三角恒等变换- 三角函数的恒等变换及证明- 三角方程的解法和应用五、数系与方程1. 实数与复数- 实数的性质与运算- 复数的定义和运算2. 一次方程和二次方程- 一次方程和一元二次方程的概念- 一次方程和一元二次方程的解法和应用3. 不等式与绝对值- 不等式的性质和解法- 绝对值的定义和性质总结:高一数学涉及的知识点非常广泛,本文对集合与函数、数列与数列的极限、平面向量与解析几何、三角函数与三角恒等变换、数系与方程等方面进行了总结归纳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学知识总结必修一一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a、b属于Q)指数函数对称规律:1、函数y=a^x与y=a^-x关于y轴对称2、函数y=a^x与y=-a^x关于x轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称 幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数)0(2≠++=a c bx ax y .(1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=bxax无实根,二次函数的图象与x轴无交点,二+c+次函数无零点.三、平面向量已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。
零向量与任意向量的数量积为0。
a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
四、三角函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法15、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x = tan y x =图象定义域 RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数 奇函数函 数 性 质单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴必修四角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z o o o第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z o ooo第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Zo o o o第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z oooo终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z oo 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z o4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,α终边所落在的区域.则α原来是第几象限对应的标号即为n5、长度等于半径长的弧所对的圆心角叫做1弧度.口诀:奇变偶不变,符号看象限.(以上k∈Z)其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα•tanβtanα-tanβtan(α-β)=——————1+tanα•tanβ倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα万能公式⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)和差化积公式⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----•cos—---2 2α+βα-βsinα-sinβ=2cos—----•sin—----2 2α+βα-βcosα+cosβ=2cos—-----•cos—----- 2 2α+βα-βcosα-cosβ=-2sin—-----•sin—----- 2 2。