物理电场知识点讲解例题
高中物理静电场知识点总结及题型分析

xx 电场一、静电场公式汇总1、公式计算中的q、©的要求电场中矢量(电场力F、电场E)的运算:q代绝对值电场中标量(功W电势能Ep、电势差UAB电势©)的运算:q、© xx、负2、公式:(1) 点电荷间的作用力:F=kQ1Q2/r2(2) 电荷共线平衡:( 3)电势© A:© A= EpA /q (© A电势二EpA电势能/ q检验电荷量;电荷在电场中某点的电势能与电荷量的比值跟试探电荷无关)( 4)电势能EpA:EpA=© A q( 5)电场力做的功WABW=F d =F S COSB =EqdWA R EpA- EpBWA B UAB q (电场力做功由移动电荷和电势差决定,与路径无关)(6)电势差UAB:UAB=© A—© B (电场中,两点电势之差叫电势差)UAB= WAB / q (WA电场力的功)U= E d (E数值等于沿场强方向单位距离的电势差)(7)电场强度EE=F/q (任何电场);(点电荷电场);(匀强电场)(8)电场力:F=E q (9)电容:(10)平行板电容器:3、能量守恒定律公式(1)、动量定理:物体所受合外力的冲量等于它的动量的变化.公式:F合t = mv2 —mv1 (解题时受力分析和正方向的规定是关键)动量守恒定律:相互作用的物体系统, 如果不受外力, 或它们所受的外力之和为零, 它们的总动量保持不变. (研究对象:相互作用的两个物体或多个物体)公式:m1v1 + m2v2 = m1 v1 '+ m2 v2'2)能量守恒(1)动能定理:(动能变化量=1/2 mv22-1/2 mv12)F合s对地c°s 1 2 2一mv mv 2 t oW( W2 L 1 2 2 -mv mv2 t o(2)能量守恒定律:系统(动能+重力势能+电势能)4、力与运动(动力学公式)xx第二定律:(1)匀速直线运动:受力运动(2)匀变速直线运动:受力(缺)运动⑴(s)(vt)(a)(3)类平抛运动:仅受电场力;;复合场速度位移水平方向竖直方向偏移量速度偏向角的正切:若加速电场:电场力做功,,则(y、与m q无关)示波管的灵敏度:y/U2二L2/4dU1圆周运动:绳子、单轨恰好通过最高点:;;杆、双轨最高点:如图所示,从静止出发的电子经加速电场加速后,进入偏转电场.若加速电压为U l、偏转电压为U2,要使电子在电场中的偏移距离y增大为原来的2倍(在保证电子不会打到极板上的前提下),可选用的方法有」--------------------------------------------------------- =J-A .使U i减小为原来的1/2 ;B .使U2增大为原来的2倍;C .使偏转电场极板长度增大为原来的 2 倍;D .使偏转电场极板的间距减小为原来的1/2考点名称:带电粒子在电场中的加速(一)、带电粒子在电场中的直线运动(1)如不计重1力,电场力就是粒子所受合外力,粒子做直线运动时2的要求有:①对电场的要求:或是匀强电场,或不是匀强电场但电场的电场线有直线形状。
物理选修3-1电场带电粒子在电场中的运动知识点和典型例题

龙文教育学科老师个性化教案教师学生姓名上课日期2-26 学科物理年级高三教材版本人教版学案主题电场课时数量(全程或具体时间)第(3)课时授课时段8-10教学目标教学内容带电粒子在电场中的运动相关知识点与应用个性化学习问题解决结合孩子的教案设计教学重点、难点高考必考知识点教学过程带电粒子在电场中的运动1.平行板电容器内的电场可以看做是匀强电场,其场强与电势差的关系式为E=Ud,其电势差与电容的关系式为C=QU.2.带电粒子在电场中做直线运动(1)匀速直线运动:此时带电粒子受到的合外力一定等于零,即所受到的电场力与其他力平衡.(2)匀加速直线运动:带电粒子受到的合外力与其初速度方向同向.(3)匀减速直线运动:带电粒子受到的合外力与其初速度方向反向.3.带电粒子在电场中的偏转(匀强电场)带电粒子在匀强电场中做类平抛运动,可将粒子的运动分解为初速度方向的匀速直线运动和电场力方向的初速度为零的匀加速直线运动.位移关系:⎩⎪⎨⎪⎧x =v 0t y =12at 2速度关系:⎩⎪⎨⎪⎧v x =v 0v y =at ,速度的偏转角的正切值tan θ=v y v x .4.在所讨论的问题中,带电粒子受到的重力远小于电场力,即mg ≪qE ,所以可以忽略重力的影响.若带电粒子所受的重力跟电场力可以比拟,则要考虑重力的影响.总之,是否考虑重力的影响要根据具体的情况而定.5.物体做匀速圆周运动,受到的向心力为F =m v 2r (用m 、v 、r 表示)=mr (2πT )2(用m 、r 、T 表示)=mr ω2(用m 、r 、ω表示).一、带电粒子在电场中的直线运动讨论带电粒子在电场中做直线运动(加速或减速)的方法: (1)能量方法——能量守恒定律; (2)功和能方法——动能定理;(3)力和加速度方法——牛顿运动定律、匀变速直线运动公式.例1 如图1所示,水平放置的A 、B 两平行板相距h ,上板A 带正电,现有质量为m 、带电荷量为+q 的小球在B 板下方距离B 板为H 处,以初速度v 0竖直向上运动,从B 板小孔进入板间电场.图1(1)带电小球在板间做何种运动?(2)欲使小球刚好打到A 板,A 、B 间电势差为多少?二、带电粒子在电场中的类平抛运动带电粒子在电场中做类平抛运动涉及带电粒子在电场中加速和偏转的运动规律,利用运动的合成与分解把曲线运动转换为直线运动研究,涉及运动学公式、牛顿运动定律、动能定理、功能关系的综合应用.例2如图2所示,水平放置的两平行金属板,板长为10 cm,两板相距2 cm.一束电子以v0=4.0×107 m/s的初速度从两板中央水平射入板间,然后从板间飞出射到距板右端L为45 cm、宽D为20 cm 的荧光屏上.(不计电子重力,荧光屏中点在两板间的中线上,电子质量m=9.0×10-31 kg,电荷量e =1.6×10-19 C)求:图2(1)电子飞入两板前所经历的加速电场的电压;(2)为使带电粒子能射到荧光屏的所有位置,两板间所加电压的取值范围.三、带电粒子在交变电场中的运动交变电场作用下粒子所受的电场力发生改变,从而影响粒子的运动性质;由于电场力周期性变化,粒子的运动性质也具有周期性;研究带电粒子在交变电场中的运动需要分段研究,特别注意带电粒子进入交变电场的时间及交变电场的周期.例3带正电的微粒放在电场中,场强的大小和方向随时间变化的规律如图3所示.带电微粒只在电场力的作用下由静止开始运动,则下列说法中正确的是( )图3A.微粒在0~1 s内的加速度与1 s~2 s内的加速度相同B.微粒将沿着一条直线运动C.微粒做往复运动D.微粒在第1 s内的位移与第3 s内的位移相同四、带电粒子在电场(复合场)中的圆周运动解决电场(复合场)中的圆周运动问题,关键是分析向心力的来源,指向圆心的力提供向心力,向心力的提供有可能是重力和电场力的合力,也有可能是单独的重力或电场力.有时可以把复合场中的圆周运动等效为竖直面内的圆周运动,找出等效“最高点”和“最低点”.例4如图4所示,半径为r的绝缘细圆环的环面固定在水平面上,场强为E的匀强电场与环面平行.一电荷量为+q、质量为m的小球穿在环上,可沿环做无摩擦的圆周运动,若小球经A点时,速度v A的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用,求:图4(1)速度v A的大小;(2)小球运动到与A点对称的B点时,对环在水平方向的作用力的大小.1. (带电粒子在电场中的直线运动)如图5所示,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )图5A .所受重力与电场力平衡B .电势能逐渐增加C .动能逐渐增加D .做匀变速直线运动2. (带电粒子在电场中的类平抛运动)如图6所示,一电子沿x 轴正方向射入电场,在电场中的运动轨迹为OCD ,已知O A =A B ,电子过C 、D 两点时竖直方向的分速度为v Cy 和v Dy ;电子在OC 段和OD 段动能的变化量分别为ΔE k1和ΔE k2,则( )图6A .v Cy ∶v Dy =1∶2B .v Cy ∶v Dy =1∶4C .ΔE k1∶ΔE k2=1∶3D .ΔE k1∶ΔE k2=1∶43.(带电粒子在交变电场中的运动)如图7甲所示,在间距足够大的平行金属板A 、B 之间有一电子,在A 、B 之间加上如图乙所示规律变化的电压,在t =0时刻电子静止且A 板电势比B 板电势高,则( )图7A .电子在A 、B 两板间做往复运动B .在足够长的时间内,电子一定会碰上A 板C .当t =T2时,电子将回到出发点D .当t =T2时,电子的位移最大4.(带电粒子在电场中的圆周运动)如图8所示,ABCD为竖直放在场强为E=104N/C的水平匀强电场中的绝缘光滑轨道,其中轨道的ABC部分是半径为R=0.5 m的半圆环(B为半圆弧的中点),轨道的水平部分与半圆环相切于C点,D为水平轨道的一点,而且CD=2R,把一质量m=100 g、带电荷量q=10-4 C的负电小球,放在水平轨道的D点,由静止释放后,在轨道的内侧运动.g=10 m/s2,求:图8(1)它到达B点时的速度是多大?(2)它到达B点时对轨道的压力是多大?题组一带电粒子在电场中的直线运动1.图1为示波管中电子枪的原理示意图,示波管内被抽成真空.A为发射电子的阴极,K为接在高电势点的加速阳极,A、K间电压为U,电子离开阴极时的速度可以忽略,电子经加速后从K的小孔中射出时的速度大小为v.下面的说法中正确的是( )图1A.如果A、K间距离减半而电压仍为U,则电子离开K时的速度仍为vB.如果A、K间距离减半而电压仍为U,则电子离开K时的速度变为v/2C.如果A、K间距离不变而电压减半,则电子离开K时的速度变为2 2 vD.如果A、K间距离不变而电压减半,则电子离开K时的速度变为v/22.如图2所示,M 、N 是真空中的两块平行金属板,质量为m 、电荷量为q 的带电粒子,以初速度v 0由小孔进入电场,当M 、N 间电压为U 时,粒子恰好能到达N 板,如果要使这个带电粒子到达M 、N 板间距的12后返回,下列措施中能满足要求的是(不计带电粒子的重力)( )图2A .使初速度减为原来的12B .使M 、N 间电压加倍C .使M 、N 间电压提高到原来的4倍D .使初速度和M 、N 间电压都减为原来的12题组二 带电粒子在电场中的类平抛运动3.如图3所示,氕、氘、氚的原子核以初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么( )图3A .经过加速电场的过程中,电场力对氚核做的功最多B .经过偏转电场的过程中,电场力对三种核做的功一样多C .三种原子核打在屏上的速度一样大D .三种原子核都打在屏上同一位置处4.如图4所示,质量相同的两个带电粒子P、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P从两极板正中央射入,Q从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( )图4A.它们运动的时间t Q>t PB.它们运动的加速度a Q<a PC.它们所带的电荷量之比q P∶q Q=1∶2D.它们的动能增加量之比ΔE k P∶ΔE k Q=1∶25.如图5所示,静止的电子在加速电压U1的作用下从O经P板的小孔射出,又垂直进入平行金属板间的电场,在偏转电压U2的作用下偏转一段距离.现使U1加倍,要想使电子射出电场的位置不发生变化,应该( )图5A.使U2变为原来的2倍B.使U2变为原来的4倍C.使U2变为原来的2倍D.使U2变为原来的1/2倍6.如图6所示,带正电的粒子以一定的初速度v0沿两板的中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,已知板长为L,平行板间距离为d,板间电压为U,带电粒子的电荷量为q,粒子通过平行板的时间为t,则(不计粒子的重力)( )图6A .在前t 2时间内,电场力对粒子做的功为qU4B .在后t2时间内,电场力对粒子做的功为3qU8C .在粒子下落前d 4和后d4的过程中,电场力做功之比为1∶2D .在粒子下落前d 4和后d4的过程中,电场力做功之比为1∶1 题组三 带电粒子在电场中的圆周运动7.两个共轴的半圆柱形电极间的缝隙中,存在一沿半径方向的电场,如图7所示.带正电的粒子流由电场区域的一端M 射入电场,沿图中所示的半圆形轨道通过电场并从另一端N 射出,由此可知( )图7A .若入射粒子的电荷量相等,则出射粒子的质量一定相等B .若入射粒子的电荷量相等,则出射粒子的动能一定相等C .若入射粒子的电荷量与质量之比相等,则出射粒子的速率一定相等D .若入射粒子的电荷量与质量之比相等,则出射粒子的动能一定相等8.如图8所示,内壁光滑的绝缘材料制成的圆轨道固定在倾角为θ=37°的斜面上,与斜面的交点为A ,直径AB 垂直于斜面,直径CD 和MN 分别在水平和竖直方向上,它们处在水平向右的匀强电场中.质量为m 、电荷量为q 的小球(可视为点电荷)刚好能静止于圆轨道内的A 点.现对该小球施加一沿圆环切线方向的瞬时速度,使其恰能绕圆环完成圆周运动.下列对该小球运动的分析中正确的是( )图8 A .小球一定带负电 B .小球运动到B 点时动能最小 C .小球运动到M 点时动能最小 D .小球运动到D 点时机械能最小 题组四 综合应用9.如图9所示,ABCDF为一绝缘光滑轨道,竖直放置在水平向右的匀强电场中,AB与电场线平行,BCDF是与AB相切、半径为R的圆形轨道.今有质量为m、带电荷量为+q的小球在电场力作用下从A点由静止开始沿轨道运动,小球经过最高点D时对轨道的压力恰好为零,则A点与圆形轨道的最低点B间的电势差为多大?图910.如图10所示,长L=0.20 m的丝线的一端拴一质量为m=1.0×10-4 kg、带电荷量为q=+1.0×10-6 C的小球,另一端连在一水平轴O上,丝线拉着小球可在竖直平面内做圆周运动,整个装置处在竖直向上的匀强电场中,电场强度E=2.0×103 N/C.现将小球拉到与轴O在同一水平面上的A点,然后无初速度地将小球释放,取g=10 m/s2.求:(1)小球通过最高点B时速度的大小;(2)小球通过最高点时,丝线对小球拉力的大小.11.如图11所示,两块竖直放置的平行金属板A、B,板间距d=0.04 m,两板间的电压U=400 V,板间有一匀强电场.在A、B两板上端连线的中点Q的正上方,距Q为h=1.25 m的P点处有一带正电的小球,已知小球的质量m=5×10-6 kg,电荷量q=5×10-8 C.设A、B板足够长,g取10 m/s2.试求:(1)带正电的小球从P点开始由静止下落,经多长时间和金属板相碰;(2)相碰时,离金属板上端的竖直距离多大.例一解析(1)带电小球在电场外只受重力的作用做匀减速直线运动,在电场中受重力和电场力作用做匀减速直线运动.(2)整个运动过程中重力和电场力做功,由动能定理得-mg (H +h )-qU AB =0-12mv 20解得U AB =m [v 20-2g H +h ]2q例2 解析 (1)设加速电场的电压为U 1,由动能定理可得eU 1=12mv 20-0 化简得U 1=mv 202e代入数据得U 1=4.5×103 V.(2)如图所示,设电子飞出偏转电场时速度为v 1,和水平方向的夹角为θ,偏转电压为U 2,偏转位移为y ,则:y =12at 2=U 2e 2dm (lv 0)2 tan θ=v y v 0=U 2eldmv 20=yl /2由此看出,电子从偏转电场射出时,不论偏转电压多大,电子都像是从偏转电场的两极板间中线的中点沿直线射出一样,射出电场后电子做匀速直线运动恰好打在荧光屏的边缘上,结合图可得 tan θ=D /2L +l2=D2L +lU 2=Ddmv 20el 2L +l代入所有数据得U 2=360 V因此偏转电压在-360 V ~360 V 范围内时,电子可打在荧光屏上的任何位置. 答案 (1)4.5×103 V (2)-360 V ~360 V 例3 答案 BD解析 带正电的微粒放在电场中,第1 s 内加速运动,第2 s 内减速至零,故B 、D 对. 例4解析 (1)在A 点,小球在水平方向只受电场力作用,根据牛顿第二定律得:qE =m v 2Ar所以小球在A 点的速度v A =qEr m.(2)在小球从A 到B 的过程中,根据动能定理,电场力做的正功等于小球动能的增加量,即 2qEr =12mv 2B -12mv 2A 小球在B 点时,根据牛顿第二定律,在水平方向有F B -qE =m v 2Br解以上两式得小球在B 点对环的水平作用力为:F B =6qE . 答案 (1)qEr m(2)6qE1. 答案 BD解析 对带电粒子受力分析如图所示,F 合≠0,则A 错.由图可知电场力与重力的合力方向与v 0方向相反,F 合对粒子做负功,其中mg 不做功,Eq 做负功,故粒子动能减少,电势能增加,B 正确,C 错误.F 合恒定且F 合与v 0方向相反,粒子做匀减速运动,D项正确.2.答案 AD 3.答案 B解析 粒子先向A 板做半个周期的匀加速运动,接着做半个周期的匀减速运动,经历一个周期后速度为零,以后重复以上过程,运动方向不变,选B. 4答案 (1)25 m/s (2)5 N解析 (1)小球从D 至B 的过程中,由动能定理: qE (2R +R )-mgR =12mv 2B解得:v B =25 m/s(2)在B 点由牛顿第二定律得:F N -qE =m v 2BRF N =qE +m v 2BR=5 N.由牛顿第三定律知F N ′=F N =5 N.题组一 带电粒子在电场中的直线运动 1.答案 AC 2.答案 BD解析 由qE ·l =12mv 20,当v 0变为22v 0时l 变为l2;因为qE =q Ud,所以qE ·l =q U d ·l =12mv 20,通过分析知B 、D 选项正确.题组二 带电粒子在电场中的类平抛运动 3.答案 BD解析 同一加速电场、同一偏转电场,三种原子核带电荷量相同,故在同一加速电场中电场力对它们做的功都相同,在同一偏转电场中电场力对它们做的功也相同,A 错,B 对;由于质量不同,所以三种原子核打在屏上的速度不同,C 错;再根据偏转距离公式或偏转角公式y =l 2U 24dU 1,tan θ=lU 22dU 1知,与带电粒子无关,D 对.4.答案 C解析 设两板距离为h ,P 、Q 两粒子的初速度为v 0,加速度分别为a P 和a Q ,粒子P 到上极板的距离是h2,它们做类平抛运动的水平距离均为l .则对P ,由l =v 0t P ,h 2=12a P t 2P ,得到a P =hv 20l 2;同理对Q ,l =v 0t Q ,h =12a Q t 2Q ,得到a Q =2hv 20l2.由此可见t P =t Q ,a Q =2a P ,而a P =q P E m,a Q =q Q E m,所以q P ∶q Q =1∶2.由动能定理得,它们的动能增加量之比ΔE k P ∶ΔE k Q =ma P h2∶ma Q h =1∶4.综上所述,C 项正确.5.答案 A解析 电子加速有qU 1=12mv 20电子偏转有y =12·qU 2md (lv 0)2联立解得y =U 2l 24U 1d ,显然选A.6答案 BD解析 粒子在电场中做类平抛运动的加速度为a =Eq m =Uqdm ,t 时间内加速度方向上的位移y =12at 2=d 2,前t 2时间内加速度方向上的位移y 1=12a t 24=d 8,后t 2时间内加速度方向上的位移y 2=y -y 1=38d .由公式W =Fl 可知前t 2、后t 2、前d4、后d 4电场力做的功分别为W 1=18qU ,W 2=38qU ,W 3=14qU ,W 4=14qU . 题组三 带电粒子在电场中的圆周运动 7.答案 BC解析 由题图可知,该粒子在电场中做匀速圆周运动,电场力提供向心力qE =m v 2r 得r =mv 2qE,r 、E 为定值,若q 相等则12mv 2一定相等;若qm 相等,则速率v 一定相等,故B 、C 正确.8.答案 ABD解析 小球能静止于A 点,说明小球在A 点所受的合力为零,电场力一定与场强方向相反,小球带负电,A 正确;小球所受的重力和电场力的合力F 是不变的,方向沿AB 直径方向由B 指向A ,小球从A 运动到B 的过程中F 做负功,动能减小,所以小球运动到B 点时动能最小,B 正确,C 错误;在圆环上,D 点的电势最低,小球在D 点的电势能最大,由能量守恒定律可得,小球运动到D 点时机械能最小,D 正确. 题组四 综合应用9.解析 小球从A 到D 的过程中有两个力做功,即重力和电场力做功,由动能定理得12mv 2=qU AD -mg ·2R小球在D 点时重力提供向心力,由牛顿第二定律得mg =m v 2R联立解得U AD =5mgR2q所以U AB =U AD =5mgR2q.10.答案 (1)2 m/s (2)3.0×10-3 N解析 (1)小球由A 运动到B ,其初速度为零,电场力对小球做正功,重力对小球做负功,丝线拉力不做功,则由动能定理有:qEL -mgL =mv 2B2,v B =2qE -mg L m=2 m/s(2)小球到达B 点时,受重力mg 、电场力qE 和拉力F T B 作用,经计算mg =1.0×10-4×10 N =1.0×10-3 NqE =1.0×10-6×2.0×103 N =2.0×10-3 N因为qE >mg ,而qE 方向竖直向上,mg 方向竖直向下,小球做圆周运动,其到达B 点时向心力的方向一定指向圆心,由此可以判断出F T B 的方向一定指向圆心,由牛顿第二定律有:F T B +mg -qE =mv 2B LF T B =mv 2B L+qE -mg =3.0×10-3 N11.答案 (1)0.52 s (2)0.102 m解析 (1)设小球从P 到Q 需时间t 1,由h =12gt 21得t 1= 2h g=2×1.2510s =0.5 s ,小球进入电场后其飞行时间取决于电场力产生的加速度a ,由力的独立作用原理,可以求出小球在电场中的运动时间t 2.由牛顿第二定律知qE =ma ,E =U d ,d 2=12at 22,以上三式联立,得t 2=dmqU=0.04×5×10-65×10-8×400s =0.02 s ,运动总时间t =t 1+t 2=0.5 s +0.02 s =0.52 s.(2)小球由P 点开始在竖直方向上始终做自由落体运动,在时间t 内的位移为y =12gt 2=12×10×(0.52)2 m =1.352 m. 相碰时,与金属板上端的竖直距离为s =y -h =1.352 m -1.25 m =0.102 m.。
电场知识点和例题总结

电场知识点和例题总结电场是物理学中重要的概念之一,它描述了电荷之间相互作用的力场。
电场的研究对于理解电磁现象、电路问题、静电现象等都具有重要的意义。
在本文中,我们将总结电场的基本知识点和相关的例题,希望能够帮助读者更好地理解和掌握电场的内容。
1. 电场的定义和性质电场是一种力场,它描述了电荷在空间中的作用力。
如果一个正电荷放置在空间中的某个位置,它会在这个位置产生一个向外的力场;而一个负电荷则会产生一个向内的力场。
电场的强度用电场强度来表示,通常用E来表示。
在一个给定位置上,电场的强度大小与该位置上的电荷数量和它们之间的距离有关。
电场的性质主要有以下几点:(1) 电场是矢量场:电场是具有方向和大小的物理量,它的方向由正电荷所受的力的方向决定。
(2) 电场叠加原理:如果在某个位置上存在多个电荷,那么它们产生的电场强度可以通过矢量叠加来获得。
(3) 电场与电势:电场受力是对电势的梯度,电场和电势之间存在着密切的关系。
(4) 电场的高斯定律:电场的高斯定律是描述电场与电荷分布之间关系的重要定律。
2. 电场的计算方法在物理学中,有多种方法可以用来计算电场的强度。
其中比较常用的有两种方法:电场叠加法和库仑定律。
(1) 电场叠加法:对于均匀分布的电荷,我们可以通过将整个电荷分布划分成小部分,并计算每个小部分对某一点上电场的贡献,最后对所有贡献进行叠加来得到这一点上的电场强度。
(2) 库仑定律:库仑定律是描述点电荷间相互作用力的定律,它可以用来计算点电荷在空间中的电场分布。
3. 电场的应用电场在现实生活中有着广泛的应用,其中最常见的就是静电现象和电路问题。
(1) 静电现象:静电现象是电荷在静止状态下所表现出的现象。
比如说,当我们梳头发的时候会遇到头发变得“充电”的情况,这就是一种静电现象。
电场的计算和描述在研究静电现象时有着重要的作用。
(2) 电路问题:在电路中,我们经常需要计算不同位置上的电场强度,以便分析电流的流动情况和电阻的情况。
高中物理电场知识点

高中物理电场知识点一、电场概念电场是指电荷在空间中所形成的一种物理场,是由于电荷的存在而产生的,可以对其他电荷施加电力作用。
二、电场强度1.定义:电场强度E是单位正电荷所受到的电力的大小,标量量,单位是伏/米(V/m)。
2.计算:由于电场强度是单位正电荷所受力的大小,可以通过电场强度的定义公式E=F/q计算,其中F为电荷所受力,q为单位正电荷的电荷量。
三、电场线与电势1.电场线:电场线是指在电场中,在任意一点的切线方向上,使得切线方向为电场强度方向的曲线。
2.电势:电势是指单位正电荷所具有的电位能,是标量量,用V表示,单位是伏特(V)。
3.电势的计算:电势的计算可以通过电场力做功的公式V=W/q计算,其中W为电场力对电荷做的功,q为电荷量。
四、点电荷的电场1.点电荷:电量集中在一个极点上的电荷称为点电荷。
2. 点电荷的电场强度:点电荷的电场强度E与与其距离r的关系式为E=kq/r^2,其中k为电场常数,q为点电荷的电荷量。
五、均匀带电直导线的电场1.均匀带电直导线:均匀带电直导线是指线上的电荷分布均匀的直导线。
2.均匀带电直导线的电场强度:均匀带电直导线上点P处的电场强度E与点P到直导线的距离r的关系式为E=λ/2πεr,其中λ为导线上单位长度的电荷量,ε为真空介电常数。
六、均匀带电平面的电场1.均匀带电平面:电荷均匀分布在一个平面上的电荷平面。
2.均匀带电平面的电场强度:均匀带电平面上点P处的电场强度E与点P到平面的距离d的关系式为E=σ/2ε,其中σ为平面上单位面积的电荷量。
七、电势差与电势能1. 电势差:在电场中,两点A和B之间的电势差Vab是指单位正电荷从A点移动到B点所获得的电位能的变化量。
2.电势能:电荷在电场中具有的电位能,当电荷与电势零点之间存在电势差时,电荷具有电势能。
八、电容和电容器1.电容:电容C是指单位电势差U所存储的电荷量,是标量量,单位是法拉(F)。
2.电容器:电容器是指能够存储电荷并且具有电容的器件。
高中物理必修三第九章静电场及其应用知识点梳理(带答案)

高中物理必修三第九章静电场及其应用知识点梳理单选题1、如图所示,一固定的均匀带电圆环,圆心为O,带电量为Q。
MN为垂直于圆环的轴线,M、N两点距圆心均为r。
在圆心正下方2r的位置固定一电量为+q的小带电体。
在M点放置不同电量的试探电荷,试探电荷均可保持静止。
不计试探电荷的重力,静电力常量为k。
则N点的电场强度大小为()A.0B.2k qr2C.k8q9r2D.k10q9r2答案:D在M点放置不同电量的试探电荷,试探电荷均可保持静止,即M点场强为零。
电量为+q的小带电体在M处产生电场强度为E M=kq(3r)2=kq9r2方向向上。
根据电场的叠加原理,带电圆环与小球在M处产生电场强度大小相等,方向相反,所以带电圆环在M处产生的电场强度大小E′M=kq 9r2方向向下根据对称性可以知道带电圆环在N处产生的电场强E N=kq 9r2方向向上电量为+q的小带电体在N处产生电场强度为E1=k q2 r2所N点处场强的大小为E′N=E N+E1=kq9r2+kqr2=k10q9r2故选D。
2、下列关于物理学史说法正确的是()A.牛顿发现了万有引力定律,并通过实验较准确地测出了引力常量B.伽利略用“冲淡”重力的方法研究得出自由落体运动是匀加速运动C.开普勒独立完成了观测行星的运行数据、整理观测数据、发现行星运行规律的全部工作D.元电荷e的数值,最早是由法国科学家库仑测得的答案:BA.牛顿发现了万有引力定律,但通过实验较准确地测出了引力常量的科学家是卡文迪什,A错误;B.伽利略用“冲淡”重力的方法研究得出自由落体运动是匀加速运动,B正确;C.开普勒是研究第谷的观测行星的运行数据,研究总结出开普勒三大定律的,C错误;D.元电荷e的数值,最早是由美国物理学家密立根测得的,D错误;故选B3、如图所示,在三角形ABC的A点和C点分别固定两个点电荷,已知B点的电场强度方向垂直于BC边向上,那么()A.两点电荷都带正电B.两点电荷都带负电C.A点的点电荷带正电,C点的点电荷带负电D.A点的点电荷带负电,C点的点电荷带正电B点的电场强度方向垂直于BC边向上,则A点的点电荷在B处的电场强度方向是沿AB指向A,C点的点电荷在B处的电场强度方向是沿BC指向B,这样二者矢量和才能垂直于BC边向上,如图所示,则分析可知A点的点电荷带负电,C点的点电荷带正电,故D正确,ABC错误。
(完整版)高中物理电场知识点与题型归纳(精编)

高中物理电场总结一. 教学内容:电场考点例析电场是电学的基础知识,是承前启后的一章。
通过这一章的学习要系统地把力学的“三大方法”复习一遍,同时又要掌握新的概念和规律。
这一章为历年高考的重点之一,特别是在力电综合试题中巧妙地把电场概念与牛顿定律、功能关系、动量等力学知识有机地结合起来,从求解过程中可以考查学生对力学、电学有关知识点的理解和熟练程度。
只要同学们在复习本章时牢牢抓住“力和能两条主线”,实现知识的系统化,找出它们的有机联系,做到融会贯通,在高考得到本章相应试题的分数是不困难的。
二. 夯实基础知识1. 深刻理解库仑定律和电荷守恒定律。
(1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
即:其中k 为静电力常量, k =9.0×10 9 N m 2/c 2成立条件:① 真空中(空气中也近似成立),② 点电荷。
即带电体的形状和大小对相互作用力的影响可以忽略不计。
(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r 都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r )。
(2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。
2. 深刻理解电场的力的性质。
电场的最基本的性质是对放入其中的电荷有力的作用。
电场强度E 是描述电场的力的性质的物理量。
(1)定义: 放入电场中某点的电荷所受的电场力F 跟它的电荷量q 的比值,叫做该点的电场强度,简称场强。
这是电场强度的定义式,适用于任何电场。
其中的q 为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。
电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。
(2)点电荷周围的场强公式是: ,其中Q 是产生该电场的电荷,叫场源电荷。
(3)匀强电场的场强公式是: ,其中d 是沿电场线方向上的距离。
[荐]高中物理:静电场及其应用-必考知识点+例题详解
![[荐]高中物理:静电场及其应用-必考知识点+例题详解](https://img.taocdn.com/s3/m/cbcaf50b998fcc22bdd10dcc.png)
【下载后获高清完整版-独家优质】高中物理:静电场及其应用-必考知识点+例题详解1.电荷物质或粒子的一种属性,有正负之分,使粒子可以相互作用,并且电荷量可以累加,电荷量的单位是库伦,C。
电荷量的基本单元是元电荷C(近似值)2. 电荷守恒定律电荷只能从一个物体转移到另一个物体(摩擦起电、接触起电),或者从物体的一部分转移到另一部分(感应起电),不会凭空产生或消失。
3.点电荷只有电荷量、没有体积的理想模型,可以参考质点的特点。
4.库仑定律适用于任何两个点电荷之间的电场力计算,,,称为静电常数,r代表两个点电荷之间的距离;电场力的方向在两个点电荷的连线上,当两电荷电性相同时,电场力表现为斥力,当电性相反时,表现为引力。
(可以与引力做对比,,,由于G与k的数量级相差较大,在二者同时存在时,很多情况下是不考虑引力作用的。
)[例1]如图,一半径为R的绝缘圆环均匀带电,ab是一极小的缺口,缺口长为L(),圆环的带电荷量为Q(正电荷),在圆心处放置一带电荷量为q的负点电荷,试计算负点电荷受到的库仑力的大小和方向。
解析:这类题目多采用“割补法”,构造一个完整的或者对称的形状叠加一个点电荷的模型。
绝缘圆环的电荷线密度,则长度为L的一段圆环所带电荷量为q'=ρ·L= ,将ab缺口看做是两段长为L、带电量分别为正负q'的绝缘环叠加补在ab处,即相当于一完整的带正电圆环和一小段带负电的圆环叠加,由完整圆环的对称性可知,圆心的负电荷q所受电场力互相抵消,所以最终受力为长为L的一小段负电圆环与圆心负电荷的作用力,,同性电荷互相排斥,所以力的方向由圆心指向背离ab缺口的方向。
5.电场与电场强度⑴任何电荷,都会在其周围产生电场,电荷之间通过“场”发生作用,电荷通过电场对其它电荷产生力的作用,电荷就是电场的场源。
⑵电场强度简称场强:场强描述了电场中力的特性,是矢量,用E表示,大小用检验电荷所受到的电场力F与电荷量q的商表示,,单位N/C,方向指向检验电荷的受力方向。
高中物理电场复习电场力的性质知识点分析3

图6-1-1德钝市安静阳光实验学校一、电场力的性质一、电荷、电荷守恒定律1、两种电荷:用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。
2、元电荷:一个元电荷的电量为1.6×10-19C ,是一个电子所带的电量。
说明:任何带电体的带电量皆为元电荷电量的整数倍。
3、起电:使物体带电叫起电,使物体带电的方式有三种①摩擦起电,②接触起电,③感应起电。
4、电荷守恒定律:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的.注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。
【例1】绝缘细线上端固定,下端悬挂一轻质小球a ,a 的表面镀有铝膜,在a 的近旁有一绝缘金属球b ,开始时a 、b 都不带电,如图6-1-所示,现使b 带电,则A .a 、b 之间不发生相互作用B .b 将吸引a ,吸住后不放开C .b 立即把a 排斥开D .b 先吸引a ,接触后又把a 排斥开【例1】解析 : 本题是1990年全国高考题,题目虽小,但它考查了四个知识点:(1)带电体有吸引轻小物体的性质;(2)物体间力的作用是相互的;(3)接触带电;(4)同种电荷相排斥,由(1)(2)知道b 应吸引a ,使b 、a 接触;由(3)知a 、b 接触后,原来a 所带的电荷要重新在a 、b 表面分布,使a 、b 带了同种电荷;由(4)知b 又把a 排斥开,故应选D 答案:D【例2】有三个完全一样的金属小球A 、B 、C ,A 带电7Q ,B 带电量—Q ,C不带电,将A 、B 固定起来,然后让C 球反复与A 、B 球接触,最后移去C 球,试问A 、B 间的库仑力为原来的多少倍?【例2】解析:题中所说的C 与A 、B 反复接触之意,隐含—个条件:即A 、B 原先所带电量的总和,最后在三个相同的小球间均分,最后A 、B 两球带的电量均为[7Q+(-Q )]/3=2Q ,A 、B 两球原先有引力222rkQ 7r Q .7Q k F ==,A 、B 两球最后有斥力F=k 222rkQ4r2Q .2Q =以上两式相除可得:F ’=4F /7,即A 、B 间的库仑力减为原来的4/7. 二、库仑定律1. 内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章电场电场是高中物理的重点知识之一.本章着重从力和能两个角度研究电场的基本性质.本章既是重点,又是难点,也是高考的热点.它是电磁学的基础,特别是在“3+X”理科综合考试中,它将成为联系力学和电磁学的一个重要钮带.本章及相关内容知识网络:专题一电场的力的性质【考点透析】一、本专题考点:本单元除电荷及电荷守恒定律为Ⅰ类要求外,其余均为Ⅱ类要求.即能够确切理解其含义及与其它知识的联系,能够用它解决生活中的实际问题.在高考中主要考查方向是:①运用库仑定律定性或定量分析点电荷间的相互作用问题,并常用力学中处理物体平衡的方法分析带电小球的平衡问题;②运用电场强度的概念和电场线的性质对各种电场进行定性和定量的分析.二、理解和掌握的内容1.对电场和电场线的理解只要有电荷存在,其周围空间就存在电场,它是电荷间相互作用的媒介,电场具有力和能的性质.电场强度是矢量,满足矢量叠加原理.电场线是用来描述空间各点场强连续变化规律的一组假想的曲线.电场线的特点是:其方向代表场强方向、其疏密代表场强大小;电场线起始于正电荷(或无穷远)终止于负电荷(或无穷远);电场线不能相交.2.几点说明(1)库仑定律的适应条件:真空中,点电荷(带电体的线度远小于电荷间的距离r时,带电体的形状和大小对相互作用力的影响可忽略不计,可看作是点电荷).(2)元电荷、点电荷和检验电荷的区别:电子和质子带最小的电量e=1.6⨯10-19C,任何带电体所带的电量均为e的整数倍,故称1.6⨯10-19C为元电荷,它不是电子也不是质子,而是带电物质的最小电量值;如果带电体的线度远小于电荷间的距离,带电体的形状和大小对相互作用力的影响可忽略不计,这样的带电体可看作是点电荷,它是一种科学的抽象,是一种理想模型;检验电荷是电量足够小的点电荷,只有当点电荷放入电场中后不足以原电场的性质或对原电场的影响忽略不计时,该点电荷才能作为检验电荷.3.难点释疑(1)电场线是直线的电场不一定是匀强电场,如孤立点电荷产生的电场是非匀强电场,它的电场线就是直线.(2)电场线不是带电粒子的运动轨迹,只的在满足一定条件时带电粒子运动的轨迹才有可能与电场线重合.带电粒子的运动轨迹是由带电粒子受到的合外力和初速度来决定的,必须从运动和力的观点来分析确定.【例题精析】例1 如图所示,半径相同的两个金属小球A 、B 带有电量相等的电荷,相隔一定距离,两球之间的相互吸引力的大小为F 。
今用第三个半径相同的不带电的金属小球先后与A 、B 两球接触后移开,这时A 、B 两球间相互作用力的大小为( )A .F /8B .F /4C .3F /8D .3F /4解析:由于A 、B 间有吸引力,则A 、B 带异种电荷,设为Q ,两球之间的吸引力F =kQ 2/r 2,r为两球间的距离。
当C 球与A 球接触后,A 、C 带电量q 1=Q /2,当C 球再与B 球接触后,B 、C 两平均水平喧电量q 2=(Q -Q /2)2=Q /4,此时A 、B 两球间相互作用力的大小为F ˊ=kQ 2/8r 2=F /8。
正确答案:A思考与拓宽:若金属小球A 、B 较大,且相距较近,有正确答案吗?为什么?(答案:没有,因为这时库仑定律已不适应)[来源:学&科&网]例2 在真空中有两个固定的正的点电荷A 、B ,带电量分别为Q 、q ,相距L ,(1)引入第三个点电荷 C 使它处于平衡状态,这个点电荷 应放在什么位置,带电量为多少?(2)如果A 、B 不固定,C 应放在什么位置,带电量为多少时三个电荷均静止?解析:此题目为物体平衡和库仑定律的综合运用题,其解题方法与力学中处理物体平衡问题的分析方法是相同的.(1)A 、B 两球都固定,C 球只能放在A 、B 连线之是且适当的位置才有可能平衡,设带电量为q´,距A 点的距离为x ,对C 由物体平衡条件和库仑定律得:K Q q´/x 2=Kq q´/(L -x)2解得x = Q Q +q,q´在运算中被消去,所以q´的电性和电量多少不限. (2)A 、B 不固定时,三个小球均要在互相作用下平衡,由受力分析可知,C 必须是负电荷,且放于A 、B 连线间,设电量为 -q´,距A 为x .对C 由物体平衡条件和库仑定律得:KQq /x 2=Kqq /(L-x )2 , 解得x =Q Q +q 对A 由物体平衡条件和库仑定律得:KQ q/L 2=KQq/x 2 , 解得x = q ( Q Q +q)2思考与拓宽1:三个电荷在同一直线上排列,且三个电荷由于相互作用均平衡时,它们的电性有什么规律? 带电量多少与它们之间的距离有什么关系?(答案:电荷的排列顺序只有两种可能,即:“+ - +”和“- + -”;中间的电荷带电量少,两端的电荷带电量多,两羰的电荷中带电量少的与中间电荷较近)图10—1思考与拓宽2:能否用点电荷的场强公式和电场强度的叠加原理来解答例1?(答案:能,当电荷受库仑力平衡时,它所在处的合场强为零)例3 如图10—2所示,带箭头的曲线表示电场中某区域内电场线的分布情况,一带电粒子在电场中运动的径迹如图中虚线所示,若不考虑其它力的作用,则下列判断中正确的是( )A .若粒子是从A 运动到B ,则粒子带正电;若粒子是从B 运动到A ,则粒子带负电B .不论粒子是从A 运动到B 还是从B 运动到A , 粒子必带负电C .若粒子是从B 运动到A ,则其加速度减小D .若粒子是从B 运动到A ,则其速度减小 解析:本题应从物体做曲线运动的条件着手分析,由曲线的弯曲方向看,带电粒子受电场力方向必向左方,再由正负电荷所受电场力方向与场强方向的关系便可确定带电粒子带负电,所以答案A 错误,答案B 正确;而其加速度如何变化可由电场线的疏密变化来确定,因为电场线密处的场强大,同一电荷受力大,电场线稀疏处场强小,同一电荷受力小,由图可见A 处的电场线比B 处稀疏,所以电荷在B 处的加速度较大,所以答案C 正确;速度如何变化可从电场力做功情况做出判断,当粒子从B 向A 运动时,其们移方向与受力方向的夹角小于900,电场力即合外力做正功,其动能增大,速度增大,所以答案D 错误.思考与拓宽:若粒子带电性质与题中粒子的电性相反,且从A 点进入电场,请定性画出其运动轨迹.(答案:略)【能力提升】Ⅰ知识与技能1.真空中有两个相同的带电金属小球A 和B ,,相距为r ,带电量分别为q 和2q ,它们间相互作用力大小为F .有一个不带电的金属小球C ,大小与A 、B 相同,当C 与A 、B 小球各接触一下后拿开,再将A 、B 间距离变为2r ,那么A 、B 间作用力大小可能为( )①3F /64 ②0 ③3F /32 ④3F /16A .①②③B .①③C .①②D .①④2. 两个小球A 、B ,分别带有同种电荷Q A 和Q B ,质量分别为M A 和M B ,B 用长为L 的绝缘丝线悬挂在A 球的正上方的O 点,A 距O 点的距离也为L ,且被固定,当B 球达到平衡时A 、B 相距为d ,如图10—3所示为使A 、B 间距离减小到d /2,可采用的方法是( )A.将A 的电量减小到Q A /4 B.将B 的电量减小到Q B /8C.将A 的质量减小到M A /8 D.将B 的质量减小到M B /83.如图10—4所示.一带电量为Q 的较大的金属球,固定在绝缘支架上,这时球外距金属球较近处一点P 的电场强度为E 0,当把一电量也为Q 的点电荷放在P 点时,测得点电荷受到的电场力为f ;当把一电量为aQ 的点电荷放在P 点时,测得点电荷受到的电场力为F ,则在国际单位制中( )A .f 的数值等于 QE 0B .F 的数值等于afC .a 比1小的越多, F 的数值越接近aQE 0D .a 比1小的越多, F的数值越接近af4.关于场强的下列说法中,正确的是( )A .电场中某点的电场强度方向与放入该点的检验 电荷所受电场力方向相同B .等量异种电荷的电场中,两电荷连线上场强最大的点为连线的中点图10—3Q ∙P 图10—4图10—9 C .在等量异种电荷的电场中,两电荷连线的垂直平分线上,从垂足向两侧场强越来越小D .在等量同种电荷的电场中,两电荷连线的垂直平分线上,从垂足向两侧场强越来越小5.如图10—5中AB 是某个点电荷电场是的一条电场线,在线上O 点放入一个自由的负电荷,他将沿电场线向B 点运动,下列判断中哪些是正确的( )A .电场线由B 指向A ,该电荷加速运动,加速度越来越小B .电场线由B 指向A ,该电荷加速运动,加速度大小的变化由题设条件不能确定C .电场线由A 指向B ,该电荷做匀加速运动D .电场线由B 指向A ,该电荷加速运动,加速度越来越大6.如图10—6(a )中,直线AB 是某个点电荷电场中的一条电场线, 图10—4(b )是放在电场线上A 、B 两点的电荷的电量与所受电场力大小间的函数图象.由此可以判定( )①场源可能是正电荷,位置在A 点左侧②场源可能是正电荷,位置在B 点右侧③场源可能是负电荷,位置在A 点左侧④场源可能是负电荷,位置在B 点左侧A .①③B .①④C .②④D .②③ 7.如图10—7所示,在x 轴上坐标为+1的点放一个电量为+4Q 的点电荷,坐标原点O 处固定一个电量为-Q 的点电荷,那么在x 轴上,电场强度方向沿x 轴负方向的点所在区域是 .Ⅱ。
能力与素质 8.真空中有A 、B 两个点电荷相距L ,质量为m 和2m ,将它们由静止释放瞬时,A 的加速度为a ,经过一段时间后B 的加速度也为a ,且速率为V .求:①这时两个点电荷相距多远?②这时点电荷A 的速率多大?9.如图10—8所示,一半径为R 的绝缘球壳上均匀带有+Q 的电荷,由于对称性,球心O 点的场强为零,现在球壳上挖去半径为r (r 《R )的一个小圆孔,求此时球心处场强的大小和方向.10.用一根绝缘绳悬挂一个带电小球,小球的质量为 1.0⨯10-2kg ,所带的电荷量为+2.0⨯10-8C .现加一水平方向的匀强电场,平衡时绝缘绳与竖直线成300角,如图10—9所示.求匀强电场的场强.专题二 电场的能的性质【考点透析】一、本专题考点: 本专题的知识点均为Ⅱ类要求,即能够确切理解其含义及与其它知识的联系,能够用它解决生活中的实际问题.在高考中主要考查方向是:①以选择题的形式对描述电场的各物理量(如电场强度与电势、电势与电势等)能进行比较鉴别;②利用电场线和等势面的性质对电场进行分析;③从能的转化的观点分析带电粒子在电场中的运动.二、理解和掌握的内容1.理顺好几个关系:(1)电场力做功与电势能的关系:电场力对电荷做功,电荷的电势能减小;电荷克服电场力做功,电荷的电势能增加.电势能变化的数值等于电场力对电荷做功的数值.这常是判断电荷电势能变化的依据. · · · A O B 图10—5 · · A B 图10—6(a) (b) · · · · · -1 0 1 2 3-Q +4Q x图10—7(2)电势与电势能:①电势是描述电场能的性质的物理量,与置于电场中检验电荷的电量大小无关,电势能是描述电荷与电场相互作用能的大小的物理量,其大小由电场中电荷带电量的多少和该点电势共同决定.②带电体从电场中的a点移到b 点过程中,如果知道电场力对带电体做正功还是做负功,可直接判断其电势能的变化.若要判断a、b两点电势高低,必须知道带电体是带正电还是带负电,反之,若要知道带电体所带电荷的正负,要判断a、b 两点电势高低,必须知道电场力对带电体做正功还是做负功.(3)等势面的特点:①等势面一定与电场垂直;②在同一等势面上移动电荷时电场力不做功;③电场线总是从电势高的等势面指向电势低的等势面;④任何两个等势面都不会相交;⑤等差等势面越密的地方电场强度越大,即等差等势面的疏密可以描述电场的强弱.2.几点说明(1)电势的数值是相对的,不是绝对的.在求电势大小时,首先必须选定某一位置的电势为零,否则无法求解.零点的选取是任意的,但在理论上通常取离场源电荷无穷远处为零电势位置;实际使用中,则取大地为零电势.(2)电场中某点的电势在数值上等于单位正电荷由该点移至零电势点时电场力所做的功.这就说明,当电场中某点的位置和零电势点确定后,这一点的电势就是一个确定的值了.某点的电势与该点是否放有电荷无关,即电势的大小由电场本身和零电势点的位置决定.3.难点释疑有的同学认为"电场强度大处电势高"、"电势高处电荷的电势能大".产生上述错误的原因是对上述概念的不理解造成的.在电场中一个确定的点电场强度是确定的,而电势却与零势点的选取有关,另外逆电场线方向电势要升高,但逆电场线方向电场强度不一定增大,所以场强大处电势不一定高,电势高处场强也不一定大;电势能的大小由电场中电荷带电量的多少和该点电势共同决定,要区分正电荷和负电荷,正电荷在电势向处的电势能大,而负电荷在电势高处的电势能小.【例题精析】例1 一个点电荷,从电场中的a点移到b点,其电势能的变化量为零,则( )A.a、b两点的场强一定相等B.该电荷一定沿等势面移动C.作用于该点电荷的电场力与其移动方向总是垂直的D.a、b两点的电势一定相等解析:本题考查了电势能的变化、电场力做功、电场强度、电势和电势差与及它们间的关系.由∆ε=W = qU ab=q(U a-U b)可知,若∆ε= 0,则①U ab= U a-U b= 0即U a=U b,所以D选项正确.面电势相等的点,其场强不一定相等,故A选项不正确.②W = 0,即点电荷从a移到b,电场力所做的总功为零,造成这一结果有两种可能性,其一是电荷沿等势面移动,这时电场力与电荷的移动方向是垂直的;其二是电荷从等势面上的a点经任意路径又回到这一等势面上的点b(因为电场力做的功与路径无关,只与初末状态的位置有关),所以B、C也是错误的.正确答案:D.例2 如图10—10所示,A、B、C、D是匀强电场中一正方形的四个顶点.已知A、B、C三点的电势分别为ϕA=15V,ϕB=3V,ϕC=-3V.由此可得D点的电势ϕD=V.解析:求电场中某点的电势,一般是先求电势差,再求电势.但此题还要注意运用匀强电场的一些特性进行求解.如图10—11所示,设场强方向与AB方向的夹角为α,AB边长为a.DC 图10—10由U =Ed =ELcos θ 知U AB U Ac =1218 = 23 = acos α2 cos α(450-α)---------------① U AB U AD = 12U AD = acos αacos α(90-α)- -----------------------② 由①、②式解得U AD =6V ,tg α=1/2.又因为U AD =U A -U D ,所以U D =U A -U AD =9V .思考1: 在匀强电场中,任意两条平行线上距离相等的两点间电势差一定相等吗?如果相等,能利用此结论来解此题吗?(答案:相等;能)思考2: 请用作图法确定题中匀强电场的场强方向.(答案:略)例3 如图10—12所示的直线是真空中某电场中的一条电场线,A 、B 是这条电场线上的两点.一个带正电的粒子在只受电场力的情况下,以速度V A 经过A 点向B 点运动,经一段时间后,该带正电的粒子以速度V B 经过B 点,且V B 与V A 方向相反,则( )A .A 点的电势一定低于B 点的电势B .A 点的场强一定大于B 点的场强C .该带电粒子在A 点的电势能一定小于它在B 点的电势能D .该带电粒子在A 点时的动能与电势能之和等于它在B 点的动能与电势能之和解析:当电场线是直线时,同一电场线上各点的场强方向必相同,由题中给出的粒子运动情况可以判断,粒子受电场力方向应向左,粒子从A 到B 的运动过程是先向右减速,速度减为零后又向左加速.因为粒子带正电荷,受电场力方向向左,所以电场线的方向应向左,沿电场线方向电势降低,所以A 点的电势比B 点低,答案A 正确;由电场中的一条电场线不能确定此电场中各点电场强度的大小,所以答案B 不正确;粒子从A 点运动到B 点的过程中,粒子克服电场力做功,电势能必增大,所以答案C 正确;由于粒子在运动过程中只有电场力做功,因此只存在动能与电势能的相互转化,动能与电势能之和保持不变,所以答案D 正确.正确答案ACD .思考拓宽:若A 、B 是如图10—13所示电场中的两点,则正确答案应是什么?(答案:D )【能力提升】Ⅰ。