第一次数值计算报告

合集下载

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。

本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。

二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。

本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。

2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。

本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。

3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。

本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。

4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。

本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。

三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。

在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。

在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。

在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。

在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。

四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。

在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。

数值计算实验报告

数值计算实验报告

一、实验目的1. 熟悉数值计算的基本原理和方法。

2. 掌握常用数值计算方法在数学建模和科学计算中的应用。

3. 培养运用计算机进行数值计算的能力。

二、实验内容1. 矩阵运算2. 解线性方程组3. 求函数的零点4. 解微分方程三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 库:NumPy、SciPy、Matplotlib四、实验步骤及结果1. 矩阵运算(1)实验步骤:1)导入NumPy库;2)创建一个3x3的矩阵A;3)创建一个3x1的矩阵B;4)进行矩阵乘法运算:C = A B;5)打印结果。

(2)实验结果:A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]B = [[1], [2], [3]]C = A Bprint(C) # 输出:[[14], [32], [50]]2. 解线性方程组(1)实验步骤:1)导入NumPy库;2)创建一个3x3的系数矩阵A和一个3x1的常数向量b;3)使用NumPy的线性代数模块求解线性方程组:x = np.linalg.solve(A, b);4)打印结果。

(2)实验结果:A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]b = [2, 5, 6]x = np.linalg.solve(A, b)print(x) # 输出:[0.5, 0.5, 0.5]3. 求函数的零点(1)实验步骤:1)导入NumPy库;2)定义一个待求零点的函数f(x);3)使用NumPy的根求解器求f(x)的零点:x = np.roots(f(x));4)打印结果。

(2)实验结果:def f(x):return x2 - 4x = np.roots(f(x))print(x) # 输出:[2.0, -2.0]4. 解微分方程(1)实验步骤:1)导入SciPy库;2)定义一个微分方程函数ode_f,其中包含微分方程的系数;3)创建一个OdeSolver对象,并设置微分方程的初始条件;4)使用OdeSolver对象的solve方法求解微分方程;5)打印结果。

数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告一、实验目的本次实验旨在通过上机练习,加深对数值分析方法的理解,并掌握实际应用中的数值计算方法。

二、实验内容1. 数值计算的基本概念和方法在本次实验中,我们首先回顾了数值计算的基本概念和方法。

数值计算是一种通过计算机进行数值近似的方法,其包括近似解的计算、误差分析和稳定性分析等内容。

2. 方程求解的数值方法接下来,我们学习了方程求解的数值方法。

方程求解是数值分析中非常重要的一部分,其目的是找到方程的实数或复数解。

我们学习了二分法、牛顿法和割线法等常用的数值求解方法,并对它们的原理和步骤进行了理论学习。

3. 插值和拟合插值和拟合是数值分析中常用的数值逼近方法。

在本次实验中,我们学习了插值和拟合的基本原理,并介绍了常见的插值方法,如拉格朗日插值和牛顿插值。

我们还学习了最小二乘拟合方法,如线性拟合和多项式拟合方法。

4. 数值积分和数值微分数值积分和数值微分是数值分析中的两个重要内容。

在本次实验中,我们学习了数值积分和数值微分的基本原理,并介绍了常用的数值积分方法,如梯形法和辛卜生公式。

我们还学习了数值微分的数值方法,如差商法和牛顿插值法。

5. 常微分方程的数值解法常微分方程是物理和工程问题中常见的数学模型,在本次实验中,我们学习了常微分方程的数值解法,包括欧拉法和四阶龙格-库塔法。

我们学习了这些方法的步骤和原理,并通过具体的实例进行了演示。

三、实验结果及分析通过本次实验,我们深入理解了数值分析的基本原理和方法。

我们通过实际操作,掌握了方程求解、插值和拟合、数值积分和数值微分以及常微分方程的数值解法等数值计算方法。

实验结果表明,在使用数值计算方法时,我们要注意误差的控制和结果的稳定性。

根据实验结果,我们可以对计算结果进行误差分析,并选择适当的数值方法和参数来提高计算的精度和稳定性。

此外,在实际应用中,我们还需要根据具体问题的特点和条件选择合适的数值方法和算法。

四、实验总结通过本次实验,我们对数值分析的基本原理和方法有了更加深入的了解。

数值计算实验报告-欧拉法常微分方程

数值计算实验报告-欧拉法常微分方程

数学与计算科学学院实验报告实验项目名称欧拉法解常微分方程所属课程名称数值计算实验类型验证型实验日期2012-6- 4班级隧道1002班学号201008020233姓名李彬彬成绩一、实验概述:【实验目的】 通过运用相关的数值计算软件,解决最基本的常微分方程的数值计算,并且能够熟练的运用这种方法。

【实验原理】 欧拉法1.对常微分方程初始问题(9.2))((9.1)),(00⎪⎩⎪⎨⎧==y x y y x f dxdy用数值方法求解时,我们总是认为(9.1)、(9.2)的解存在且唯一。

欧拉法是解初值问题的最简单的数值方法。

从(9.2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(9.3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为y (x 1)的近似值。

利用y 1及f (x 1, y 1)又可以算出y (x 2)的近似值:),(1112y x hf y y +=一般地,在任意点x n +1 = (n + 1)h 处y (x )的近似值由下式给出),(1n n n n y x hf y y +=+(9.4)这就是欧拉法的计算公式,h 称为步长。

不难看出,近似解的误差首先是由差商近似代替微商(见(9.3))引起的,这种近似代替所产生的误差称为截断误差。

还有一种误差称为舍入误差,这种误差是由于利用(9.4)进行计算时数值舍入引起的。

【实验环境】Windows XP 环境下运行 NumericalAnalyse 软件二、实验内容:【实验方案】在区间[0,1]上以h=0.1为步长,分别用欧拉法与预估-校正法求初值问题y’=y-2x/y且 y|x=0 =1的数值解。

将上述方程输入到软件NumericalAnalyse中步骤如图选择常微分方程的数值解法。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。

实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。

具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。

-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。

-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。

-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。

2.问题二:求解函数f(x)=x^2-3x+2的极小值点。

-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。

-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。

-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。

3. 问题三:求解微分方程dy/dx = -0.1*y的解。

-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。

-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。

-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。

实验步骤:1.编写代码实现各个数值计算方法的求解过程。

2.对每个数值计算问题,设置合适的初始值和终止条件。

3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。

4.比较不同数值计算方法的精度和效率,并分析其优缺点。

实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。

-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。

数值计算方法短学期实验报告

数值计算方法短学期实验报告

数值计算方法短学期实验报告实验序号:日期:2014年7月6日班级应物1101姓名学号逐次超松弛迭代法实验名称硬件需求:pc软件需求:MATLAB R2012a,Windows7任务描述:利用超松弛迭代法来求解给出的矩阵的解。

给出线性方程组,以矩阵的形式给出AX=B,然后利用超松弛迭代法求出X的近似解,同时要给出精确度,初始矩阵A,B。

初始迭代矩阵X0,最后给出迭代的结果和迭代的次数。

流程图算法详细描述(程序和注解)function[x,n]=SORSolve(A,b,w,x,ep,M) %超松弛逐次迭代法%用途:求解线性方程组的SOR迭代法%A为方程组的系数矩阵%b为方程组的右端向量组%x为迭代初始化向量(默认零向量)%w为松弛因子%ep为精度要求(默认值为1e-6)%M为最大迭代次数(默认500次)%x为方程组的解%n为迭代次数if nargin<6,M=500;endif nargin<5,ep=1e-6;endif nargin<4,x=zeros(size(b));endif nargin<3,w=1.2;end%对输入的量的个数验证以及判断D=diag(diag(A));%求A的对角矩阵L=D-tril(A);%tril求A的下三角矩阵U=D-triu(A);%triu求A的上三角矩阵for n=1:Mx=(D-w*L)\(((1-w)*D+w*U)*x+w*b);err=norm(b-A*x)/norm(b);%norm范数if err<ep,break;endend实验结果报告(图和表)>>A=[430;34-1;0-24];b=[2430-24]';>>[x,n]=SORSolve(A,b)x=2.40004.8000-3.6000n=19实验拉格朗日多项式插值法名称任务描述:用matlab分别编译拉格朗日多项式插值法拉格朗日多项式插值法对某个多项式函数,已知有给定的k+1个取值点:其中对应着自变量的位置,而对应着函数在这个位置的取值。

数值分析第一次实验报告

数值分析第一次实验报告

数值分析实验报告(一)2016级数学基地班尹烁翔320160928411一、问题重述:hamming级数求和二、问题分析级数为∑1k(k+x)∞k=1易知当X=1时,φ(1)=1我们可以考虑这个新级数:φ(x)−φ(1)用这个级数可以使精度更高,误差更小且迭代次数变少。

通分易得:φ(x)−φ(1)=1k(k+x)−1k(k+1)=1−xk(k+x)(k+1)我们还可以继续算得φ(2)及φ(x)−φ(2)这样精度会继续提高,且迭代次数也会减少。

下面考虑误差:由公式可得∑1−xk(k+x)(k+1)∞k=1<1k3<∫1k3∞n−1<10−10要把误差控制在范围内,需要k即迭代次数至少70001次。

三、算法实现:#include<iostream>#include<iomanip>>using namespace std;int main(){double sum;//sum为级数和double x;//x为代入的自变量int k=1;//k为迭代次数for (x=0; x<=10; x=x+0.1)//对0到10以内进行迭代运算,每次加0.1{sum=0;//每迭代完一个x,级数归零for (k=1; k<=70001; k++)//固定x并对k进行运算{sum=sum+1/(k*(k+x)*(k+1));}sum=(1-x)*sum+1.0;cout<<setiosflags(ios::fixed)<<" "<<setprecision(1)<<x;cout<<setiosflags(ios::fixed)<<" "<<setprecision(10)<<sum<<endl;}for (x=11; x<=290; x++)//对11到290以内进行迭代运算,每次加1{sum=0;for (k=1; k<=70001; k++)//固定x{sum=sum+1/(k*(k+x)*(k+1));}sum=(1-x)*sum+1.0;cout<<setiosflags(ios::fixed)<<" "<<setprecision(1)<<x;cout<<setiosflags(ios::fixed)<<" "<<setprecision(10)<<sum<<endl;}for (x=290; x<=300; x=x+0.1)//对290.1到300以内进行迭代运算,每次加0.1 {sum=0;for (k=1; k<=70001; k++)//固定x{sum=sum+1/(k*(k+x)*(k+1));}sum=(1-x)*sum+1.0;cout<<setiosflags(ios::fixed)<<" "<<setprecision(1)<<x;cout<<setiosflags(ios::fixed)<<" "<<setprecision(10)<<sum<<endl;}return 0;}四、数据结果:0.0 1.6449340667 0.1 1.5346072448 0.2 1.4408788415 0.3 1.3600825867 0.4 1.2895778007 0.5 1.2274112777 0.6 1.1721051961 0.7 1.1225193425 0.8 1.07775887270.9 1.03711091781.0 1.0000000000 1.1 0.9659560305 1.2 0.9345909181 1.3 0.9055811887 1.4 0.8786548819 1.5 0.853******* 1.6 0.8301644486 1.7 0.8082346082 1.8 0.78764591881.9 0.76827137672.0 0.7500000000 2.1 0.7327343381 2.2 0.7163884348 2.3 0.7008861540 2.4 0.6861597923 2.5 0.6721489224 2.6 0.6587994241 2.7 0.6460626684 2.8 0.63389482552.9 0.62225627673.0 0.6111111113 3.1 0.6004266954 3.2 0.5901732990 3.3 0.5803237751 3.4 0.5708532792 3.5 0.5617390263 3.6 0.5529600781 3.7 0.5444971556 3.8 0.53633247553.9 0.52844960504.0 0.5208333336 4.1 0.5134695598 4.2 0.5063451894 4.3 0.49944804604.4 0.49276679034.5 0.48629084784.6 0.48001034484.7 0.47391604974.8 0.46799932104.9 0.46225205975.0 0.45666666715.1 0.45123600545.2 0.44595336325.3 0.44081242345.4 0.43580723395.5 0.43093218145.6 0.42618196715.7 0.42155158445.8 0.41703629915.9 0.41263163046.0 0.40833333386.1 0.40413738606.2 0.40003996986.3 0.39603746096.4 0.39212641636.5 0.38830356206.6 0.38456578316.7 0.38091011406.8 0.37733372946.9 0.37383393577.0 0.37040816397.1 0.36705396157.2 0.36376898657.3 0.36055100097.4 0.35739786507.5 0.35430753177.6 0.35127804177.7 0.34830751887.8 0.34539416537.9 0.34253625788.0 0.33973214368.1 0.33698023688.2 0.33427901518.3 0.33162701648.4 0.32902283598.5 0.32646512338.6 0.32395258008.7 0.32148395698.8 0.31905805168.9 0.31667370669.0 0.31432980689.1 0.31202527809.2 0.30975908459.3 0.30753022799.4 0.30533774499.5 0.30318070609.6 0.30105821429.7 0.29896940319.8 0.29691343609.9 0.294889504210.0 0.292896826311.0 0.274534305112.0 0.258600891013.0 0.244625674714.0 0.232254453215.0 0.221215267616.0 0.211295563617.0 0.202326620618.0 0.194172672719.0 0.186723141720.0 0.179886984821.0 0.173588511822.0 0.167764240823.0 0.162360502724.0 0.157331593125.0 0.152638329626.0 0.148246914727.0 0.144128030628.0 0.140256111329.0 0.136608754530.0 0.133166240731.0 0.129911138432.0 0.126827978033.0 0.123902979834.0 0.121123826635.0 0.118479472636.0 0.115959981337.0 0.113556388138.0 0.111260583139.0 0.109065210040.0 0.106963580041.0 0.104949596342.0 0.103017690143.0 0.101162762944.0 0.099380138345.0 0.097665518246.0 0.096014944747.0 0.094424767348.0 0.092891612649.0 0.091412358750.0 0.089984111851.0 0.088604185152.0 0.087270081253.0 0.085979474654.0 0.084730197955.0 0.083520227556.0 0.082347672757.0 0.081210763958.0 0.080107843659.0 0.079037357560.0 0.077997846261.0 0.076987938262.0 0.076006343163.0 0.075051846164.0 0.074123301865.0 0.073219629966.0 0.072339810267.0 0.071482878568.0 0.070647922969.0 0.069834080070.0 0.069040532171.0 0.068266503872.0 0.067511259473.0 0.066774100374.0 0.066054362875.0 0.065351416076.0 0.064664659377.0 0.063993521278.0 0.063337457279.0 0.062695948280.0 0.062068499081.0 0.061454637382.0 0.0608539117 83.0 0.060265891284.0 0.059690163685.0 0.059126334986.0 0.058574027887.0 0.058032881288.0 0.057502549189.0 0.056982699990.0 0.056473015891.0 0.055973191792.0 0.055482935193.0 0.055001964994.0 0.054530011295.0 0.054066814696.0 0.053612125897.0 0.053165704998.0 0.052727321299.0 0.0522967526100.0 0.0518737853101.0 0.0514582132102.0 0.0510498380103.0 0.0506484683104.0 0.0502539197105.0 0.0498660140106.0 0.0494845798107.0 0.0491094512108.0 0.0487404681109.0 0.0483774760110.0 0.0480203256111.0 0.0476688725112.0 0.0473229772113.0 0.0469825047114.0 0.0466473244115.0 0.0463173100116.0 0.0459923394117.0 0.0456722940118.0 0.0453570593119.0 0.0450465242120.0 0.0447405812121.0 0.0444391259122.0 0.0441420572123.0 0.0438492771124.0 0.0435606905125.0 0.0432762052126.0 0.0429957316127.0 0.0427191829128.0 0.0424464746129.0 0.0421775249130.0 0.0419122542131.0 0.0416505852132.0 0.0413924428133.0 0.0411377539134.0 0.0408864476135.0 0.0406384549136.0 0.0403937087137.0 0.0401521437138.0 0.0399136963139.0 0.0396783048140.0 0.0394459089141.0 0.0392164502142.0 0.0389898715143.0 0.0387661174144.0 0.0385451338145.0 0.0383268679146.0 0.0381112684147.0 0.0378982853148.0 0.0376878698149.0 0.0374799743150.0 0.0372745524151.0 0.0370715590152.0 0.0368709499153.0 0.0366726822154.0 0.0364767137155.0 0.0362830036156.0 0.0360915118157.0 0.0359021994158.0 0.0357150281159.0 0.0355299609160.0 0.0353469614161.0 0.0351659940162.0 0.0349870241163.0 0.0348100178164.0 0.0346349421165.0 0.0344617645166.0 0.0342904534167.0 0.0341209780168.0 0.0339533080169.0 0.0337874138170.0 0.0336232666171.0 0.0334608381 172.0 0.0333001006 173.0 0.0331410270 174.0 0.0329835910 175.0 0.0328277666 176.0 0.0326735285 177.0 0.0325208518 178.0 0.0323697123 179.0 0.0322200861 180.0 0.0320719500 181.0 0.0319252812 182.0 0.0317800574 183.0 0.0316362566 184.0 0.0314938575 185.0 0.0313528391 186.0 0.0312131807 187.0 0.0310748622 188.0 0.0309378640 189.0 0.0308021665 190.0 0.0306677509 191.0 0.0305345985 192.0 0.0304026910 193.0 0.0302720107 194.0 0.0301425399 195.0 0.0300142615 196.0 0.029******* 197.0 0.029******* 198.0 0.029******* 199.0 0.029******* 200.0 0.029******* 201.0 0.029******* 202.0 0.029******* 203.0 0.029******* 204.0 0.028******* 205.0 0.028******* 206.0 0.028******* 207.0 0.028******* 208.0 0.028******* 209.0 0.028******* 210.0 0.028******* 211.0 0.028******* 212.0 0.028******* 213.0 0.027******* 214.0 0.027******* 215.0 0.027*******216.0 0.027*******217.0 0.027*******218.0 0.027*******219.0 0.027*******220.0 0.027*******221.0 0.027*******222.0 0.0269466153223.0 0.0268458877224.0 0.0267459700225.0 0.0266468523226.0 0.0265485248227.0 0.0264509777228.0 0.0263542015229.0 0.0262581869230.0 0.0261629247231.0 0.0260684057232.0 0.025*******233.0 0.025*******234.0 0.025*******235.0 0.025*******236.0 0.025*******237.0 0.025*******238.0 0.025*******239.0 0.025*******240.0 0.025*******241.0 0.025*******242.0 0.025*******243.0 0.024*******244.0 0.024*******245.0 0.024*******246.0 0.024*******247.0 0.024*******248.0 0.024*******249.0 0.024*******250.0 0.024*******251.0 0.024*******252.0 0.024*******253.0 0.024*******254.0 0.024*******255.0 0.024*******256.0 0.023*******257.0 0.023*******258.0 0.023*******259.0 0.023*******260.0 0.023*******261.0 0.023*******262.0 0.023*******263.0 0.023*******264.0 0.023*******265.0 0.023*******266.0 0.023*******267.0 0.023*******268.0 0.023*******269.0 0.022*******270.0 0.022*******271.0 0.022*******272.0 0.022*******273.0 0.022*******274.0 0.022*******275.0 0.022*******276.0 0.022*******277.0 0.022*******278.0 0.022*******279.0 0.022*******280.0 0.022*******281.0 0.022*******282.0 0.022*******283.0 0.021*******284.0 0.021*******285.0 0.021*******286.0 0.021*******287.0 0.021*******288.0 0.021*******289.0 0.021*******290.0 0.021*******290.1 0.021*******290.2 0.021*******290.3 0.021*******290.4 0.021*******290.5 0.021*******290.6 0.021*******290.7 0.021*******290.8 0.021*******290.9 0.021*******291.0 0.021*******291.1 0.021*******291.2 0.021*******291.3 0.021******* 291.4 0.021******* 291.5 0.021******* 291.6 0.021******* 291.7 0.021******* 291.8 0.021******* 291.9 0.021******* 292.0 0.021******* 292.1 0.021******* 292.2 0.021******* 292.3 0.021******* 292.4 0.021******* 292.5 0.021******* 292.6 0.021******* 292.7 0.021******* 292.8 0.021******* 292.9 0.021******* 293.0 0.021******* 293.1 0.021******* 293.2 0.021******* 293.3 0.021******* 293.4 0.021******* 293.5 0.021******* 293.6 0.021******* 293.7 0.021******* 293.8 0.021******* 293.9 0.021******* 294.0 0.021******* 294.1 0.021******* 294.2 0.021******* 294.3 0.021******* 294.4 0.021******* 294.5 0.021******* 294.6 0.021******* 294.7 0.021******* 294.8 0.021******* 294.9 0.021******* 295.0 0.021******* 295.1 0.021******* 295.2 0.021******* 295.3 0.021******* 295.4 0.021******* 295.5 0.021******* 295.6 0.021******* 295.7 0.021******* 295.8 0.021******* 295.9 0.021******* 296.0 0.021******* 296.1 0.021******* 296.2 0.021******* 296.3 0.021******* 296.4 0.021******* 296.5 0.021******* 296.6 0.021******* 296.7 0.021******* 296.8 0.021******* 296.9 0.021******* 297.0 0.021******* 297.1 0.021******* 297.2 0.021******* 297.3 0.021******* 297.4 0.021******* 297.5 0.021******* 297.6 0.021******* 297.7 0.021******* 297.8 0.021******* 297.9 0.021******* 298.0 0.021******* 298.1 0.021******* 298.2 0.021******* 298.3 0.021******* 298.4 0.021******* 298.5 0.021******* 298.6 0.021******* 298.7 0.021******* 298.8 0.021******* 298.9 0.021******* 299.0 0.021******* 299.1 0.020******* 299.2 0.020******* 299.3 0.020******* 299.4 0.020******* 299.5 0.020******* 299.6 0.020******* 299.7 0.020******* 299.8 0.020******* 299.9 0.020******* 300.0 0.020*******。

数值计算方法I实验报告

数值计算方法I实验报告

实验报告实验课程名称数值计算方法I开课实验室数学实验室学院理学院年级2012 专业班信息与计算科学2班学生姓名学号开课时间2012 至2013 学年第 2 学期实验一 误差分析试验1.1(病态问题)问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=-=---=k k x x x x x p显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。

现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。

这相当于是对(1.1)中19x 的系数作一个小的扰动。

我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。

实验内容:为了实现方便,我们先介绍两个MA TLAB 函数:“roots ”和“poly ”。

roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。

设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程01121=+++++-n n n n a x a x a x a的全部根;而函数 poly(v)b =的输出b 是一个n+1维向量,它是以n 维向量v 的各分量为根的多项式的系数。

可见“roots ”和“poly ”是两个互逆的运算函数。

))20:1((;)2();21,1(;000000001.0ve poly roots ess ve zeros ve ess +===上述简单的MA TLAB 程序便得到(1.2)的全部根,程序中的“ess ”即是(1.2)中的ε。

实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。

如果扰动项的系数ε很小,我们自然感觉(1.1)和(1.2)的解应当相差很小。

计算中你有什么出乎意料的发现?表明有些解关于如此的扰动敏感性如何?(2)将方程(1.2)中的扰动项改成18x ε或其它形式,实验中又有怎样的现象? (3)(选作部分)请从理论上分析产生这一问题的根源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

李 显
20112332
通信三班
非线性方程计算的研究报告 
牛顿法、Steffensen法、二分法、割线法 假设要解的⾮非线性⽅方程为2*x^3-x-1=0,分别使⽤用⽜牛顿法,简易⽜牛顿法,Steffensen法,⼆二分法,割线法进⾏行计算。

以下为各个算法的M⽂文件内容:
1.⽜牛顿法:
function res=newton(func,dfunc,x,tol)
x0=x;
d=feval(func,x0)/feval(dfunc,x0);
while abs(d)>tol
x1=x0-d;
x0=x1;
d=feval(func,x0)/feval(dfunc,x0);
end
res=x0;
⽜牛顿法结果截图:
2.简易⽜牛顿法:
function res=easynewton(func,m,x,tol)
x0=x;
d=feval(func,x0)/feval(m,x0);
while abs(d)>tol
x1=x0-d;
x0=x1;
d=feval(func,x0)/feval(m,x0);
end
res=x0;
简易⽜牛顿法计算结果:
3.⼆二分法:
function [c,err,yc]=bisect(f,a,b,delta)
ya=f(a);
yb=f(b);
if ya*yb > 0,return,end
max1=1+round((log(b-a)-log(delta))/log(2));
for k=1:max1
c=(a+b)/2;
yc=f(c);
if yc==0
a=c;
b=c;
elseif yb*yc>0
b=c;
yb=yc;
else
a=c;
ya=yc;
end
if b-a < delta, break,end
end
c=(a+b)/2;
err=abs(b-a);
yc=f(c);
⼆二分法计算结果:
4.割线法:
function [c,counter]= secant(func,a,b,tol)
fa=feval(func,a);
fb=feval(func,b);
counter=0;
error=1000;
while error>tol
counter=counter+1;
c=a-((fa*(b-a))/(fb-fa));
fc=feval(func,c);
error=abs(fc);
if fb*fc>0
b=c;
end
if fa*fc>0
a=c;
end
if counter>1000
break
end
end
割线法结果:
5.Steffensen法:
function fa=steffensen(f,p0,max,tol)
for i=1:max
p1=f(p0);
p2=f(p1);
p=p0-(p1-p0)^2/(p2-2*p1+p0);
if abs(p-p0)<tol
break
end
p0=p;
end
if abs(p-p0)>tol disp('超出最⼤大迭代次数');
end
fa=p0;
Steffensen法计算结果:。

相关文档
最新文档