【优化方案】2014-2015学年高中数学 第一章 统计案例(第2课时)课时作业 新人教A版选修1-2
高中数学必修一《优化方案》答案-第一章

1.1.1集合的含义与表示[读教材·填要点]1.元素与集合(1)元素与集合的定义:一般地,把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合中元素的性质:①确定性:即给定的集合,它的元素是确定的.②互异性:即给定集合的元素是互不相同的.③无序性.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.(4)元素与集合的关系:a是集合A的元素,记作a∈A,a不是集合A的元素,记作a∉A.2.集合的表示方法除了用自然语言表示集合外,还可以用列举法和描述法表示集合.(1)列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法.(2)描述法:用集合所含元素的共同特征表示集合的方法.3.常用数集及其记法1.著名数学家能否构成一个集合?提示:不能,没有一定的评定标准,故著名数学家是不确定的对象,所以不能构成集合.2.一个集合能表示成{s,k,t,k}吗?提示:不能,集合中的元素是互不相同的,任何两个相同的对象在同一个集合中,只能算作这个集合的一个元素.3.集合{-5,-8}和{(-5,-8)}是同一集合吗?提示:不是同一集合.集合{-5,-8}中元素有2个,为数.而集合{(-5,-8)}中有一个元素为坐标(-5,-8).[例1](1)某校2013年在校的所有高个子同学;(2)不超过20的非负数;(3)帅哥;(4)直角坐标系平面内第一象限的一些点;(5)3的近似值的全体.[自主解答]“高个子”没有明确的标准,因此(1)不能构成集合.(2)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;(3)“帅哥”没有一个明确的标准,不能构成集合;(4)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以(5)不能构成集合.——————————————————判断指定的对象能不能构成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.————————————————————————————————————————1.下列能构成集合的是()A.中央电视台著名节目主持人B.2013年沈阳全运会比赛的所有项目C.2010年上海世博园中所有漂亮的展馆D.世界上的高楼答案:B[例2]已知集合A={a[自主解答]若a+2=1,则a=-1,所以A={1,0,1},与集合中元素的互异性矛盾,应舍去;若(a+1)2=1,则a=0或a=-2,当a=0时,A={2,1,3},满足题意.当a=-2时,A={0,1,1},与集合中元素的互异性矛盾,舍去;若a2+3a+3=1,则a=-1或a=-2(均舍去).综上可知,a=0.例2中1∈A改为4∈A,则结果如何?解:若a+2=4,则a=2.∴A={4,9,13}满足题意.若(a+1)2=4,则a=1或a=-3.当a=1时,A={3,4,7},满足题意.当a=-3时,A={-1,3,4,}满足题意.若a 2+3a +3=4,则a =-3±132,代入后都满足题意,故a 的值为a =1,a =2,或a =-3或a =-3±132.——————————————————1.这类问题既要用元素的确定性,又要利用互异性检验解的正确与否.初学者解题时易忽略元素的互异性,学习中要高度重视.另外,本类问题往往涉及分类讨论的数学思想.2.一个集合中,元素之间没有先后顺序,只要构成两个集合的元素是一样的,这两个集合就是同一个集合. ————————————————————————————————————————2.含有两个实数的集合A 可以表示为{a -3,2a -1},求实数a 的取值范围. 解:∵A ={a -3,2a -1},∴由集合中元素的互异性可得a -3≠2a -1. ∴a ≠-2.∴a 的取值范围为a ≠-2.[例3] (1)方程组⎩⎪⎨⎪⎧x +y =3x -y =5的解集;(2)不等式2x -3>5的解集.[自主解答] (1)集合用描述法表示为{(x ,y )|⎩⎪⎨⎪⎧ x +y =3x -y =5}.解方程组,得⎩⎪⎨⎪⎧x =4,y =-1故集合用列举法表示为{(4,-1)}.(2)由2x -3>5可得x >4,所以不等式2x -3>5的解集为{x |x >4,x ∈R }. ——————————————————1.一个集合可以用不同的方法表示,需根据题意选择适当的方法,同时注意列举法和描述法的适用范围. 2.方程(或方程组)的解的个数较少,因此方程(或方程组)的解集一般用列举法表示;不等式(或不等式组)的解集一般用描述法表示.注意,当题目中要求求出“…的解集”或写出“…的集合”时,一定要将最终结果写成集合的形式.————————————————————————————————————————3.有下面六种表示方法①{x =-1,y =2} ②⎩⎨⎧(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =-1,y =2.③{-1,2} ④(-1,2) ⑤{(-1,2)} ⑥{x ,y |x =-1,或y =2}.其中,能正确表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是________(把所有正确答案的序号填在空格上).解析:[错解] ∵x 3∈A ,故x 3=0或x 3=1或x 3=x , 若x 3=0,则x =0; 若x 3=1,则x =1; 若x 3=x ,则x =1或x =0. 综上所述:所求x 的值为0或1.[错因] 本题错误的原因有两个,一是没有考虑到元素的互异性,解出来的结果没有代入检验,得出了错误结果;二是解x 2=x 时漏掉了x =-1这个答案,也导致了错误的结果.[正解] ∵x 3∈A , ∴x 3是集合A 中的元素.又∵集合A 中含有3个元素,∴需分情况讨论:①若x 3=0,则x =0,此时集合A 中有两个元素0,不符合集合中元素的互异性,舍去; ②若x 3=1,则x =1,此时集合A 中有两个元素1,不符合集合中元素的互异性,舍去;③若x 3=x ,则x =0、x =-1或x =1,当x =0、x =1时不符合集合中元素的互异性,都舍去.当x =-1时,此时集合A 中有三个元素1,0,-1,符合集合中元素的互异性;综上可知,x =-1. 1.有下列各组对象: ①接近于0的数的全体; ②比较小的正整数的全体;③平面上到点O 的距离等于1的点的全体; ④正三角形的全体.其中能构成集合的个数是( ) A .2 B .3 C .4D .5解析:①不能构成集合,“接近”的概念模糊,无明确标准.②不能构成集合,“比较小”也是不明确的,多小算小没明确标准.③④均可构成集合,因为任取一个元素是否是此集合的元素有明确的标准可依.答案:A2.下面几个命题中正确命题的个数是( ) ①集合N *中最小的数是1; ②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 最小值是2; ④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2D .3解析:N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,且a ∉N *,故②错;若a ∈N *,则a 的最小值是1,又b ∈N *,b 的最小值也是1,当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合元素的互异性知④是错误的.故①③正确.答案:C3.已知集合M ={3,m +1},且4∈M ,则实数m 等于( ) A .4 B .3 C .2D .1解析:∵4∈M ,∴4=m +1,∴m =3. 答案:B4.已知①5∈R ②13∈Q ③0={0} ④0∉N⑤π∈Q ⑥-3∈Z .正确的个数为________. 解析:①②⑥是正确的;③④⑤是错误的. 答案:35.用适当的符号填空:已知A ={x |x =3k +2,k ∈Z },B ={x |x =6m -1,m ∈Z },则有:17______A ;-5______A ;17________B .解析:令3k +2=17得,k =5∈Z . 所以17∈A .令3k +2=-5得,k =-73∉Z .所以-5∉A .令6m -1=17得,m =3∈Z , 所以17∈β. 答案:∈,∉,∈6.用适当的方法表示下列集合: (1)一年中有31天的月份的全体; (2)大于-3.5小于12.8的整数的全体; (3)梯形的全体构成的集合; (4)所有非负偶数的集合; (5)所有能被3整除的数的集合; (6)方程(x -1)(x -2)=0的解集; (7)不等式2x -1>5的解集.解:(1){1月,3月,5月,7月,8月,10月,12月}. (2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}. (3){x |x 是梯形}或{梯形}. (4){0,2,4,6,8,…}. (5){x |x =3n ,n ∈Z }. (6){1,2}. (7){x |2x -1>5}. 一、选择题1.下列给出的对象中,能组成集合的是( ) A .一切很大的数 B .高中数学的所有难题 C .美丽的小女孩D .方程x 2-1=0的实数根解析:选项A ,B ,C 中的对象都没有明确的判断标准,不满足集合中元素的确定性,故A ,B ,C 中的对象都不能组成集合.答案:D2.下列命题不.正确的有( )①很小的实数可以构成集合;②集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; ③1,32,64,⎪⎪⎪⎪-12,0.5这些数组成的集合有5个元素; ④集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .1个 B .2个 C .3个D .4个解析:①错的原因是元素不确定;②前者是数集,而后者是点集,种类不同;③32=64,⎪⎪⎪⎪-12=0.5,有重复的元素,应该是3个元素;④该集合还包括坐标轴上的点.答案:D3.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( ) A .3 B .6 C .8D .10解析:列举得集合B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含有10个元素.答案:D4.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B =(0,2),则集合A *B 的所有元素之和为( ) A .0 B .2 C .3D .6解析:依题意,A *B ={0,2,4},其所有元素之和为6. 答案:D 二、填空题5.集合A ={(2,-2),(2,2)}中含有________个元素. 解析:∵(2,-2),(2,2)是两个点,∴有2个元素. 答案:26.已知集合A ={(x ,y )|y =2x +1},B ={(x ,y )|y =x +3},a ∈A 且a ∈B ,则a 为________. 解析:∵a ∈A 且a ∈B ,∴a 是方程组⎩⎪⎨⎪⎧y =2x +1y =x +3的解.解方程组,得⎩⎪⎨⎪⎧x =2y =5,∴a 为(2,5). 答案:(2,5)7.用描述法表示方程x <-x -3的解集为________. 解析:∵x <-x -3, ∴x <-32.∴解集为{x |x <-32}.答案:{x |x <-32}8.{(x ,y )|(x +2)2+|y -3|=0,x ,y ∈R }=________.解析:由(x +2)2+|y -3|=0,又(x +2)2≥0,|y -3|≥0,所以(x +2)2=0,|y -3|=0,所以x =-2,y =3,所以{(x ,y )|(x +2)2+|y -3|=0,x ,y ∈R }={(-2,3)}.答案:{(-2,3)} 三、解答题9.已知集合A 含有两个元素a -3和2a -1, (1)若-3∈A ,试求实数a 的值. (2)若a ∈A ,试求实数a 的值. 解:(1)因为-3∈A ,所以-3=a -3或-3=2a -1. 若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1, 则a =-1.此时集合A 含有两个元素-4,-3,符合题意, 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1.当a =a -3时,有0=-3,不成立.当a =2a -1时,有a =1,此时A 中有两个元素-2,1,符合题意.综上知a =1.10.已知集合A ={x |kx 2-8x +16=0}只有一个元素,试求实数k 的值,并用列举法表示集合A . 解:当k =0时,原方程变为-8x +16=0, 所以x =2,此时集合A ={2};当k ≠0时,要使一元二次方程kx 2-8x +16=0有两个相等实根,需Δ=64-64k =0,即k =1.此时方程的解为x1=x2=4,集合A={4}.1.1.2集合间的基本关系[读教材·填要点]1.子集的概念2.A B(或B A)3.(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.4.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.[小问题·大思维]1.若A B,则A⊆B且A≠B,对吗?提示:对.∵A B,首先A⊆B,其中B中至少有一个元素不属于A,即A≠B.2.任何集合都有真子集吗?提示:不是,空集∅就没有真子集.3.{0}和∅表示同一集合吗?它们之间有什么关系?提示:{0}和∅不是同一个集合.{0}表示含有一个元素0的集合,∅是不含任何元素的集合,且∅{0}.[例1]写出集合A=[自主解答]由0个元素构成的子集:∅;由1个元素构成的子集:{1},{2},{3};由2个元素构成的子集:{1,2},{1,3},{2,3};由3个元素构成的子集:{1,2,3}.由此得集合A的所有子集为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.——————————————————1.求解有限集合的子集问题,关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合本身.2.一般地,若集合A中有n个元素,则其子集有2n个,真子集有2n-1个,非空真子集有2n-2个. ————————————————————————————————————————1.已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及其个数.解:当M中含有两个元素时,M为{2,3};当M中含有三个元素时,M为{2,3,1},{2,3,4},{2,3,5};当M中含有四个元素时,M为{2,3,1,4},{2,3,1,5},{2,3,4,5};当M中含有五个元素时,M为{2,3,1,4,5}.所以满足条件的集合M为{2,3},{2,3,1},{2,3,4},{2,3,5},{2,3,1,4},{2,3,1,5},{2,3,4,5},{2,3,1,4,5},集合M的个数为8.[例2]下列各式正确的是(1){a}⊆{a};(2){1,2,3}={3,1,2};(3)0⊆{0};(4){1}{x|x≤5};(5){1,3}{3,4}.[自主解答]∵1<5,∴1∈{x|x≤5}.∴{1}⊆{x|x≤5}.又∵{1}≠{x|x≤5},∴{1}{x|x≤5}.∵1∈{1,3},但1∉{3,4},∴{1,3}{3,4}.“”是“真包含于”的意思[——————————————————集合间关系的判定的步骤:首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A B;,其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B A;,最后,下结论:若A⊆B,B⊆A,则A =B ;若A ⊆B ,B A ,则A B ;若A B ,B ⊆A ,则B A ;若上述三种情况都不成立,则A B ,B A .[注意] 有时一个集合可以看成另一个集合的元素,如{1}可以看成集合{{1},1,2,3}中的元素,也可以看成子集,因此{1}∈{{1},1,2,3}与{1}⊆{{1},1,2,3}都正确.————————————————————————————————————————2.集合M ={x |x 2+x -6=0},N ={x |2x +7>0},试判断集合M 和N 的关系. 解:M ={-3,2},N =⎩⎨⎧⎭⎬⎫x |x >-72.∵-3>-72,2>-72,∴-3∈N,2∈N .∴M ⊆N . 又0∈N ,但0∉M ,∴M N .[例3] 已知集合A ={x |-3m 的取值范围. [自主解答] ∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2. (2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1解得-1≤m <2, 综上得m ≥-1. ——————————————————(1)利用集合之间的关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实点表示,不含“=”用虚点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论是必须的.————————————————————————————————————————3.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,求a 的值. 解:∵A ⊇B ,而a 2-a +1∈B ,∴a 2-a +1∈A . ∴a 2-a +1=3或a 2-a +1=a . 当a 2-a +1=3时,a =2或a =-1.(1)a =2时,A ={1,3,2},B ={1,3},这时满足条件A ⊇B ; (2)a =-1时,A ={1,3,-1},B ={1,3},这时也满足条件A ⊇B .当a 2-a +1=a 时,a =1,此时A ={1,3,1},B ={1,1},根据集合中元素的互异性,故舍去a =1. ∴a 的值为2或-1.[错解] ∵M ={x |x 2-3x +2=0}={1,2},(1)当N ={1}时,有⎩⎪⎨⎪⎧ 1+1=2,1×1=a ,∴a =1.(2)当N ={2}时,有⎩⎪⎨⎪⎧ 2+2=2,2×2=a ,不成立.(3)当N ={1,2}时,有⎩⎪⎨⎪⎧1+2=2,1×2=a ,不成立.所以,a =1.[错因] 空集是一个特殊的集合,是任何集合的子集,在解决集合关系问题时极易忽略∅,错解中没有考虑集合N 为∅的情况.[正解] ∵M ={x |x 2-3x +2=0}={1,2},又N ⊆M ,∴N =∅,或N ={1},或N ={2},或N ={1,2}. (1)当N =∅时,方程x 2-2x +a =0的判别式Δ=4-4a <0,即a >1.(2)当N ={1}时,有⎩⎪⎨⎪⎧1+1=2,1×1=a ,∴a =1.(3)当N ={2}时,有⎩⎪⎨⎪⎧ 2+2=2,2×2=a ,不成立.(4)当N ={1,2}时,有⎩⎪⎨⎪⎧1+2=2,1×2=a ,不成立.综上可知实数a 的取值范围是a ≥1. 1.下列命题中,正确的有( ) ①空集是任何集合的真子集; ②若A B ,B C ,则A C ;③任何一个集合必有两个或两个以上的真子集; ④如果不属于B 的元素也不属于A ,则A ⊆B . A .①② B .②③ C .②④D .③④解析:①空集只是空集的子集而非真子集,故①错;②真子集具有传递性,故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确.答案:C2.设集合M ={x |x >-2},则下列选项正确的是( ) A .{0}⊆M B .{0}∈M C .∅∈MD .0⊆M解析:选项B 、C 中均是集合之间的关系,符号错误;选项D 中是元素与集合之间的关系,符号错误. 答案:A3.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( ) A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:选项A 错,应当是B ⊆A .选项B 对,正方形一定是矩形,但矩形不一定是正方形.选项C 错,正方形一定是菱形,但菱形不一定是正方形.选项D 错,应当是D ⊆A .答案:B 4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析:∵∅{x |x 2-x +a =0}.∴{x |x 2-x +a =0}≠∅. 即x 2-x +a =0有实根. ∴Δ=(-1)2-4a ≥0,得a ≤14.答案:a ≤145.若{a,0,1}={c ,1b ,-1},则a =________,b =________,c =________.解析:∵1b ≠0,∴c =0,∴a =-1,1b =1.∴a =-1,b =1.答案:-1 1 06.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,求实数m 的值.解:∵B ⊆A ,∴m 2=-1,或m 2=2m -1,当m 2=-1时,显然无实数根;当m 2=2m -1时,m =1.∴实数m =1.一、选择题1.已知集合M ={x ∈Z |-3<x ≤1},则它的真子集的个数为( ) A .12 B .14 C .15D .16解析:∵M ={x ∈Z |-3<x ≤1}={-2,-1,0,1}共有4个元素,∴它的真子集共有24-1=15个. 答案:C2.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5},B ={2,4,5},则A *B 的子集个数为( ) A .1 B .2 C .3D .4解析:由题意知A *B ={1,3}, ∴A *B 的子集个数为22=4个. 答案:D3.已知集合M ={x |-5<x <3,x ∈Z },则下列集合中为集合M 子集的是( ) A .P ={-3,0,1} B .Q ={-1,0,1,2}C .R ={y |-π<y <-1,y ∈Z }D .S ={x ||x |≤3,x ∈N }解析:先用列举法表示集合,再观察元素与集合的关系.集合M ={-2,-1,0,1},集合R ={-3,-2},S ={0,1},不难发现集合P 中的元素-3∉M ,集合Q 中的元素2∉M ,集合R 中的元素-3∉M ,而S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M ,且S M .答案:D4.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( ) A .6 B .5 C .4D .3解析:集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.答案:A 二、填空题5.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是________.解析:∵A ⊇B ,∴⎩⎪⎨⎪⎧a -1≤3,a +2≥5,∴3≤a ≤4. 答案:3≤a ≤46.设a ,b ∈R ,集合{0,ba,b }={1,a +b ,a },则b -a =________.解析:由题意可知a ≠0,则a +b =0,a =-b ,所以ba =-1,则a =-1,b =1,故b -a =2.答案:27.下列关系中正确的是________.①∅∈{0}; ②∅{0}; ③{0,1}⊆{(0,1)}; ④{(a ,b )}={(b ,a )}.解析:∵∅{0},∴①错误;空集是任何非空集合的真子集,②正确,{(0,1)}是含有一个元素的点集,③错误;{(a ,b )}与{(b ,a )}是两个不等的点集,④错误,故正确的是②.答案:②8.已知集合P ={1,2},那么满足Q ⊆P 的集合的个数是________. 解析:∵P ={1,2},Q ⊆P ,∴集合Q 可以是∅或{1}或{2}或{1,2}. 答案:4 三、解答题9.由“2,a ,b ”三个元素构成的集合与由“2a,2,b 2”三个元素构成的集合是同一个集合,求a ,b 的值. 解:根据集合相等,有⎩⎪⎨⎪⎧ a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a ,解得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.10.设集合A ={x |x 2-5x +6=0},B ={x |x 2-(2a +1)x +a 2+a =0},若B ⊆A ,求a 的值.解:法一:A ={x |x 2-5x +6=0}={2,3},由B ⊆A 得,B =∅,或B ={2},或B ={3},或B ={2,3},由于Δ=(2a +1)2-4a 2-4a =1>0,∴B ≠∅,且B 含有两个不同元素.∴B ={2,3},需2a +1=5和a 2+a =6同时成立, ∴a =2.综上所述:a =2.法二:A={x|x2-5x+6=0}={2,3},B={x|x2-(2a+1)x+a2+a=0}={x|(x-a)·(x-a-1)=0}={a,a+1},∵a≠a+1,∴当B⊆A时,只有a=2且a+1=3.∴a=2.1.1.3集合的基本运算第一课时并集与交集[读教材·填要点]1.集合的并集与交集的定义21.若A={1,2,3},B={3,4,5},那么A∪B={1,2,3,3,4,5}对吗?如何表示A∪B和A∩B?提示:A∪B={1,2,3,3,4,5}是不对的,因为不符合元素的互异性;A∪B={1,2,3,4,5},A∩B={3}.2.你认为并集概念中的“或”与我们日常生活中“或”意义一致吗?有什么区别?提示:并集中的“或”与生活中“或”是不一样的.生活用语中的“或”是“或此”“或彼”只取其一,如“老师让张明或李红去开会”,意思是张明去也可以,李红去也可以,但不包括张明和李红一起去这种情况;而并集中的“或”则是“或此”“或彼”“或彼此”.3.若集合A与集合B没有公共元素,能否说集合A与集合B没有关系?提示:当两集合A与B没有公共元素时,不能说集合A与B没有关系,而是A∩B=∅.[例1] 已知集合A ={x |(x ∪B 是( ) A .{-1,2,3} B .{-1,-2,3} C .{1,-2,3}D .{1,-2,-3}[自主解答] A ={x |(x -1)(x +2)=0}={1,-2};B ={x |(x +2)(x -3)=0}={-2,3}, ∴A ∪B ={1,-2}∪{-2,3}={-2,1,3}. [答案] C ——————————————————解决此类问题首先应看清集合中元素的范围,简化集合,若是用列举法表示的数集,可以根据交集、并集的定义直接观察或用Venn 图表示出集合运算的结果;若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.————————————————————————————————————————1.已知集合A ={x |-1<x ≤3},B ={x |x ≤0,或x ≥52},求A ∩B ,A ∪B .解:∵A ={x |-1<x ≤3},B ={x |x ≤0,或x ≥52},把集合A 与B 表示在数轴上,如图. ∴A ∩B ={x |-1<x ≤3}∩{x |x ≤0或x ≥52}={x |-1<x ≤0或52≤x ≤3};A ∪B ={x |-1<x ≤3}∪{x |x ≤0或x ≥52}=R .[例2] 已知集合A =x 的值. [自主解答] ∵A ∪B ={1,3,x },A ={1,3,x },B ={1,x 2}, ∴A ∪B =A ,即B ⊆A , ∴x 2=3或x 2=x .①当x 2=3时,得x =±3.若x =3,则A ={1,3,3},B ={1,3},符合题意; 若x =-3,则A ={1,3,-3},B ={1,3},符合题意. ②当x 2=x 时,则x =0或x =1.若x =0,则A ={1,3,0},B ={1,0},符合题意; 若x =1,则A ={1,3,1},B ={1,1},不成立,舍去;综上可知,x =±3或x =0. ——————————————————(1)在利用集合的交集、并集性质解题时,常常会遇到A ∩B =A ,A ∪B =B 等这类问题,解答时常借助于交、并集的定义及上节学习的集合间的关系去分析,如A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等,解答时应灵活处理.(2)对于含有参数的问题要分类讨论,同时要检验,利用好集合中元素的互异性. ————————————————————————————————————————2.已知集合A ={4,6},B ={2,m },A ∪B ={2,4,6},则m 的值为________. 解析:∵A ={4,6},B ={2,m }, 而A ∪B ={2,4,6}, ∴m =4或m =6. 答案:4或6(1) 若A ∩B =A ∪B ,求a 的值; (2)若∅A ∩B ,A ∩C =∅,求a 的值.[巧思] (1)A ∩B =A ∪B ⇔A =B ;(2)∅A ∩B ⇔A ∩B ≠∅. [妙解] 由已知,得B ={2,3},C ={2,-4}.(1)∵A ∩B =A ∪B ,∴A =B .于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根,由根与系数之间的关系知:⎩⎪⎨⎪⎧2+3=a ,2×3=a 2-19解之得a =5.(2)由A ∩B ∅⇒A ∩B ≠∅,又A ∩C =∅,得3∈A,2∉A ,-4∉A . 由3∈A 得32-3a +a 2-19=0, 解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},与2∉A 矛盾; 当a =-2时,A ={x |x 2+2x -15=0}={3,-5},符合题意. ∴a =-2.1.已知集合M ={1,2,3,4},N ={-2,2},下列结论成立的是( ) A .N ⊆M B .M ∪N =M C .M ∩N =ND .M ∩N ={2}解析:因为-2∉M ,可排除A ;M ∪N ={-2,1,2,3,4},可排除B ;M ∩N ={2}.答案:D2.设A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为()A.{2} B.{3}C.{-3,2} D.{-2,3}解析:注意到集合A中的元素为自然数,因此易知A={1,2,3,4,5,6,7,8,9,10},而直接解集合B中的方程可知B={-3,2},因此阴影部分显然表示的是A∩B={2}.答案:A3.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则k的取值范围是()A.k≤3 B.k≥-3C.k>6 D.k≤6解析:因为N={x|2x+k≤0}={x|x≤-k2},且M∩N≠∅,所以-k2≥-3⇒k≤6.答案:D4.已知集合A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},则A∩B∩C=________. 解析:∵A∩B={x|x是菱形}∴A∩B∩C={x|x是正方形}.答案:{x|x是正方形}5.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=________.解析:由M={0,1,2},知N={0,2,4},M∩N={0,2}.答案:{0,2}6.设集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},A∩B={-3},求实数a.解:∵A∩B={-3},∴-3∈B.∵a2+1≠-3,∴①若a-3=-3,则a=0,此时A={0,1,-3},B={-3,-1,1},但由于A∩B={1,-3}与已知A∩B={-3}矛盾,∴a≠0.②若2a-1=-3,则a=-1,此时A={1,0,-3},B={-4,-3,2},A∩B={-3},综上可知a=-1.一、选择题1.已知集合A ={x |x ≥0},B ={x |-1≤x ≤2},则A ∪B =( ) A .{x |x ≥-1} B .{x |x ≤2} C .{x |0<x ≤2}D .{x |1≤x ≤2}解析:结合数轴得A ∪B ={x |x ≥-1}. 答案:A2.设集合M ={x |-3<x <2},N ={x |1≤x ≤3},则M ∩N =( ) A .{x |1≤x <2} B .{x |1≤x ≤2} C .{x |2<x ≤3}D .{x |2≤x ≤3} 解析:∵M ={x |-3<x <2}且N ={x |1≤x ≤3}, ∴M ∩N ={x |1≤x <2}. 答案:A3.设A ={x |-3≤x ≤3},B ={y |y =-x 2+t }.若A ∩B =∅,则实数t 的取值范围是( ) A .t <-3 B .t ≤-3 C .t >3D .t ≥3解析:B ={y |y ≤t },结合数轴可知t <-3. 答案:A4.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则( ) A .-3≤m ≤4 B .-3<m <4 C .2<m <4D .2<m ≤4解析:∵A ∪B =A ,∴B ⊆A .又B ≠∅, ∴⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7m +1<2m -1即2<m ≤4.答案:D 二、填空题5.已知集合A ={1,2,4},B ={2,4,6},则A ∪B =________. 解析:集合A ,B 都是以列举法的形式给出,易得A ∪B ={1,2,4,6}. 答案:{1,2,4,6}6.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________. 解析:用数轴表示集合A 、B 如图所示, 由于A ∩B ={x |5≤x ≤6}, 则m =6. 答案:67.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是________. 解析:如图所示,若A ∪B =R ,则a ≤1. 答案:a ≤18.已知集合A ={(x ,y )|y =ax +3},B ={(x ,y )|y =3x +b },A ∩B ={(2,5)},则a =________,b =________. 解析:∵A ∩B ={(2,5)}. ∴5=2a +3.∴a =1. ∴5=6+b .∴b =-1. 答案:1 -1 三、解答题9.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解:(1)∵B ={x |x ≥2},A ={x |-1≤x <3}, ∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a2},B ∪C =C ⇔B ⊆C ,∴a >-4.10.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎩⎪⎨⎪⎧ 3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B . 解:解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3},解不等式3>2m -1,得m <2,则B ={m |m <2}. 用数轴表示集合A 和B ,如图所示, 则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.第二课时 补集及集合运算综合问题[读教材·填要点]1.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么称这个集合为全集. (2)符号表示:通常记作U . 2.补集1.已知集合A、∁U A(U为全集),则A∩(∁U A)与A∪(∁U A)各有什么特点?提示:A∩(∁U A)=∅,A∪(∁U A)=U.2.设U为全集,则∁U∅、∁U U、∁U(∁U A)分别表示什么集合?提示:∁U∅=U,∁U U=∅.∁U(∁U A)=A.3.判断∁U(A∩B)=(∁U A)∩∁U B,∁U(A∪B)=(∁U A)∪(∁U B)是否正确.提示:不对.结合韦恩图可知∁U(A∩B)=(∁U A)∪(∁U B)∁U(A∪B)=(∁U A)∩(∁U B).[例1]设全集U={0,1,2,3}U m的值.[自主解答]如图,∵U={0,1,2,3},∁U A={1,2},∴A={0,3}.∴方程x2+mx=0的两根为x1=0,x2=3,∴0+3=-m.即m=-3.——————————————————(1)根据补集定义,借助Venn图,可直观地求出全集,此类问题,当集合中元素离散时,可借助V enn图;当集合中元素连续时,可借助数轴,利用数轴分析法求解.(2)解题时要注意使用补集的几个性质:∁U U=∅,∁U∅=U,A∪(∁U A)=U. ————————————————————————————————————————1.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.解:借助Venn,如右图所示,得U={1,2,3,4,5,6,7,8,9},∵∁U B={1,4,6,8,9},∴B={2,3,5,7}.[例2]设U={x∈N|x(∁U A)∩(∁U B),(∁U A)∪(∁U B).[自主解答]∵U={x∈N|x<10}={0,1,2,3,4,5,6,7,8,9},A={1,5,7,8},B={3,4,5,6,9},∴A∩B={1,5,7,8}∩{3,4,5,6,9}={5},A ∪B ={1,5,7,8}∪{3,4,5,6,9}={1,3,4,5,6,7,8,9}. ∵∁U A ={0,2,3,4,6,9},∁U B ={0,1,2,7,8},∴(∁U A )∩(∁U B )={0,2},(∁U A )∪(∁U B )={0,1,2,3,4,6,7,8,9}. ——————————————————1.解决集合的混合运算时,一般先运算括号内的部分,如求∁U (A ∪B )时,先求出A ∪B ,再求补集.2.当集合是用列举法表示时,如数集,可以通过列举集合的元素分别得到所求的集合;当集合是用描述法表示时,如不等式形式表示的集合,则可借助数轴求解.————————————————————————————————————————2.已知U =R ,A ={x |x >0},B ={x |x ≤-1},则[A ∩(∁U B )]∪[B ∩(∁U A )]=( ) A .∅ B .{x |x ≤0}C .{x |x >-1}D .{x |x >0,或x ≤-1}解析:∵B ={x |x ≤-1},∴∁U B ={x |x >-1}. 又∵A ={x |x >0},∴A ∩(∁U B )={x |x >0}. 又∵∁U A ={x |x ≤0}. ∴B ∩(∁U A )={x |x ≤-1}.∴[A ∩(∁U B )]∪[B ∩(∁U A )]={x |x >0,或x ≤-1}. 答案:D[例3] 设全集U =R ,U a 的取值范围. [自主解答]∁U P ={x |x <-2或x >1}, ∵M ∁U P ,∴分M =∅,M ≠∅,两种情况讨论. (1)M ≠∅时,如图可得或⎩⎪⎨⎪⎧3a <2a +5,3a ≥1,∴a ≤-72,或13≤a <5.(2)M =∅时,应有3a ≥2a +5⇒a ≥5. 综上可知,a ≤-72,或a ≥13.——————————————————1.M⊆N,一般分两种情况讨论:①M=∅,②M≠∅.2.解用不等式表示的数集间的集合运算时,一般要借助于数轴求解,此法的特点是简单直观,同时要注意各个端点的画法. ————————————————————————————————————————3.已知集合A={x|-4≤x≤-2},集合B={x|x-a≥0}.(1)若A⊆B,求a的取值范围;(2)若全集U=R,且A⊆(∁U B),求a的取值范围.解:∵A={x|-4≤x≤-2},B={x|x≥a},(1)由A⊆B,结合数轴(如图所示)可知a的范围为a≤-4.(2)∵U=R,∴∁U B={x|x<a},要使A⊆∁U B,须a>-2.动但不喜爱乒乓球运动的人数为________.[巧思]先将文字语言转化为集合语言,设U为全班学生组成的集合,A、B分别表示喜爱篮球运动的学生组成的集合、喜爱乒乓球运动的学生组成的集合,再利用Venn图可直观得出答案.[妙解]设全集U={全班30名学生},A={喜爱篮球运动的学生},B={喜爱乒乓球运动的学生},画出Venn图如图所示.设既喜欢篮球运动又喜欢乒乓球运动的人数为x,则(15-x)+x+(10-x)=30-8,解得x=3,所以喜爱篮球运动但不喜爱乒乓球运动的人数为12.[答案]121.设全集为R,A={x|x<3,或x>5},B={x|-3<x<3},则()A.∁R(A∪B)=R B.A∪(∁R B)=RC.(∁R A)∪(∁R B)=R D.A∪B=R解析:∵∁R A={x|3≤x≤5},∁R B={x|x≤-3,或x≥3},逐个验证知B正确.答案:B2.(2013·临沂一模)已知全集U=Z,集合A={0,1},B={-1,0,1,2},则图中阴影部分所表示的集合为()A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}解析:图中阴影部分表示的集合为(∁U A)∩B,因为A={0,1},B={-1,0,1,2},所以(∁U A)∩B={-1,2}.答案:A3.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=() A.{5,8} B.{7,9}C.{0,1,3} D.{2,4,6}解析:因为A∪B={0,1,2,3,4,5,6,8},所以(∁U A)∩(∁U B)=∁U(A∪B)={7,9}.答案:B4.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,∴a=-1或a=2.答案:-1或25.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________.解析:如图:由数轴可知:∁A B={x|0≤x<2,或x=5}.答案:{x|0≤x<2,或x=5}6.设全集U={x|0<x<10,x∈N},若A∩B={3},A∩(∁U B)={1,5,7},(∁U A)∩(∁U B)={9},求集合A,B.解:U={1,2,3,4,5,6,7,8,9},由题意画出Venn图,∴A={1,3,5,7},B={2,3,4,6,8}.一、选择题1.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}解析:画出数轴,如图所示,∁U B={x|x≤1},则A∩(∁U B)={x|0<x≤1}.答案:B2.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B是非空集合,则A∩B的元素个数为()A.mn B.m+nC.n-m D.m-n解析:画出Venn图,如图.∵U=A∪B中有m个元素,(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素.答案:D3.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足()A.a≥2 B.a>2C.a<2 D.a≤2解析:∁R B={x|x≥2},则由A∪(∁R B)=R得a≥2.答案:A4.设S为全集,则下列几种说法中,错误的个数是()①若A∩B=∅,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=∅;③若A∪B=∅,则A=B.A.0 B.1C.2 D.3解析:①如图,(∁S A)∪(∁S B)=S,正确.②若A∪B=S,则(∁S A)∩(∁S B)=∁S(A∪B)=∅,故成立.③若A∪B=∅,则A=B=∅.答案:A二、填空题5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=________,A∩(∁N B)=________.解析:因为集合A与集合B都有元素3和9,所以A∩B={3,9},结合Venn图(如图所示),易得A∩(∁N B)={1,5,7}.答案:{3,9}{1,5,7}6.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=∅,则实数m的取值范围是________.解析:∵A={x|x≥-m},∴∁U A={x|x<-m}.又∵(∁U A)∩B=∅,-m≤-2.∴m≥2.答案:m≥27.设全集U={a,b,c,d},集合A={a,b},B={b,c,d},则(∁U A)∪(∁U B)=________.解析:依题意得知,∁U A={c,d},∁U B={a},(∁U A)∪(∁U B)={a,c,d}.答案:{a,c,d}8.已知全集U(U≠∅)和集合A、B、D,且A=∁U B,B=∁U D,则A与D的关系是________.解析:A=∁U B=∁U(∁U D)=D.答案:A=D三、解答题9.已知全集U={x|-1≤x≤4},A={x|-1≤x≤1},B={x|0<x≤3},求∁U A,(∁U B)∩A.解:∵U={x|-1≤x≤4},A={x|-1≤x≤1},B={x|0<x≤3},结合数轴(如图).可知∁U A={x|1<x≤4},∁U B={x|3<x≤4,或-1≤x≤0}.结合数轴(如图).可知(∁U B)∩A={x|-1≤x≤0}.10.2011年8月世界大学生运动会在深圳举行,大运村的50名志愿者中,会讲英语的有36人,会讲日语的有20人,既会讲英语又会讲日语的有14人,问既不会讲英语又不会讲日语的有多少人?解:设全集U={50名志愿者},A={会讲英语的志愿者},B={会讲日语的志愿者},A∩B={既会讲英语又会讲日语的志愿者},画出Venn图,如图,则由Venn图知,既不会讲英语又不会讲日语的志愿者有50-22-14-6=8(人).1.2.1函数的概念[读教材·填要点]1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.1.从函数的定义看,它的定义域和值域能否为空集?提示:因为定义中的A、B是非空数集,所以函数的定义域和值域都不能为空集.2.所有的数集都能用区间表示吗?提示:区间是数集的另一种表示方法,但并不是所有数集都能用区间表示,如{1,2,3,4}就不能用区间表示.3.如何用区间表示下列数集?(1){x|x≥1};(2){x|2<x≤3};(3){x|x>1且x≠2}.提示:(1)[1,+∞)(2)(2,3](3)(1,2)∪(2,+∞)[例1]设M={x|0≤x≤2}M到集合N的函数关系的有()A.0个B.1个C.2个D.3个[自主解答][答案] B——————————————————判断所给对应是否是函数,首先观察两个集合A、B是否是非空数集,其次验证对应关系下,集合A中数x 的任意性,集合B中数y的唯一性. ————————————————————————————————————————1.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有________.解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a>1或a<-1时,直线x=a与函数的图象没有交点.从而表示y 是x的函数关系的有(2)(3).答案:(2)(3)[例2](1)f (x )=3x +2;(2)f (x )=3-x1-x -1.[自主解答] (1)使根式3x +2有意义的实数x 的集合是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-23,从而函数f (x )=3x +2的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-23.(2)要使3-x1-x -1有意义,只要⎩⎨⎧x -1≥0,3-x ≥0,x ≠2.因此函数f (x )=3-x1-x -1的定义域为{x |1≤x ≤3且x ≠2}. ——————————————————求函数定义域的方法及注意事项:(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.————————————————————————————————————————2.求下列函数的定义域: (1)y =(x +1)0|x |-x ;(2)y =2x +3-12-x +1x. 解:(1)由⎩⎪⎨⎪⎧ x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}.(2)要使函数有意义,需⎩⎨⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x+1x 的定义域为⎣⎡⎭⎫-32,0∪(0,2).[例3] (1)f (x )=(x )2,g (x )=x 2; (2)f (x )=x 2-2x -1,g (t )=t 2-2t -1.[自主解答] (1)由于函数f (x )=(x )2的定义域为{x |x ≥0},而g (x )=x 2的定义域为{x |x ∈R },它们的定义域不同,所以它们不表示同一函数.(2)两个函数的定义域和对应关系都相同,所以它们表示同一函数. ——————————————————判断两个函数f (x )和g (x )是否是相等函数的步骤是:①先求函数f (x )和g (x )的定义域,如果定义域不同,那么它们不相等,如果定义域相同,再执行下一步;②化简函数的解析式,如果化简后的函数解析式相同,那么它们相等,否则它们不相等.————————————————————————————————————————3.下列各组函数中,f (x )与g (x )表示同一函数的是( ) A .f (x )=x -1与g (x )=x 2-2x +1 B .f (x )=x 与g (x )=x 2xC .f (x )=x 与g (x )=3x 3 D .f (x )=x 2-4x -2与g (x )=x +2解析:A 选项中,f (x )与g (x )的对应关系不同,它们不表示同一函数;B ,D 选项中,f (x )与g (x )的定义域不同,它们不表示同一函数.答案:C求函数y =(x -2)(x +1)(x -2)(x +3)的定义域.[错解] 要使函数y =(x -2)(x +1)(x -2)(x +3)=x +1x +3有意义,则x ≠-3.故所求函数的定义域为{x |x ≠-3}.[错因] 约分扩大了自变量的取值范围.由于同时约去了函数中分子、分母的公因式“x -2”,使原函数变形为y =x +1x +3,从而改变了原函数的自变量x 的取值范围,也就是说,函数y =(x -2)(x +1)(x -2)(x +3)与函数y =x +1x +3不相等. [正解] 要使函数有意义,必须使(x -2)(x +3)≠0, 即x -2≠0且x +3≠0, 解得x ≠2且x ≠-3,。
【优化方案】高中数学 第1章本章优化总结课件 苏教必修2

专题四 空间角的计算
1.两条异面直线所成的角.求两条异面直 线所成的角一般通过平移(在所给形体内平 移一条直线或平移两条直线),或补形(补形 的目的仍是平移),把异面直线所成角转化 为共面直线所成角来计算;平移时经常利用 某些特殊点(如中点)或中位线、成比例线段 来实现,补形时经常把空间图形补成熟悉的 或完整的几何体(如正方体、长方体、平行 六面体、正棱柱、正棱锥等).
而 MN⊂平面 MKN,∴MN∥
平面 A1B1C1D1.
法二:(添加辅助线,由线线平行⇒线面平行) 如图所示,连结 BM 并延长交 A1B1 于 P 点,连 结 PC1,则可证 △B1MP∽△AMB, ∴BM1MA =MPMB. 又已知BM1MA =CN1BN, ∴MPMB=CN1BN, 则易得 MN∥PC1,而 PC1⊂平面 A1B1C1D1,
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2021年12月 2021/12/132021/12/132021/12/1312/13/2021
【证明】 (1)如图所示,取 EC 的中点 F, 连结 DF,易知 DF∥BC, ∵EC⊥BC,∴DF⊥EC. 在 Rt△DFE 和 Rt△DBA 中, ∵EF=12EC=BD,FD=BC=AB, ∴Rt△DFE≌Rt△ABD,故 DE=DA.
(2)取 CA 的中点 N,连结 MN,BN,则 MN
《优化方案》2014高一数学必修1同步教学课件第一章§3.1交集与并集

当a≠1且a≠2且a≠-7时,A∪B={-2, -1,-7},A∩B=∅. 【误区警示】 对a不讨论盲目计算为; A∪B={-2,-1,-a,7},A∩B=∅.
变式训练 3.设集合A={|a+1|,3,5},集合B={2a+1, a2+2a,a题意得|a+1|=2,解得a=1或a=- 3. 当a=1时,集合B的元素a2+2a=3,2a+1=3. 由集合的元素具有互异性知a≠1. 当a=-3时,集合B={-5,2,3}, ∴A∪B={-5,2,3,5}.
方法感悟
方法技巧 解答有关两集合(或两个以上集合)交、并集 的运算时,(1)如果集合是有限集,一般需先 把集合中的元素一一列举出来,然后结合集 合交、并集的定义分别求出;
(2)如果集合是无限集,则常借助于数轴,把 集合分别表示在数轴上,然后再利用交、并 集的定义去求解,这样处理比较形象直观, 但解答过程中需注意边界问题.
变式训练 1.(2011·高考辽宁卷)已知集合A={x|x>1}, B={x|-1<x<2},则A∩B=( ) A.{x|-1<x<2} B.{x|x>-1} C.{x|-1<x<1} D.{x|1<x<2} 解析:选D.如图所示,
A∩B={x|x>1}∩{x|-1<x<2}={x|1<x<2}.
4.并集的性质 对于任意两个集合A,B,根据并集的概念可 得: (1)A∪B=B∪A; (2)A⊆A∪B,B⊆A∪B; (3)A∪A=A; (4)A∪∅=A.
5.交集、并集的运算性质的推论 (1)(A∩B)∩C=A∩(B∩C); (2)(A∪B)∪C=A∪(B∪C); (3)A∩(B∪C)=(A∩B)∪(A∩C); (4)A∪(B∩C)=(A∪B)∩(A∪C). 想一想 2.A⊆B与A∪B=B有什么关系? 提示:A⊆B⇔A∪B=B.
《优化方案》2014高一数学必修1同步教学课件第二章本章优化总结

f(x)的图像如图
(3)由f(x)的图像可知:f(x)的增区间为(-∞, -1],[1,+∞),减区间为[-1,1].
本部分内容讲解结束
按ESC键退出全屏播放
∴f(3)=f(1+2)=f(1)+f(2)=6, f(5)=f(2+3)=f(2)+f(3)=10, 即所求的最大值为10,最小值为6. 【思维总结】 证明奇函数,就是要从f(x+ y)=f(x)+f(y)恒成立中推出f(-x)+f(x)=0的 结论. 证明单调性:利用“x<0时,f(x)<0”来构造, f(x1)=f[(x1-x2)+x2].
【误区警示】 换元后要注意新元的范围, 这是易忽略的地方.
函数的单调性与奇偶性的 应用
函数的单调性和奇偶性始终为高考的重点和 热点,常见的应用有: (1)已知函数的奇偶性求函数的解析式. 抓住奇偶性讨论函数在各个分类区间上的解 析式,或充分利用奇偶性产生关于f(x)的方 程,从而得到f(x)的解析式.
1,0,1},从A到B的映射f:A→B满足f(a)+f(b)
=0,那么这样的映射f:A→B有( )
A.2个
B.3个
C.5个
D.8个
解析:选B.
f(a)
f(b)
0
0
1
-1
-1
1
f(a)+f(b) 0 0 0
3.(2012·铜州调研)函数f(x)=x2-4x+5在区 间[0,m]上的最大值为5,最小值为1,则m 的取值范围是________. 解析:f(x)=(x-2)2+1. 如图,f(0)=5.关于 x=2对称,f(4)=5. ∴m∈[2,4]. 答案:[2,4]
(3)当-1≤-a2≤1,即-2≤a≤2 时,作草图 ③. 此时,对称轴在区间[-1,1]内,
【优化方案】高中数学 第一讲一2

学习目标
第
课前自主学案
二
课
时
课堂互动讲练
知能优化训练
学习目标 1.利用基本不等式求最值,要掌握成立的条 件并会灵活运用; 2.会用基本不等式解决实际问题.
课前自主学案
1.算术平均数与几何平均数 a+b
两个正数 a,b 的算术平均数是___2__,
几何平均数是__a_b_,任何两个正数的算 术平均数不__小__于__它的几何平均数.
变形为 f(x)=x+x+1 1=(x+1)+x+1 1-
1 后再求最小值.
2.用重要不等式求函数 y=ax+bx(a>0,b>0) 的最值. (1)当 x>0 时,y=ax+bx≥2 ab(当且仅当 x = ab时“=”成立),可求函数最小值. (2)当 x<0 时,y=-[-ax+b(-x)]≤-用与保
管费用之和最少?(为简便计算,不必讨论 订购次数是否为整数)
【解】 由题意得
全年订购费为 a·Qx ,全年保管费 S=12px. 订购费与保管费之和 y=a·Qx +12px.
由于 a·Qx +12px≥2
1 2
paQ=
2paQ.
当且仅当 a·Qx =12px,即 x= 2ppaQ时取等号. 即最优批量订购数为 x0= 2ppaQ(吨). 最少费用数为 ymin= 2paQ(元). 全年最佳订购次数 n=xQ0= 22paaQ(次).
误区警示 忽略基本不等式成立的条件.
例 求函数 y=x+2x的最值.
【错解】 因为 x+2x≥2 x·2x=2 2,当 且仅当 x=2x,即 x= 2时,等号成立,所 以 y 的最小值为 2 2.
【错因】 本题错解误认为 x>0,就直 接运用基本不等式,违反了 a+b≥2 ab 中 a,b 是正数的条件,因而不能直接使 用基本不等式,需分 x>0 与 x<0 讨论.在 利用基本不等式求最值(或值域)时,要 注意“一正二定三相等”是否同时具备, 否则所求结果可能出错.
【优化方案】高中数学 第1章§1统计课件 北师大必修3

①4600名学生是总体; ②每名学生是个体; ③抽取的520名学生的视力情况是一个样本; ④4600是总体容量; ⑤520名学生的视力情况是样本容量. 【思路点拨】 先弄清考查对象是什么,再 根据概念作以判断.
优化方案系列丛书
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。
第1章 统 计
•2、知之者不如好之者,好之者不如乐之者。
•3、反思自我时展示了勇气,自我反思是一切思想的源泉。
•4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。
自 主 学
•8、教育者,非为已往,非为现在,而专为将来。2022/1/182022/1/182022/1/182022/1/18
案
课 堂 互 动 讲 练
知 能 优 化 训 练
山东水浒书业有限公司·
课堂互动讲练
考点突破
考点一 概念辨析题
明确所要考查的对象,理解相关概念. 例1 (2011年大连质检)2010年某县主管部
第1章 统计
课标领航
本章概述 1.三种抽样方法:简单随机抽样、系统抽样、 分层抽样. 2.用样本的频率分布估计总体的频率分布及用 样本的特征数估计总体的特征数的方法. 3.线性回归方程的建立. 本章重点是理解随机抽样的必要性和重要性, 学会运用简单随机抽样、分层抽样和系统抽样 方法;学会列频率分布表,画频率分布直方图、 频率折线图及茎叶图,并用来估计总体.本章 难点是统计思想、回归思想的建立,对总体分 布的估计.
课前自主学案
温故夯基
优化方案高中数学第1章1.3.1第二课时知能优化训练新人教A版必修1

、【优化方案】数学人教A版必修1第1章第二课时知能优化训练1.函数f(x)=9-ax2(a>0)在[0,3]上的最大值为()A.9B.9(1-a)C.9-a D.9-a2剖析:选A.x∈[0,3]时f(x)为减函数,f(x)max=f(0)=9.2.函数y=x+1-x-1的值域为() A.(-∞,2]B.(0,2] C.[2,+∞)D.[0,+∞)剖析:选B.y=x+1≥0 x+1-x-1,∴,x-1≥0∴x≥1.∵y=2为[1,+∞)上的减函数,x-1x+1+∴f(x)max=f(1)=2且y>0.3.函数f(x)=x2-2ax+a+2在[0,a]上获取最大值3,最小值2,则实数a为() A.0或1B.1C.2D.以上都不对剖析:选B.因为函数f(x)=x2-2ax+a+2=(x-a)2-a2+a+2,对称轴为x=a,开口方向向上,所以f(x)在[0,a]上单调递减,其最大值、最小值分别在两个端点处获取,f即f(x)max=f(0)=a+2=3,(x)min=f(a)=-a2+a+2=2.故a=1.4.(2020年高考山东卷)已知x,y∈R+,且满足x y+=1.则3 4xy的最大值为________.yx x剖析:=1-,∴0<1-<1,0<x<3.4 3 3432而xy=x·4(1-3)=-3(x-2)+3.x当x=3,y=2时,xy最大值为3.2答案:31.函数f(x)=x2在[0,1]上的最小值是()A.1B.01C.4D.不存在剖析:选B.由函数f(x)=x2在[0,1]上的图象(图略)知,f(x)=x2在[0,1]上单调递加,故最小值为f(0)=0.2.函数f(x)=2x+6,x∈[1,2],则f(x)的最大值、最小值分别为() x+7,x∈[-1,1]A.10,6B.10,8 C.8,6D.以上都不对剖析:选A.f(x)在x∈[-1,2]上为增函数,f(x)max=f(2)=10,f(x)min=f(-1)=6.3.函数y =-2+2在[1,2]上的最大值为() x xA.1B.2 C.-1D.不存在剖析:选A.因为函数y=-x2+2x=-(x-1)2+1.对称轴为x=1,张口向下,故在[1,2]上为单调递减函数,所以y=-1+2=1.max14.函数y=x-1在[2,3]上的最小值为()A.21 B. 211C.3D.-211剖析:选B.函数y=x-1在[2,3] 上为减函数,1ymin=3-1=2.5.某公司在甲乙两地同时销售一种品牌车,收益(单位:万元)分别为1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售L15辆,则能获取的最大收益为()A.90万元B.60万元C.120万元D.万元剖析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获取收益L=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,L最大为120万元,应选C.6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为()A.-1B.0C.1D.2剖析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.∴函数f(x)图象的对称轴为x=2,f(x)在[0,1]上单调递加.又∵f(x)min=-2,f(0)=-2,即a=-2.f(x)max=f(1)=-1+4-2=1.2 *7.函数y=2x+2,x∈N的最小值是________.*2剖析:∵x∈N,∴x≥1,即y=2x2+2在x∈N*上的最小值为4,此时x=1.答案:48.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.剖析:由题意知f(x)在[1,a]上是单调递减的,又∵f(x)的单调减区间为(-∞,3],∴1<a≤3.答案:(1,3]x9.函数f(x)=x+2在区间[2,4]上的最大值为________;最小值为________.x=x+2-22剖析:∵f(x)==1-,x+2x+2x+2∴函数f(x)在[2,4]上是增函数,214∴f(x)min=f(2)==,2f(x)max=f(4)=4+2=3.21答案:32x2-1≤x≤110.已知函数f(x)=2,11<x≤2x求f(x)的最大、最小值.解:当-1≤x≤1时,由f(x)=x2,得f(x)最大值为f(1)=1,最小值为f(0)=0;21当1<x≤2时,由f(x)=x,得f(2)≤f(x)<f(1),1即2≤f(x)<1.综上f(x)=1,f(x)min =0.max11.某租借公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每个月需要保护费150元,未租出的车每辆每个月需要保护费50元.(2)当每辆车的月租金为3600元时,能租出多少辆车?当每辆车的月租金为多少元时,租借公司的月收益最大?最大月收益是多少?解:(1)当每辆车的月租金为3600元时,未租出的车辆数为3600-300050=12.所以这时租出了88辆车.x-3000(2)设每辆车的月租金为x元.则租借公司的月收益为f(x)=(100-)(x-150) 50-x-3000×50,50整理得x212f(x)=-50+162x-21000=-50(x-4050)+307050.所以,当x=4050时,f(x)最大,最大值为f(4050)=307050.即当每辆车的月租金为4050元时,租借公司的月收益最大.最大月收益为307050元.12.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.解:f(x)=(x-a)2-1-a2,对称轴为x=a.①当a<0时,由图①可知,ff(x)min =f(0)=-1, (x)max =f(2)=3-4a. ②当0≤a <1时,由图②可知,(x)min =f(a)=-1-a 2,f(x)max =f(2)=3-4a. ③当1≤a ≤2时,由图③可知,(x)min =f(a)=-1-a 2,f(x)max =f(0)=-1. f④当a >2时,由图④可知,(x)min =f(2)=3-4a ,f(x)max =f(0)=-1.综上所述,当 <0时, f ( )min =-1, ( )max =3-4;a xf x a当0≤a <1时,f(x)min =-1-a 2,f(x)max =3-4a ;当1≤a ≤2时,f(x)min =-1-a 2,f(x)max =-1;当a >2时,f(x)min =3-4a ,f(x)max =-1.。
【优化方案】2014年高中数学人教版必修5 配套课件 第1章1.1.2

课 堂 互 动 讲 练
知 能 优 化 训 练
山东水浒书业有限公司·
返回
优化方案系列丛书
第1章 解三角形
课 前 自 主 学 案
课前自主学案 1. 1.2 余 弦 定 理
课 堂 互 动 讲 练课堂互讲练知能优化训练知 能 优 化 训 练
山东水浒书业有限公司·
山东水浒书业有限公司·
课 堂 互 动 讲 练
知 能 优 化 训 练
返回
优化方案系列丛书
第1章 解三角形
课 前 自 主 学 案
通分整理得: a2(b2+c2-a2)+b2(a2+c2-b2)+c2(c2-a2-b2)=0. 展开整理得(a2-b2)2=c4. ∴a2-b2=±c2,即a2=b2+c2或b2=a2+c2. 课 堂 根据勾股定理,知△ABC是直角三角形. 互 动 【名师点评】 判断三角形的形状时,如果遇到的 讲 练 式子含角的余弦或边的二次式,那么要考虑用余弦 定理;如果遇到的式子含角的正弦或边的一次式, 知 那么大多情况用正弦定理;若是以上特征均不明显, 能 优 化 则要考虑两个定理综合应用. 训
山东水浒书业有限公司·
课 堂 互 动 讲 练
知 能 优 化 训 练
返回
优化方案系列丛书
第1章 解三角形
方法感悟
1.余弦定理指出了三角形的三条边与其中的一 个角之间的关系,每一个等式中都包含四个不同 的量,它们分别是三角形的三边和一个角,知道 其中的三个量,就可以求得第四个量:(1)已知两 边与它们的夹角,可以求得第三边;(2)已知两边 与其中一边的对角,可以代入余弦定理,看成关 于另一边的二次方程,从而解得另一边;(3)已知 三角形的三边可以求得三角形的三个角.从这里 可以看出,利用余弦定理解三角形时,条件中必 须至少知道两边.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【优化方案】2014-2015学年高中数学 第一章 统计案例(第2课时)课时作业 新人教A 版选修1-2[学业水平训练] 1.(2014·周口高二检测)则表中a ,b 处的值分别为( A .94,96 B .52,50 C .52,60 D .54,52解析:选C.由⎩⎪⎨⎪⎧ a +21=73a +8=b ,得⎩⎪⎨⎪⎧a =52b =60.故选C.2.对于分类变量A 与B 的随机变量K2,下列说法正确的是( ) A .K2越大,说明“A 与B 有关系”的可信度越小 B .K2越大,说明“A 与B 无关”的程度越大 C .K2越小,说明“A 与B 有关系”的可信度越小 D .K2越接近于0,说明“A 与B 无关”的程度越小解析:选C.由独立性检验的定义及K2的意义可知C 正确. 3.(2014·泰安质检)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500由K2=n ad -bc 2a +bc +d a +c b +d 算得K2≈9.967.附表:参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别无关”C .有99%以上的把握认为“需要志愿者提供帮助与性别有关”D .有99%以上的把握认为“需要志愿者提供帮助与性别无关”解析:选C.由于K2≈9.967>6.635,所以有99%的把握认为该地区老年人是否需要帮助与性别有关. 4.(2014·绥化高二检测)在等高条形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大( )A.a a +b 与d c +dB.c a +b 与a c +dC.a a +b 与c c +dD.a a +b 与c b +c 解析:选C.由列联表信息可知,应为a a +b 与c c +d 或b a +b 与dc +d. 5.下面是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图可以看出( )A .性别与喜欢理科无关B .女生中喜欢理科的比为80%C .男生比女生喜欢理科的可能性大些D .男生不喜欢理科的比为60%解析:选C.由图知女生中喜欢理科的比为20%,男生不喜欢理科的比为40%,故B 、D 不正确.由图知,男生比女生喜欢理科的可能性大些. 6.(2014·马鞍山模拟)为了判断高中学生的文理科选修是否与性别有关,随机调查了50名学生,得到如下2×2列联表:已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025,根据表中数据,得到K2=50 13×20-10×7 223×27×20×30≈4.844,则认为选修文科与性别有关系的可能性不低于________.解析:∵K2≈4.844>3.841,∴P(K2≥3.841)≈0.05,这表明小概率事件发生,根据假设检验的基本原理,应该断定“是否选修文科与性别之间的关系”成立,选修文科与性别有关系的可能性不低于95%. 答案:95%7.有两个分类变量X 和其中a,15-a 均为大于50.10的前提下认为“X 和Y 之间有关系”. 解析:由题意知K2≥2.706,即65[a 30+a - 20-a 15-a ]220×45×15×50=13 13a -60 260×90≥2.706,解得a≥7.19或a≤2.04,因为a>5且15-a>5,a ∈Z , 所以a =8或9. 答案:8或9 8.(2014·吉林高二检测)调查某桑场采桑员和辅助工桑毛虫皮炎发病情况结果如下表:利用2×2列联表的独立性检验估计“患桑毛虫皮炎病与采桑”有关,认为两者有关系会犯错误的概率是________.附:K2=n ad -bc 2a +bc +d a +c b +d解析:由题意知,a =18,b =12,c =5,d =78,所以a +b =30,c +d =83,a +c =23,b +d =90,n =113. 所以K2=n ad -bc 2a +bc +d a +c b +d=113× 18×78-12×5 230×83×23×90≈39.6>10.828.所以患桑毛虫皮炎病与采桑有关系,认为两者有关系会犯错误的概率是0.001.答案:0.0019.网络对现代人的影响较大,尤其是青少年,为了了解网络对中学生学习成绩的影响,某地区教育主管部门从辖区初中生中随机抽取了515人调查,发现其中经常上网的有220人,这220人中有37人期末考试不及格,而另外295人中有21人不及格.问:能否在犯错误的概率不超过0.01的前提下认为经常上网会影响学习? 解:根据题意有如下假设“经常上网与是否影响学习无关”, 由公式得K2的观测值为k =515× 183×21-274×37 2457×58×295×220≈11.863,又P(K2≥6.635)≈0.01.所以在犯错误的概率不超过0.01的前提下认为中学生经常上网会影响学习. 10.(2014·潍坊高二检测)为了比较注射A ,B 两种药物后产生的皮肤疱疹的面积,选了200只家兔进行试验,将这200只家兔随机地分成两组.每组100只,其中一组注射药物A ,另一组注射药物B.下表1和表2分别是注射药物A 和药物B 后的试验结果.(疱疹面积单位:mm2)表1 注射药物A 后皮肤疱疹面积的频数分布表表2 注射药物B 后皮肤疱疹面积的频数分布表(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小.图Ⅰ 注射药物A 后皮肤疱疹面积的频率分布直方图图Ⅱ 注射药物B 后皮肤疱疹面积的频率分布直方图 (2)完成下面2×2列联表,并回答在犯错误的概率不超过0.001的前提下,能否有把握认为“注射药物A解:(1)图Ⅰ 注射药物A 后皮肤疱疹面积的频率分布直方图图Ⅱ 注射药物B 后皮肤疱疹面积的频率分布直方图由图可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数. (2)K2=200× 70×65-30×35 2100×100×105×95≈24.56.由于K2>10.828,所以在犯错误的概率不超过0.001的前提下,有把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”. [高考水平训练]1.在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是( )A .若K2的观测值为k =6.635,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌B .由独立性检验可知,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有99%的可能患有肺癌C .若从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误D .以上三种说法都不正确解析:选C.在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,即不表示二者的关系具体有多大,而只是指“有关系”的可信度为99%,或者说把“没有关系”误判为“有关系”的概率为1%.2.通过随机询问110K2=n ad -bc 2a +bc +d a +c b +d附表:参照附表,得到的正确结论是________.①在犯错误的概率不超过0.010的前提下,认为“爱好该项运动与性别有关”. ②在犯错误的概率不超过0.010的前提下,认为“爱好该项运动与性别无关”. ③在犯错误的概率不超过0.05的前提下,认为“爱好该项运动与性别有关”. ④在犯错误的概率不超过0.05的前提下,认为“爱好该项运动与性别无关”. 解析:由题意K2的观测值k =110× 40×30-20×20 260×50×60×50≈7.8.因为7.8>6.635,所以在犯错误的概率不超过0.010的前提下,认为“爱好该项运动与性别有关”;在犯错误的概率不超过0.05的前提下,认为“爱好该项运动与性别有关”.从而可知正确结论是①③. 答案:①③3.某地震观测站对地下水位的变化和地震的发生情况共进行了1 700次观测,得到的数据如下表:能否在犯错误的概率不超过0.10的前提下认为地下水位的变化与地震的发生情况有关? 解:由列联表知:水位有变化时,发生地震的情况约占0.10;水位无变化时,发生地震的情况约占0.12.则可作出如图所示的等高条形图.从图中可以看出,水位有变化的样本中发生地震的频率与水位无变化的样本中发生地震的频率差别不大,因此不能判断地震与水位变化有关. 根据列联表中的数据得到K2的观测值 k =1 700× 98×618-902×82 21 000×700×180×1 520≈1.594,因为1.594<2.706,所以在犯错误的概率不超过0.10的前提下,没有充分的证据显示地下水位的变化与地震的发生情况有关.4.某学生对其30位亲属的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数,如图所示.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)(1)根据茎叶图,帮助这位同学说明其30位亲属的饮食习惯; (2)(3)能否在犯错误的概率不超过0.01的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.解:(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主.(2)(3)K2=30× 4×2-8×16 2 12×18×20×10=10>6.635,所以在犯错误的概率不超过0.01的前提下认为“其亲属的饮食习惯与年龄有关”.。