层次分析法的计算

合集下载

层次分析法

层次分析法
n 1
来表示一致性.其值越小,一致性越好.
CI 0时,具备完全一致性 .
其中max是A的最大特征值 .
由于CI中含有A的维数n, 一般n越大, A的一 致性越差, 因此A的一致性的要求不能一刀 切, 应随n的增大, 放宽要求。Satty提出, 对 于固定的n, 随机地构造成对比较矩阵, 其中
aii
图1 层次结构模型
第三层
目标层
合理使用学校年度资金
准则层
改善办 学条件
提高办 学水平
教职工物质 文化生活
措施层
书新 馆建
动改 场建
学装 楼修
训引 人进
科加 建强
图 运 教 才培 设学
位增 津加 贴岗
图2 资金分配层次结构图
三 层次分析
层次分析是从对具体问题的了解出发, 建 立层次结构模型, 进行决策分析。
xi与x
贡献程度相同”时
j
xi
xj
3,当认为“
xi比x
的贡献略大”时
j
xi
xj
5,当认为“
xi比x
的贡献大”时
j
xi
xj
7,当认为“
xi比x
的贡献大很多”时
j
xi
xj
9,当认为“xi的贡献大到x
不能
j
与之相提并论”时
xi x j 2n, n 1,2,3,4,当认为xi x j 介于2n 1和2n 1之间时.
(4)定义未知参数 在这种问题中, 运用层次分析法建立表达式 来表达未曾定义过的量。典型的例子是价值 工程, 产品的价值V被定义为
VF C
其中F,C分别为产品的功能系数与成本系数, 它们可以用层次分析来定义。下面是一个 经济学例子。

3.3 层次分析法

3.3 层次分析法

是说物体之间的重要性程度满足一致性要求。一般 地,若正互反矩阵 A 满足
aij a jk aik
i, j,, k 1,2,, n
(3.3.4)则称
为完全一致性矩阵,简称为一致性矩阵或一致阵。 A
显然,对于一致性矩阵 A 而言,每列元素对应成比例 ,因而 A 的秩为1。又因为主对角线上的元素均为1 ,因而 A 有唯一的非零特征根为
对于(3.3.2)式中的矩阵 A,计算得到 m ax 5.206, 归一化的特征向量为 w (0.461,0.195,0.091,0.194,0.059)T 。由式(3.3.6)得到 CI 0.0515 ,再在表3.3.2中查出
RI 1.12 ,然后由式(3.3.7)计算
CR 0.0515 1.12 0.0460 0.1 ,故矩阵
断矩阵的随机一致性指标值。
表3.3.2
随机一致性指标值
当 n 1或2时,矩阵 A为一致性矩阵;当 标 RI 作比值,即
n 3时
,将 A 的一致性指标 CI 与它的同阶随机一致性指
CR CI RI .
(3.3.7)
CR称为一致性比率。 CR的值越小,说明判断矩阵 A
的一致性就越好。一般地,当 CR 0.1时,可以认 为 A的不一致性在容许的范围之内,此时 A具有满 意的一致性,利用 A的最大特征值对应的特征向量 对因素进行排序。若 C R 0 .1 ,则需要对判断矩阵 A 进行修正,或者重新构造矩阵 A 。
假设要比较层次结构中某一层 n个因素 C 1 , C 2 , , C n对 上一层次因素O 的影响,对因素 C i 和 C j 进行对比 ,并用 a ij 来表示因素 C i 相对于因素 C j 来说对因素

层次分析法(详细)

层次分析法(详细)

1
1/5 1/3 2 6.53
5
1 3 3 20
3
1/3 1 1 7.33
1/2
1/3 1 1 3.83
B
p1 p2
p1
p2
p3
p4
p5
p6
0.16 0.17 0.15 0.20 0.14 0.13 0.16 0.17 0.30 0.20 0.14 0.13
p3
p4 p5 p6
0.16 0.09 0.15 0.25 0.42 0.13
3
1
1
和积法具体计算步骤:
o将判断矩阵的每一列元素作归一 化处理,其元素的一般项为:
bij= bij 1nbij
(i,j=1,2,….n)
B
p1 p2
p1 1 1
p2 1 1
p3 1 2
p4 4 4
p5 1 1
p6 1/2 1/2
p3
p4 p5 p6
1
1/4 1 2 6.25
1/2
1/4 1 2 5.75
层次分析法(AHP)特点: 分析思路清楚,可将系统分析人 员的思维过程系统化、数学化和模 型化; 分析时需要的定量数据不多,但 要求对问题所包含的因素及其关系 具体而明确;
层次分析法(AHP)特点: 这种方法适用于多准则、多目标 的复杂问题的决策分析,广泛用于 物流系统规划与评价、地区经济发 展方案比较、科学技术成果评比、 资源规划和分析以及企业人员素质 测评。
层次分析法(AHP)具体步骤: 建立两两比较的判断矩阵 判断矩阵表示针对上一层次 某单元(元素),本层次与它有关 单元之间相对重要性的比较。一般 取如下形式:
Cs
p1 b11 b21 … … bn1

层次分析法的计算步骤

层次分析法的计算步骤

层次分析法的计算步骤
一、定义层次分析法
层次分析法(Analytic Hierarchy Process,AHP)是由梅尔·拉斯
菲尔德(M.L. Saaty)于1977年提出的一种多层结构和多维度的层次分
析方法。

它是一种评估决策者面临复杂决策的基于层次结构逻辑的决策分
析方法,可以很轻松地将复杂的主观问题转换为客观的量化问题,从而求
解复杂的决策问题。

二、层次分析法计算流程
(1)决策问题的分类和层次结构的确定
首先,根据决策者的要求,将决策问题确定为一个有层次结构(AHP)和深度(hierarchy)的问题,将决策问题的内容分为n个层次。

(2)建立层次分析矩阵
将决策问题中的n个层次按从上至下的顺序,建立起一个n×n的层
次分析矩阵,称之为层次分析矩阵。

(3)确定层次分析矩阵的元素
在层次分析矩阵中,每一对元素的值都由决策者给出,即根据决策者
的判断,确定每个元素在n个层次层次中的比较的优劣。

(4)计算层次分析矩阵的均值尺度指数
均值尺度指数是由每行元素进行加权求和结果和n相除而得到的。


表示每个元素在此行的平均相对权重。

(5)分析层次分析矩阵
一旦层次分析矩阵计算完毕。

层次分析法

层次分析法

层次分析法
层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于多因素决策和评估的定量方法。

它由美国运筹学家托斯·L·赛蒂(Thomas L. Saaty)在1970年代提出,并成为了一种广泛应用的决策支持工具。

层次分析法通过将一个复杂的决策问题分解为多个层次和因素,然后利用专家的主观判断,对这些层次和因素进行两两比较和权重分配,最终得出最优选择的方法。

下面是层次分析法的基本步骤:
建立层次结构:确定决策问题的目标和准则,并将其拆分为若干层次,形成一个层次结构。

两两比较:对每个层次的元素进行两两比较,确定它们之间的相对重要性。

比较可以使用数字尺度,通常是一个1到9的比较矩阵,其中1表示相同重要性,9表示极端重要性差异。

构建判断矩阵:将两两比较的结果整理成一个判断矩阵,其中矩阵的元素表示各个元素之间的相对重要性。

计算权重:根据判断矩阵计算权重向量,表示各个元素相对于其上一层次的重要性,通常使用特征向量法进行计算。

一致性检验:对判断矩阵的一致性进行检验,确保专家的判断具有合理的一致性。

综合评价:利用权重向量和层次结构中的数据,进行综合评估和决策选择。

层次分析法在许多领域都有广泛应用,包括工程、管理、市场营销、投资决策等。

它能够帮助决策者在复杂的决策问题中进行系统化的分析和评估,从而提供科学的决策支持。

(完整版)层次分析法的计算步骤

(完整版)层次分析法的计算步骤

(完整版)层次分析法的计算步骤8.3.2 层次分析法的计算步骤⼀、建⽴层次结构模型运⽤AHP进⾏系统分析,⾸先要将所包含的因素分组,每⼀组作为⼀个层次,把问题条理化、层次化,构造层次分析的结构模型。

这些层次⼤体上可分为3类1、最⾼层:在这⼀层次中只有⼀个元素,⼀般是分析问题的预定⽬标或理想结果,因此⼜称⽬标层;2、中间层:这⼀层次包括了为实现⽬标所涉及的中间环节,它可由若⼲个层次组成,包括所需要考虑的准则,⼦准则,因此⼜称为准则层;3、最底层:表⽰为实现⽬标可供选择的各种措施、决策、⽅案等,因此⼜称为措施层或⽅案层。

层次分析结构中各项称为此结构模型中的元素,这⾥要注意,层次之间的⽀配关系不⼀定是完全的,即可以有元素(⾮底层元素)并不⽀配下⼀层次的所有元素⽽只⽀配其中部分元素。

这种⾃上⽽下的⽀配关系所形成的层次结构,我们称之为递阶层次结构。

递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,⼀般可不受限制。

为了避免由于⽀配的元素过多⽽给两两⽐较判断带来困难,每层次中各元素所⽀配的元素⼀般地不要超过9个,若多于9个时,可将该层次再划分为若⼲⼦层。

例如,⼤学毕业的选择问题,毕业⽣需要从收⼊、社会地位及发展机会⽅⾯考虑是否留校⼯作、读研究⽣、到某公司或当公务员,这些关系可以将其划分为如图8.1所⽰的层次结构模型。

图8.1再如,国家综合实⼒⽐较的层次结构模型如图6 .2:图6 .2图中,最⾼层表⽰解决问题的⽬的,即应⽤AHP所要达到的⽬标;中间层表⽰采⽤某种措施和政策来实现预定⽬标所涉及的中间环节,⼀般⼜分为策略层、约束层、准则层等;最低层表⽰解决问题的措施或政策(即⽅案)。

然后,⽤连线表明上⼀层因素与下⼀层的联系。

如果某个因素与下⼀层所有因素均有联系,那么称这个因素与下⼀层存在完全层次关系。

有时存在不完全层次关系,即某个因素只与下⼀层次的部分因素有联系。

层次之间可以建⽴⼦层次。

⼦层次从属于主层次的某个因素。

层次分析法计算公式

层次分析法计算公式

层次分析法计算公式
分层次分析法(Analytic Hierarchy Process,AHP)是一种用来分
析复杂决策问题的技术,它是由美国管理学家Thomas Saaty在1970年末
开发的。

AHP是一种从多个不同的角度对复杂的决策问题进行分解,从而
识别出决策问题中的变量之间的关系,并在此基础上建立优先级的方法。

AHP的基本思想是将复杂的决策问题分解为一系列层次的子问题,将
不同层次的子问题用比较的方法进行比较,从而得出解决问题的一系列优
先级次序。

AHP的计算步骤包括建立层次结构,建立决策矩阵,确定归一
化向量,确定最终的得分和优先级。

1、建立层次结构:AHP的层次结构是分析复杂决策问题的第一步,
它包括三个层次:根层、中间层和叶节点层。

根层描述决策问题的最高一级,负责概括整个决策问题;中间层描述
决策问题在不同的方面,将整个决策问题划分为多个子问题;叶节点层描
述各个子问题的具体内容,它们不再能进行分解,代表最终要解决的问题。

2、建立决策矩阵:决策矩阵是通过对比法,对各决策因素之间进行
比较并用矩阵来表示的。

决策矩阵由三部分组成:行列式、行列式所在的矩阵的行、列分别表
示不同决策因素之间的相对优劣,即矩阵的每个单元表示一种比较关系;。

层次分析法的计算_图文_图文

层次分析法的计算_图文_图文

它们对于元素
的层次单排序权值分别为
(当 与 无关系时, )。此时B层次总 排序权值如表二给出。
层次 A1 A2 ……
a1 a2 ……
B1
b11 b12 ……
B2
b21 b22 ……



Bn
bn1 bn2 ……


Am B层次总排 am 序权重
b1m
w1
b2m
w2


bnm
wn
同样,三个方案对于各个准则的判断矩阵 以及运算所得的结果见三、四、五、六。
0.1818 0.7272 0.0910
表三
A
B
CW
A1
1/4
B4
1
C 1/2 1/8
2 0.1818 8 0.7272 1 0.0910
对准则 (功能强)来说: 即认为判断矩阵具有满意的一致性。
表四
A
B
CW
对准则 (价格低)来说:
A
1
4
1/3 0.2559
B
1/4
1
1/8 0.0733
即C认为判断3矩阵具有8满意的一1 致性0.。6708
解:1、明确问题;2、建立层次结构;先构造层
次结构,如下图所示。
购买一台满意的计算机G
目标层
功能强S1
价格低S2
易维护S3 准则层
A
B
C
方案层
对于三个准则(S1,S2,S3)关于 目标G的优先顺序,根据讨论,该厂在计算 机应用上首先要求功能强,其次要求易维 护,再次才是价格低。其判断矩阵如下表 所示。
例如
由于e4=e3,迭代经过4次中止,权矩阵A的每一列归一化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n i 1
( AW )i nWi
.
式中AWi表示向量AW的第i个分量。
例如
1 5
1/ 5 1
1/ 3
3
每行之乘积
1
1 5
1 3
0.7
51 3 15
3 1/ 3 1
3
11
1
3
0.412
0.105
球Mi的三次方根
2.466
标准化
0.637
,
1
0.258
即权系数为
W (0.105, 0.637, 0.258)T
.
式中(AW)i表示向量AW的第i个分量。
例 某厂准备购买一台计算机,希望功能强,
价格低,维护容易。现有A、B、C三种机型可供 选择。其中A的性能较好,价格一般,维护一般 水平;B的性能最好,价格较贵,维护也只需一 般水平;C的性能差,但价格便宜,容易维护。 试用层次分析法进行决策分析。
解:1、明确问题;2、建立层次结构;先构造层
4、层次单排序及其一致性检验(用方 根法计算这三个准则关于目标的排序权值)
M1 15, M 2 0.667, M3 1
w1 3 15 2.446, w2 3 0.667 0.405, w3 3 1 1
标准化:
2.446
2.446
W1 2.446 0.405 1 3.871 0.637
在具体计算中,当ek与ek-1接近到一定程度时, 我们就取e=ek
例如
1 1 1/ 5 1/ 3 A 1 1 1/ 3 , e0 1/ 3
5 3 1 1/ 3
1 1 1/ 5 1/ 3 0.733 e '1 Ae0 1 1 1/ 3 1/ 3 0.778 , e '1 0.733 0.778 3 4.511
1.936 3 0.637
0.318 0.785 3 0.105 3 0.258
1.936 0.318 0.785 3.0385 1.911 0.315 0.774
判断矩阵的一致性指标CI为
CI max n 3.0385 3 0.0192,
5 3 1 0.665 1.991
0.467 0.155
e2
e '2 e '2
1 3.014
0.565 1.991
0.184 0.661
1 1 1/ 5 0.155 0.471 e '3 Ae2 1 1 1/ 3 0.184 0.559 , e '3 0.471 0.559 1.988 3.018
0.105
1 1/ 5 1/ 3 0.105 0.318
W
0.637
.AW
5
1
3
0.637
1.936
0.258
3 1/ 3 1 0.258 0.785
再求最大)i nWi
0.318 3 0.105
1.936 3 0.637
0.785 3 0.258
5 3 1 1/ 3 3
0.733 0.162
e1
e '1 e '1
1 4.511
0.778
0.172
3 0.665
1 1 1/ 5 0.162 0.467 e '2 Ae1 1 1 1/ 3 0.172 0.565 , e '2 0.467 0.565 1.991 3.014
W2
0.405 2.446 0.405
1
0.105
W3
2.446
1 0.405 1
0.258.
则 Wi 为所求特征向量。
计算最大特征值
max
n i 1
( AW )i nWi
.
式中 ( AW )i 表示向量AW的第i个分量。
一致检验结果为
0.637
1 5 3 0.637
W 0.105.AW 1/ 5
1
1/
3
0.105
0.258
1/ 3 3 1 0.258
1 0.637+5 0.105+3 0.258 1.936 1/5 0.637+1 0.105+1/3 0.258 0.318 1/3 0.637+3 0.105+1 0.258 0.785
max
3 i 1
( AW )i nWi
3.037
二、迭代法
建立n阶方阵 A (aij )nn. 按下列方法求向量迭代序列:
1
n
1
e0
n
M
1
n n1.
e 'k 为 Aek1 的n个分量之和
可以证明,迭代的维列向量序列 {ek } 收敛。
记其极限为e,且记
1
e
2
M
n
n1.
则权系数可取
i i ,i 1, 2,L , n
5 3 1 0.661 1.988
0.471 0.156
e3
e '3 e '3
1 3.018
0.559
0.185
1.988 0.659
1 1 1/ 5 0.156 0.473 e '4 Ae3 1 1 1/ 3 0.185 0.561 , e '4 0.473 0.5611.994 3.028
次结构,如下图所示。
购买一台满意的计算机G
目标层
功能强S1
价格低S2
易维护S3 准则层
A
B
C
方案层
对于三个准则(S1,S2,S3)关于 目标G的优先顺序,根据讨论,该厂在计算 机应用上首先要求功能强,其次要求易维 护,再次才是价格低。其判断矩阵如下表 所示。
3、构造判断矩阵
表一
G S1 S2 S3 S1 1 5 3 S2 1/5 1 1/3 S3 1/3 3 1
一、最大特征值和特征向量的近似计算(方根法)
计算的主要步骤:
1、计算判断矩阵A的每一行元素乘积
n
Mi aij ,i 1, 2,L , n. j 1
2.计算Mi的n次方根
Wi n Mi . 3.若 W i 标准化为
Wi
Wi
n
,
W j
j 1
则 Wi 为所求特征向量。
4.计算最大特征值
max
三、和法
1、计算判断矩阵A的每一列归一化
n
ij aij / aij i 1 n
2.按行求和 wi ij j 1
n
3.归一化 Wi wi / wi i 1
W (w1, w2 ,L , wn )T
则Wi为所求特征向量。
4.计算AW
5、计算最大特征值得近似值
max
n i 1
( AW )i nWi
5 3 1 0.659 1.994
0.473 0.156
e4
e '4 e '4
1 3.028
0.561 1.994
0.185 0.659
由于e4=e3,迭代经过4次中止,权系数是
1 0.156,2 0.185,3 0.659.
相应的综合评价公式是
y 0.156x1 0.185x2 0.659x3
相关文档
最新文档