勾股定理的逆定理说课稿
《勾股定理的逆定理》 说课稿

《勾股定理的逆定理》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《勾股定理的逆定理》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析本节课是人教版八年级下册第十七章第二节的内容。
勾股定理的逆定理是在学习了勾股定理的基础上进行的,它是用代数方法来研究几何图形的重要工具,也是直角三角形判定的重要依据,为后续学习解直角三角形以及高中学习三角函数等知识奠定了基础。
教材通过让学生动手操作、观察、计算、推理等活动,引导学生发现并证明勾股定理的逆定理,培养学生的逻辑推理能力和数学思维能力。
同时,教材还注重数学知识与实际生活的联系,通过实际问题的解决,让学生感受到数学的应用价值。
二、学情分析八年级的学生已经具备了一定的观察、分析和推理能力,但他们的思维还处于形象思维向抽象思维的过渡阶段。
在学习勾股定理的基础上,学生对直角三角形的三边关系有了一定的认识,但对于勾股定理的逆定理的理解和应用可能会存在一定的困难。
因此,在教学中,要通过直观的演示和引导,帮助学生突破难点,提高他们的学习兴趣和积极性。
三、教学目标1、知识与技能目标(1)理解并掌握勾股定理的逆定理。
(2)能够运用勾股定理的逆定理判断一个三角形是否为直角三角形。
2、过程与方法目标(1)通过动手操作、观察、计算、推理等活动,培养学生的探究能力和逻辑推理能力。
(2)经历勾股定理逆定理的探究过程,体会“构造法”证明数学命题的思想方法。
3、情感态度与价值观目标(1)通过对勾股定理逆定理的探究,激发学生的学习兴趣和求知欲。
(2)在解决问题的过程中,培养学生的合作交流意识和勇于探索的精神。
四、教学重难点1、教学重点勾股定理的逆定理及其应用。
2、教学难点勾股定理的逆定理的证明。
五、教法与学法1、教法(1)启发式教学法:通过设置问题情境,引导学生思考和探究,激发学生的学习兴趣和主动性。
(2)直观演示法:利用多媒体等教学手段,直观地展示图形和问题,帮助学生理解和掌握知识。
人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1

人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1一. 教材分析《勾股定理的逆定理》是人教版数学八年级下册第17.2节的内容。
这部分教材主要让学生了解并掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
教材通过实例引入,引导学生探究并发现勾股定理的逆定理,进而总结出一般性结论。
这部分内容是初中数学的重要知识点,也是中考的热点,对于学生来说,理解和掌握勾股定理的逆定理对于解决实际问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了勾股定理和直角三角形的性质,对于这些知识点有一定的了解。
但是,学生可能对于如何运用勾股定理的逆定理来判断一个三角形是否为直角三角形还不够清晰。
因此,在教学过程中,我需要引导学生通过探究和发现来理解并掌握勾股定理的逆定理,并能够运用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.过程与方法目标:通过探究和发现,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.教学难点:如何引导学生通过探究和发现来理解并掌握勾股定理的逆定理。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、实例教学法和小组合作学习法等教学方法。
通过引导学生观察、思考和交流,激发学生的学习兴趣,培养学生的观察能力、思考能力和解决问题的能力。
同时,我将运用多媒体课件和教具等教学手段,帮助学生更好地理解和掌握知识点。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何判断一个三角形是否为直角三角形。
2.探究:引导学生观察和分析实例,发现勾股定理的逆定理,并总结出一般性结论。
3.讲解:对勾股定理的逆定理进行详细讲解,解释其含义和运用方法。
八年级数学《勾股定理的逆定理》教案优秀10篇

八年级数学《勾股定理的逆定理》教案优秀10篇、课堂小结1①角为直角、②垂直、③勾股定理的逆定理、能力目标2(1)理解并会证明勾股定理的逆定理;(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;(3)知道什么叫勾股数,记住一些觉见的勾股数。
让学生自己解决问题3判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的`思路。
教学过程4(1)通过自主学习的开展体验获取数学知识的感受;(2)通过知识的纵横迁移感受数学的辩证特征。
让学生主动提出问题5利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。
这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。
所有这些都由学生自己完成,估计学生不会感到困难。
这样设计主要是培养学生善于提出问题的习惯及能力。
重点、难点分析6本节内容的重点是勾股定理的逆定理及其应用。
它可用边的关系判断一个三角形是否为直角三角形。
为判断三角形的形状提供了一个有力的依据。
本节内容的难点是勾股定理的逆定理的应用。
在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后到达一个目标式,这种“转化〞对学生来讲也是一个困难的地方。
判定直角三角形的方法7勾股定理的内容文字表达(投影显示)符号表述图形(画在黑板上)板书设计8(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。
、定理的应用(投影显示题目上9(1)让学生用文字语言将上述定理的逆命题表述出来(2)学生自己证明逆定理:如果三角形的三边长有下面关系:那么这个三角形是直角三角形强调说明:(1)勾股定理及其逆定理的区别勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。
初中数学《勾股定理》说课稿(精选6篇)

初中数学《勾股定理》说课稿初中数学《勾股定理》说课稿(精选6篇)作为一位杰出的老师,常常需要准备说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。
那么优秀的说课稿是什么样的呢?以下是小编整理的初中数学《勾股定理》说课稿,仅供参考,大家一起来看看吧。
初中数学《勾股定理》说课稿篇1一、教学背景分析1、教材分析本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过20xx年国际数学家大会的会徽图案,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。
学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,在实际生活中用途很大。
勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。
2、学情分析通过前面的学习,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过拼图来证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用直观教具、多媒体等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
3、教学目标:根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:知识与能力目标:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.过程与方法目标:通过创设情境,导入新课,引导学生探索勾股定理,并应用它解决问题,运用了观察、演示、实验、操作等方法学习新知。
情感态度价值观目标:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。
4、教学重点、难点通过分析可见,勾股定理是平面几何的重要定理,有着承上启下的作用,在今后的生活实践中有着广泛应用。
因此我确定本课的教学重难点为探索和证明勾股定理。
人教版八年级数学下册第十七章17.2勾股定理的逆定理说课稿

三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括启发式教学、探究式教学和分组合作学习。选择这些方法的理论依据如下:
1.启发式教学:通过提问、引导,激发学生的思维,培养学生的独立思考能力。这种方法符合建构主义学习理论,强调学生在原有知识基础上主动构建新知识。
(二)媒体资源
我将使用以下教具、多媒体资源和技术工具来辅助教学:
1.教具:直角三角形模型、量角器、直尺等,让学生通过实际操作,加深对勾股定理逆定理的理解。
2.多媒体资源:PPT、动画、视频等,展示勾股定理逆定理的推导过程,使抽象的知识形象化,便于学生理解。
3.技术工具:几何画板软件,让学生在电脑上自主绘制直角三角形,观察逆定理在实际中的应用。
2.探究式教学:鼓励学生通过观察、实验、分析等方法,自主发现勾股定理的逆定理。这种方法符合发现学习理论,强调学生在探究过程中掌握知识,提高解决问题的能力。
3.分组合作学习:组织学生进行小组合作,互相交流、讨论,共同解决问题。这种方法符合社会建构主义学习理论,强调学生在合作中共同进步,提高团队协作能力。
3.课堂展示:鼓励小组代表进行课堂展示,分享他们的探究成果。其他学生认真倾听,提出质疑,共同进步。
4.评价与反馈:组织学生进行自评、互评,培养他们的评价能力和反思意识。教师对学生的表现给予积极评价,激发学生的学习兴趣和动力。
四、教学过程设计
(一)导入新课
为了快速吸引版八年级数学下册第十七章17.2勾股定理的逆定理说课稿
一、教材分析
(一)内容概述
勾股定理的逆定理说课稿

勾股定理的逆定理说课稿WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】勾股定理的逆定理说课稿一、教材分析 :(一)、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。
课标要求学生必须掌握。
(二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形过程与方法:1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
八年级数学下册《勾股定理的逆定理》说课稿

八年级数学下册《勾股定理的逆定理》说课稿〔一〕创设效果情境,引入新课:在这一环节中,我设计了这样一个情境,多媒体动画展现,米老鼠离开了数学王国里的三角形城堡,要求只应用一根绳子,结构一个直角三角形,方可入城,这可难坏了米老鼠,你能帮它想方法吗?预测大少数同窗会无从下手,这样引出课题。
只要学习了勾股定理的逆定理后,大家都能协助米老鼠进入城堡,我以为:〝大疑而大进〞这样做,充沛调动学习内容,激起求知愿望,动漫演示,又有了很强的兴趣性,做到课之初,趣已生,疑已质。
〔二〕实际猜想本环节要围绕以下几个活动展开:1、算一算:求以线段a,b为直角边的直角三角形的斜边c 长。
1a=3b=42a=5b=123a=2.5b=64a=6b=82、猜一猜,以以下线段长为三边的三角形外形13cm4cm5cm25cm12cm13cm32.5cm6cm6.5cm46cm8cm10cm3、摆一摆应用方便筷来操作效果2,应用量角器来度量,验证效果2的发现。
4、用恰当的言语表达你的结论在算一算中先生温习了勾股定理,猜一猜和摆一摆中先生小组协作入手实际,在效果1的基础上做出合理的推测和猜想,这样分层递进找到了先生思想的最近开展区,面向不同层次的每一名先生,每一名先生都有参与数学活动的时机,最后运用恰当的言语表述,失掉了勾股定理的逆定理。
在整个进程的活动中,教员给先生充沛的时间和空间,教员以对等的身份参与小组活动中,倾听意见,协助指点先生的实际活动。
先生的摆一摆的进程应用实物投影仪展现,在活动中教员关注;1〕先生的参与看法与入手才干。
2〕能否清楚三角形三边长度的平方关系是因,直角三角形是果。
既先有数,后有形。
3〕数形结合的思想方法及归结才干。
〔三〕推理证明八年级正是先生由实验几何向推理几何过渡的重要时期,少数先生难以由直观到笼统这一思想的飞跃,而勾股定理的逆定理的证明又不同于以往的几何图形的证明,需求结构直角三角形才干完成,而结构直角三角形就成为处置效果的关键,直接抛给先生证明,无疑会杳无音信,所以,我采用分层导进的方法,以求一石激起千层浪。
勾股定理的逆定理说课稿

勾股定理的逆定理说课稿一、说教材勾股定理是几何学中的一个重要定理,它揭示了直角三角形三边之间的数量关系。
而勾股定理的逆定理,则是在勾股定理的基础上,通过逻辑推理得出的一个逆向思维结论,即在三角形中,如果某一边的平方等于另外两边平方和,那么这个三角形就是直角三角形。
本文在教材中的作用和地位非常重要,它是学生建立几何直观、培养逻辑思维和推理能力的关键章节。
主要内容:本文主要围绕勾股定理的逆定理展开,通过具体的实例和图形,引导学生理解和掌握逆定理的含义、证明和应用。
此外,还涉及到一些相关概念,如直角三角形的判定、平方根等。
1. 作用:勾股定理的逆定理是初中数学教学的重要组成部分,它有助于学生巩固勾股定理的知识,拓展几何思维,提高解决问题的能力。
2. 地位:在教材中,勾股定理的逆定理是承上启下的章节,既是对勾股定理的巩固,也为后续学习相似三角形、解直角三角形等内容打下基础。
3. 主要内容:本文详细阐述了勾股定理的逆定理的定义、证明过程以及在实际问题中的应用,旨在帮助学生从理论到实践,全面掌握这一几何知识点。
二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能:(1)理解并掌握勾股定理的逆定理的含义;(2)能够运用勾股定理的逆定理判断三角形是否为直角三角形;(3)熟练运用勾股定理及其逆定理解决实际问题。
2. 过程与方法:(1)通过观察、分析、推理,培养学生几何直观和逻辑思维能力;(2)学会运用数学语言表达几何问题,提高学生数学表达能力;(3)掌握几何图形的绘制方法,提高学生动手操作能力。
3. 情感态度与价值观:(1)激发学生学习数学的兴趣,培养良好的学习习惯;(2)培养学生勇于探索、善于合作的精神,提高解决问题的自信心。
三、说教学重难点1. 教学重点:(1)勾股定理的逆定理的含义及其证明;(2)勾股定理及其逆定理在实际问题中的应用。
2. 教学难点:(1)理解并掌握勾股定理的逆定理;(2)运用勾股定理的逆定理解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理的逆定理》说课稿
中坝镇中学张军年
尊敬的各位评委,各位老师,大家好:
我叫张军年,来自中坝镇中学。
我今天说课的内容是《勾股定理的逆定理》第一课时。
下面我将从教材、教学目标、教学重点难点、教法、教学过程等几个方面阐述我对本节课的教学设想。
一、教材分析
主要说明本节课在教材中的地位作用
这节内容选自《人教版》义务教育课程标准实验教科书数学八年级下册第十八章《勾股定理》中的第二节。
勾股定理的逆定理是在勾股定理之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。
课标要求学生必须掌握。
二、教学目标分析
教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。
根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
1、知识与技能目标
理解并能证明勾股定理的逆定理;掌握勾股定理的逆定理,并能利用它来判定一个三角形是不是直角三角形。
2、过程与方法目标
在探索的过程中使学生体验数与形的内在联系,培养学生数形结合的思想
3、情感态度与价值观目标
结合勾股定理的有关历史资料,激发学生学习的兴趣;通过一系列的探究活动,培养学生与他人交流合作的团队精神及创新意识。
三、学情分析及教学重点、难点的确定
尽管已到初二下学期学生知识增多,能力增强,但思维的局限性
还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此本着课程标准,在吃透教材的基础上,考虑到学生已有的认知结构,我确立的教学重点是勾股定理的逆定理及其应用,教学难点是勾股定理的逆定理的证明,而如何构造三角形就是解决它的关键,这样就确定了本节课的重点、难点和关键。
教学重点:勾股定理的逆定理及其应用
教学难点:勾股定理的逆定理的证明
教学关键:如何构造三角形
四、教法、学法分析
为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。
此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。
总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。
五、教学过程
本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之
间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)、复习回顾
复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。
(二)、创设问题情境
一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。
(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。
这是为什么?……。
这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。
(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)
因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手操作在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。
这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所作三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。
从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生
不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。
使学生确实在学习过程中享受到自我创造的快乐。
(四)、迁移应用,熟悉定理
例题是课本74页的例1,是让学生进一步熟练掌握勾股定理的逆定理及其运用的步骤
(五)、随堂练习
本着由浅入深的原则,安排了四个题目。
前三个题目比较简单,是让学生进一步巩固并掌握勾股定理的逆定理及其运用的步骤,尽量让学生口答,让所有的学生都能完成。
第四个题实际上是对问题情境的进一步解答既可以解决本课知识,又可以提高灵活运用以往知识的能力。
通过练习发展了学生的思维,提高了课堂教学的效果和利用率。
(六)、归纳小结,纳入知识体系
谈谈这节课你的收获吧
本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面。
这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功体验的机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足学生多极化学习的需要.
(七)、作业布置
本节课布置的作业是课本76页习题18.2第1题,是最基本的思维训练项目题,有助于学生巩固课堂所学知识,有利于学生学习习惯的培养,以及提高他们学好数学的信心。
六、教学反思
(一)本节课的成功之处:
1、本节课以活动为主线,通过从估算到实验活动结果的产生让学生总结过程,最后回到解决实际问题,思路清晰,脉络明了。
2、体现了“数学源于生活,寓于生活,用于生活”的教育思想;突出了“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路。
3、在本节教学活动过程中,我尽量以学生身份和学生一起探讨问题。
用一切可能的方式,激励回答问题的学生,激发学生的求知欲,使师生在和谐的教学环境中零距离的接触。
(二)本节课的不足之处及改进方法:
1、本节课我用多媒体课件进行教学增大了教学密度,而缺少了板书示范,不利于学生养成良好的书写习惯,在以后的教学中我应加强。
2、在重难点的突破上还应加一些递进的习题,降低题的难度,使优生学好,中等生也能跟上。
这是我在以后教学中要注意的。
3、还是不敢放手,总是牵着学生走。
学生配合不够积极,积极回答问题的学生少,学生的积极性没有充分调动起来;对中下学生关注的太少;教师说的多,学生没有充分的时间讨论交流;课堂教学内容稍多,在规定时间内没有很好地完成教学任务。