带式输送机传动装置课程研究设计
机械设计基础课程设计带式输送机传动装置

机械设计基础课程设计带式输送机传动装置1. 设计选型:根据输送机的工作条件和要求,选择适当的传动装置。
常见的传动装置有齿轮传动、皮带传动和链传动等。
根据不同的需求,选择最合适的传动方式。
2. 齿轮传动:确定所需的传动比,根据输送机的工作要求和输送物料的性质,选择合适的齿轮传动比。
根据传动比,选择合适的主动轮和从动轮,确定齿轮的齿数和模数。
3. 皮带传动:确定所需的传动比和输送机的工作负载。
根据传动比和工作负载,选择合适的皮带类型和尺寸。
确定传动皮带的张紧装置和调节装置,以确保传动的稳定性和可靠性。
4. 链传动:根据输送机的工作负载和工作条件,选择合适的链传动类型和尺寸。
确定链条的张紧装置和轴的安装方式,以确保传动的稳定性和可靠性。
5. 设计传动结构:根据选定的传动方式,设计传动结构。
考虑到力学特性和布局要求,确定传动装置的位置和连接方式。
6. 传动系统的计算:根据输送机的工作条件和要求,进行传动系统的计算。
计算传动比、转速、功率等参数,确保传动装置满足输送机的工作要求。
7. 传动装置的选材和制造:根据传动装置的工作负荷和工作环境,选择合适的材料。
设计传动装置的零件尺寸并进行制造。
8. 装配和测试:按照设计图纸,完成传动装置的装配。
进行传动装置的测试,确保传动系统的正常运转和稳定性。
9. 优化和改进:根据测试结果和用户反馈,对传动装置进行优化和改进。
确保传动装置的性能和可靠性达到预期要求。
以上是一种可能的设计方案,具体的设计步骤和方法会因具体的工作条件和要求而有所不同。
在实际设计过程中,还需注意安全性、可维护性和成本等因素的考虑。
同时,还需具备合理的设计思路和实际操作能力,以提高设计的准确性和有效性。
带式输送机传动装置课程设计报告书

带式输送机传动装置课程设计报告书一、课程设计目的和任务本次课程设计旨在加深学生对带式输送机及其传动装置的理解,培养学生工程实践能力,提高学生的设计能力和团队合作能力。
具体任务包括对带式输送机传动装置进行设计,并采用实物模型进行实验验证。
二、课程设计内容和步骤1.确定课程设计题目:带式输送机传动装置的设计。
2.了解带式输送机传动装置的基本原理和工作方式。
3.进行相关理论知识的学习,包括带式输送机的结构、基本参数、运行原理以及传动装置的选择和设计原则。
4.进行市场调研,了解不同类型的带式输送机传动装置的应用和发展趋势。
5.根据所学的理论知识和市场调研结果,进行带式输送机传动装置的设计。
6.制作带式输送机的实物模型,并进行相应的实验验证。
7.对实验结果进行分析和总结,提出改进意见。
8.撰写课程设计报告书。
三、课程设计过程和经验1.团队分工:根据每个人的专长和兴趣,合理分配任务,确保各个环节的顺利进行。
2.实物模型制作:在实物模型制作过程中,要注意选用合适的材料和工具,并严格按照设计图纸进行制作。
3.实验验证:在进行实验验证时,要严格控制变量,确保实验结果的准确性。
4.报告撰写:在撰写报告书时,要按照规范的格式,清晰地叙述设计过程和实验结果,并结合理论知识进行分析和总结。
四、课程设计成果和效果通过本次课程设计,学生对带式输送机传动装置的工作原理和设计方法有了更深入的理解,并通过实验验证了设计的可行性。
同时,培养了学生的工程实践能力、团队合作能力和创新思维能力。
课程设计报告书的撰写和展示,进一步提高了学生的表达能力和综合素质。
五、存在问题和改进措施本次课程设计中存在的问题主要是时间紧张,设计深度不够。
为了提高后续课程设计的质量,可以增加课程设计的时间,加强理论学习和市场调研的深度,提高实物模型的制作工艺和实验验证的精度。
六、课程设计总结通过本次课程设计,我深入学习了带式输送机传动装置的设计原理和方法,并通过实验验证了设计的可行性。
机械设计课程设计带式输送机的传动装置设计(1)

机械设计课程设计带式输送机的传动装置设计(1)概述:带式输送机是一种常见的输送设备,广泛应用于各种工业领域,具有传输距离长、传输量大和连续自动化等优点。
本文是机械设计课程设计所涉及到的传动装置设计,重点介绍带式输送机传动装置的设计理念、构造特点、传动比计算等内容。
一、设计理念带式输送机传动装置的设计主要涉及两方面的问题,即传动装置的选择和传动比的计算。
其中,传动装置的选择要考虑传动功率、输出转速、轴心高度和轴向距离等因素,传动比的计算则要综合考虑驱动轮和从动轮的直径比、角速度比和线速度比等因素。
二、构造特点1. 驱动装置:带式输送机传动装置通常采用电机-减速器-联轴器的结构。
电机的功率和转速根据输送机的设计要求和工作条件确定,减速器的轴心高度和减速比应根据输送机的安装及使用情况确定,联轴器用于连接电机输出轴和减速器输入端的轴。
2. 驱动鼓:驱动鼓是带式输送机传动装置中的核心部件,通常由驱动轮、轮辋、轮胎、轴承和支承架等组成。
驱动轮应满足耐磨损、耐腐蚀、轻质高强等特点,轮胎应具有优良的弹性和良好的抗拉强度,轮辋应具有优良的抗弯和抗拉强度,轴承和支承架则应具有良好的承载能力和维修便利性。
3. 从动鼓:从动鼓是带式输送机传动装置中的另一核心部件,用于支撑输送带和改变输送带的运动方向。
通常由从动轮、轮辋、轮胎、轴承和支承架等组成。
从动轮应满足耐磨损、耐腐蚀、轻质高强等特点,轮胎应具有优良的弹性和良好的抗拉强度,轮辋应具有优良的抗弯和抗拉强度,轴承和支承架则应具有良好的承载能力和维修便利性。
三、传动比计算传动比计算是带式输送机传动装置设计的关键环节,是保证带式输送机传动效率和工作稳定的重要保障。
传动比的计算应根据驱动轮和从动轮的直径比、角速度比和线速度比等因素进行。
其中,直径比为驱动鼓和从动鼓的直径比,角速度比为驱动鼓和从动鼓的角速度比,线速度比为驱动鼓和从动鼓的线速度比。
结语:带式输送机传动装置设计是一项复杂的工程,需要综合考虑多方面的因素。
机械设计课程设计--设计一带式输送机传动装置

机械设计课程设计--设计一带式输送机传动装置带式输送机传动装置,包含带轮、电机、传动机构、减速机等元件,是将物体从一端传送到另一端的运输工具。
一、带轮带轮的材料有橡胶、皮革、金属、塑料等多种。
其中橡胶带轮特别适用于低速、低载荷的应用,具有耐腐蚀、耐温度的优点,不易漏油、防滑,寿命长;而皮革带轮具有耐高温、透气性高、耐磨损的优点,广泛应用在汽车行业及电子行业测试机中;而金属带轮能经受高负荷、大扭矩,可满足高速度高负荷及高速度低负荷的要求;塑料带轮具有耐磨损、抗刮耐磨、轻重量的特点,适用于中低速的传动,具有节能的效果。
二、电机电机是带式输送机传动装置的核心元件,主要用于带式输送机所需的动力输出。
常用的电机有直流电机、交流电机及异步电机等,其中异步电机属高效率电机,具有功率大、开路启动电流小、抗干扰性能强、定子电路接线方便、行程可任意设定等优点,是近几年受到广泛认可的新型电机。
三、传动机构带式输送机传动装置的传动机构通常有滑动型、链式型及皮带式传动机构三种。
滑动型传动机构的特点是能够实现可控制的传动精度及调速范围,广泛应用在微电脑控制的机器人系统中;链式传动机构具有结构简单、装卸方便、承载能力强等特点,是裂变、压接、锻造机械设备的特殊传动;皮带式传动机构具有多段可调,多比例传动、转速大等优点,能够实现转速的连续改变,广泛应用于汽车、电子行业。
四、减速机减速机是带式输送机传动装置的重要组成部分,主要用于将高速的输入,降低到适合输出的倍数速度,多用于将电机高速的输出降到适用于驱动带轮的速度。
常见的减速机主要有齿轮减速机、齿条减速机、蜗杆减速机、摆线针轮减速机及柔性联轴器等。
齿轮减速机效率较高,耐磨性能好,但噪音较大,价格会高些;齿条减速机主要用于箱式结构传动机构,其传动量大,承重能力强;蜗杆减速机有较大的承载能力,适用于短距离的大扭矩传动;摆线针轮减速机属螺旋传动,承载能力较差,但整机噪音低,安全可靠;柔性联轴器能够实现输入转轴与输出轴的旋转同步,减少回转摆动的影响,属于特种传动装置。
带式输送机传动装置课程设计方案(2)

1.传动装置的总体方案设计1.1 传动装置的运动简图及方案分析1.1.1运动简图表1—1 原始数据1.1.2方案分析该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。
减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。
齿轮相对于轴承不对称,要求轴具有较大的刚度。
高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。
原动机部为Y系列三相交流异步电动机。
总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。
1.2电动机的选择1.2.1电动机的类型和结构形式电动机选择Y 系列三相交流异步电动机,电动机的结构形式为封闭式。
1.2.2确定电动机的转速由于电动机同步转速愈高,价格愈贵,所以选取的电动机同步转速不会太低。
在一般 械中,用的最多的是同步转速为1500或1000min /r 的电动机。
这里1500min /r 的电动机。
1.2.3确定电动机的功率和型号 1.计算工作机所需输入功率1000P Fvw =由原始数据表中的数据得kW kW w 525.5100085.0105.6P 3=⨯⨯=2.计算电动机所需的功率)(P d kWη/P d w P =式中,η为传动装置的总效率n ηηηη⋅⋅⋅=21式子中n ηηη,,21分别为传动装置中每对运动副或传动副的效率。
带传动效率95.01=η 一对轴承效率99.02=η 齿轮传动效率98.03=η 联轴器传动效率99.04=η 滚筒的效率96.05=η总效率84.096.099.098.099.095.023=⨯⨯⨯⨯=ηkW kW P w 58.684.0525.5/P d ===η 取kW 5.7P d = 查[2]表9—39得 选择Y132M —4型电动机电动机技术数据如下:额定功率kW)(:kW 5.7 满载转速r/min)(:r/min 1440 额定转矩)/m N (:m N /2.2 最大转矩)/m N (:m N /2.2运输带转速min /4.4635.014.385.06060r D v n =⨯⨯==π 1.3计算总传动比和分配各级传动比1.3.1确定总传动比w m n n i /=电动机满载速率m n ,工作机所需转速w n 总传动比i 为各级传动比的连乘积,即n i i i i ⋅⋅⋅=211.3.2分配各级传动比 总传动比314.461440/===w m n n i 初选带轮的传动比5.21=i ,减速器传动比4.125.231==i 取高速级齿轮传动比2i 为低速级齿轮传动比3i 的1.3倍,所以求的高速级传动比2i =4,低速级齿轮传动比3i =3.11.4计算传动装置的运动参数和动力参数1.4.1计算各轴的转速传动装置从电动机到工作机有三个轴,依次为I,II,III 轴。
课程设计-带式输送机传动装置设计

课程设计-带式输送机传动装置设计.pdf本文档旨在介绍带式输送机传动装置设计的背景和目的。
带式输送机是一种广泛应用于工业领域的物料输送设备,其传动装置的设计对其运行效果和运输能力具有重要影响。
本文将详细阐述带式输送机传动装置设计的原则和方法,包括传动装置的选择、布置和参数设计等方面。
通过合理的传动装置设计,可以提高带式输送机的工作效率、安全性和可靠性,将有助于提高生产效益和减少资源浪费。
引言带式输送机传动装置的重要性传动装置的选择原则传动装置的布置设计传动装置的参数设计结论参考文献请参阅附件中的《课程设计-带式输送机传动装置设计.pdf》了解更多详细内容。
本文旨在阐述带式输送机传动装置的基本原理和工作机制。
带式输送机传动装置是用于将物料从一个地方输送到另一个地方的重要设备。
其基本原理是利用驱动装置通过传动装置,将输送带带动物料沿输送线路运动。
主要的传动装置包括电动机、减速器和输送带。
电动机作为动力源,将电能转化为机械能,驱动减速器工作。
减速器则通过齿轮的传动,调节转速和扭矩,将电动机输出的转速和扭矩适应到输送带所需的范围。
最后,输送带将物料放置在上面,通过滚筒的转动将物料由一个地方输送到另一个地方。
带式输送机传动装置的工作机制是一个连续的过程。
当电动机启动后,动力通过减速器传递到输送带,使其开始运动。
输送带在滚筒的帮助下,将物料从一个地方平稳地移动到另一个地方。
这种运输方式具有高效、连续、安全的特点,广泛应用于矿山、港口、物流等领域。
总之,带式输送机传动装置的基本原理是通过电动机和减速器驱动输送带,实现物料的输送。
了解和掌握这些基本原理和工作机制对于合理设计和使用带式输送机传动装置具有重要意义。
本文档列举设计带式输送机传动装置时需要考虑的各种要求和限制条件。
功率要求:传动装置应能满足带式输送机所需的功率输出要求。
速度要求:传动装置应能适应带式输送机工作时所需的速度变化。
载荷要求:传动装置应能承受带式输送机运输物料的重量。
皮带输送机传动装置-课程设计

皮带输送机传动装置-课程设计1. 引言皮带输送机传动装置在物流、矿山等行业中起着重要的作用。
本文旨在通过课程设计来探讨皮带输送机传动装置的设计原理和相关要点。
2. 传动装置的选择选择合适的传动装置对于皮带输送机的正常运行至关重要。
在选择传动装置时,需要考虑以下几个因素:- 载荷能力:根据输送机的载荷,选择能够承受该载荷的传动装置。
- 传动效率:选用高效率的传动装置以减少能量损失和提高运行效率。
- 使用环境:根据使用环境的特点选择耐用、适应性强的传动装置。
- 维护成本:考虑传动装置的维护成本,选择易于维护和维修的装置。
3. 传动装置的设计原理传动装置的设计原理主要包括以下几个方面:- 驱动装置:选择适当的驱动装置,如电动机、液压马达等。
- 传动系统:确定传动装置的传动比、传动方式,如齿轮传动、链条传动等。
- 结构设计:设计传动装置的结构,保证其稳定性和安全性。
- 辅助装置:考虑加装辅助装置,如制动器、紧固装置等,以提高传动装置的性能。
4. 课程设计要点在进行课程设计时,应注意以下要点:- 确定课程设计目标和任务,明确设计要求和限制条件。
- 进行必要的理论研究,了解有关的知识和技术。
- 选择合适的设计方案,进行相关计算和分析。
- 绘制传动装置的设计图纸,详细标注各部件和参数。
- 进行模拟仿真或实物模型试验,验证设计的可行性和稳定性。
- 对设计结果进行评估和改进,提出可行的改进建议。
5. 总结通过课程设计分析和探讨皮带输送机传动装置的设计原理和要点,可以帮助我们更好地理解和应用相关知识。
在课程设计过程中,应注重理论研究、实践探索和创新思维,以提高设计的准确性和可行性。
课程设计--设计一带式输送机传动装置

机电工程学院机械设计课程设计题目名称设计一带式输送机传动装置课程名称机械设计课程设计学生姓名学号班级指导教师2012年6月18日一、课题题目设计—带式输送机传动装置传动简图如图1所示。
工作条件:连续单向运转,载荷平稳,空载起动,使用10年(每年300个工作日),小批量生产,两班制工作,输送机工作轴转速允许误差为±5%。
带式输送机的传动效率为0.96。
图1 带式输送机传动简图图2 电动机带式输送机的设计参数:输送带的牵引力1.25kN;输送带的速度为:1.8m/s;输送带滚筒的直径250mm。
简图1中的1、2、3、4、5、6分别为:1、电动机;2、三角带传动;3、减速器;4、联轴器;5、传动滚筒;6、皮带运输机。
单根V带额定功率的增量,参考教材第八版《机械设计》表8—4b 单根普通V带额定功率的增量∆P0,第153页,经计算得∆P0=0.02KW,K a为包角不等于1800时的修正系数,参考教材第八版《机械设计》表8—5 包角的修正系数,第155页,经计算得K a=0.96,K L为当带长不等于实验规定的特定带长时的修正系数,参考教材第八版《机械设计》表8—2 V带的基准长度系列及长度系数K L,第146页,K L=0.93,则,Z=P ca/P r=K A P/[(P0+∆P0)×K a×K L]=3.6/[(0.78+0.02)×0.96×0.93]≈5.04≤10为了使各根V带受力均匀,带的根数不宜过多,一般少于10根,经鉴定,符合要求,Z取6。
⑦确定带的初拉力F0下式中,q为传动带单位长度的质量,kg/m,参考教材第八版《机械设计》表8—3 V带单位长度的质量,第149页,得p=0.1kg/m。
F0min=500×(2.5-Ka)Pca/Kazv+qv2=500×(2.5-0.96)×3.6/(0.96×6×5.02)+0.1×5.022≈98.39N对于新安装的V带,初拉力为1.5F0min;对于运转后的V带,初拉力应为1.3F0min,则初拉力应选F0=1.5F0min。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2)原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;滚筒直径D=220mm。
运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.99×0.95=0.86(2)电机所需的工作功率:Pd=FV/1000η总=1700×1.4/1000×0.86=2.76KW3、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×1.4/π×220=121.5r/min根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min符合这一范围的同步转速有960 r/min和1420r/min。
由【2】表8.1查出有三种适用的电动机型号、如下表方案电动机型号额定功率电动机转速(r/min)传动装置的传动比KW 同转满转总传动比带齿轮1 Y132s-6 3 1000 960 7.9 3 2.632 Y100l2-43 1500 1420 11.68 3 3.89综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。
方案2适中。
故选择电动机型号Y100l2-4。
4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/121.5=11.682、分配各级传动比(1)取i带=3(2)∵i总=i齿×i 带π∴i齿=i总/i带=11.68/3=3.89四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=473.33(r/min)nII=nI/i齿=473.33/3.89=121.67(r/min)滚筒nw=nII=473.33/3.89=121.67(r/min)2、计算各轴的功率(KW)PI=Pd×η带=2.76×0.96=2.64KWPII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW3、计算各轴转矩Td=9.55Pd/nm=9550×2.76/1420=18.56N?mTI=9.55p2入/n1 =9550x2.64/473.33=53.26N?mTII =9.55p2入/n2=9550x2.53/121.67=198.58N?m五、传动零件的设计计算1、皮带轮传动的设计计算(1)选择普通V带截型由课本[1]P189表10-8得:kA=1.2 P=2.76KWPC=KAP=1.2×2.76=3.3KW据PC=3.3KW和n1=473.33r/min由课本[1]P189图10-12得:选用A型V带(2)确定带轮基准直径,并验算带速由[1]课本P190表10-9,取dd1=95mm>dmin=75dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm由课本[1]P190表10-9,取dd2=280带速V:V=πdd1n1/60×1000=π×95×1420/60×1000=7.06m/s在5~25m/s范围内,带速合适。
(3)确定带长和中心距初定中心距a0=500mmLd=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×500+3.14(95+280)+(280-95)2/4×450=1605.8mm根据课本[1]表(10-6)选取相近的Ld=1600mm确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2=497mm(4) 验算小带轮包角α1=1800-57.30 ×(dd2-dd1)/a=1800-57.30×(280-95)/497=158.670>1200(适用)(5)确定带的根数单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KWi≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得△P1=0.17KW查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99Z= PC/[(P1+△P1)KαKL]=3.3/[(1.4+0.17) ×0.94×0.99]=2.26 (取3根)(6) 计算轴上压力由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062=134.3kN则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)=791.9N2、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。
查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=3.89取小齿轮齿数Z1=20。
则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78 由课本表6-12取φd=1.1(3)转矩T1T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm(4)载荷系数k : 取k=1.2(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60×473.33×10×300×18=1.36x109N2=N/i=1.36x109 /3.89=3.4×108查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05按一般可靠度要求选取安全系数SHmin=1.0[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHm in=500x1.05/1=525Mpa故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=49.04mm模数:m=d1/Z1=49.04/20=2.45mm取课本[1]P79标准模数第一数列上的值,m=2.5(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=2.5×20mm=50mmd2=mZ2=2.5×78mm=195mm齿宽:b=φdd1=1.1×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为:σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=122.5mm(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料确定许用应力选轴的材料为45号钢,调质处理。
查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×(2.53/121.67)1/3mm=32.44mm考虑键槽的影响以及联轴器孔径系列标准,取d=35mm3、齿轮上作用力的计算齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N齿轮作用力:圆周力:Ft=2T/d=2×198582/195N=2036N径向力:Fr=Fttan200=2036×tan200=741N4、轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85(2)、确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。