第五章相交线与平行线5.3.2命题、定理、证明

合集下载

人教版七下第五章 相交线与平行线 5.3.2 命题、定理、证明

人教版七下第五章 相交线与平行线 5.3.2 命题、定理、证明
人教七下
第五章 相交线与平行线
5.3 平行线的性质 命题、定理、证明
学习目标
1.了解命题,定理的概念,并会判断命题. 2.能用符号语言写出一个命题的题设和结论. 3.了解证明的必要性,知道推理要有依据;熟悉综合法证明 的格式,能说出证明的步骤.
新课导入
问题:下列语句在表述形式上,哪些是对事情作了判断? 哪些没有对事情作出判断?
新课讲解
(2)说明一个命题是假命题的方法:举出一个反例,这个反 例符合命题的题设,但不能满足结论。
若两个角不是对顶角,则这两个角不相等。
解:两条直线平行形成的内错角,这两个角不是对顶 角,但是它们相等。
新课讲解
总结:举反例时,所举的例子应当满足题目的条件,但不满足题 目的结论。举反例时常见的几种错误: ①所举例子满足题目的条件,也满足题目的结论; ②所举例子不满足题目的条件,但满足题目的结论; ③所举例子不满足题目的条件,也不满足题目的结论。
练一练
下列命题中,是真命题的是(D)
A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0 C.若a·b=0,则a=0且b=0 D.若a·b=0,则a=0或b=0
假命题 假命题 假命题 真命题
新课讲解
4. 定理: 一些真命题,它们的正确性是经过推理证实的,这样得到的真命 题叫做定理。 可以说成:可以作为判定其他命题真假依据的真命题叫做定理。
理由:∵∠B=∠E, ∴AB∥DE(内错角相等,两直线平行)
随堂练习
1. 下列命题中,是假命题的是( A )
A.同旁内角互补 B.对顶角相等 C.直角的补角仍然是直角 D.两点之间,线段最短
随堂练习
2. 下列语句中,是命题的是( C )

人教版七年级下册数学教学课件 第五章 相交线与平行线 命题、定理、证明

人教版七年级下册数学教学课件 第五章 相交线与平行线 命题、定理、证明

课程讲授
2 真命题与假命题
归纳: 1.要判断一个命题为真命题,可以用演绎推理加以
论证; 2.要判断一个命题为假命题,只要举出一个例子,
说明该命题不成立.
课程讲授
3 定理与证明
定义:数学中这些命题的正确性是人们在长期实践中
总结出来的,并把它们作为判断其他命题真假的原始 依据,即出发点.这样的真命题视为基本事实.我们也 称它为公理.
理才能作出判断,这个推理过程叫作证明.
证明几何命题的一般步骤:
1.明确命题中的_已__知___和__求__证__; 2.根据题意,_画__出__图__形__,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出_要__证__的__结__论_的途径,写出证明过程.
课程讲授
3 定理与证明
例 已知直线b∥c, a⊥b .求证:
a⊥c.
b
c
证明:∵ a ⊥b(已知), ∴ ∠1=90°(垂直的定义).
1
2
a
∵ b ∥ c(已知),
∴∠1=∠2(两直线平行,同位角相等),
∴ ∠2=∠1=90°(等量代换), ∴ a ⊥ c(垂直的定义).
课程讲授
3 定理与证明
练一练:求证:内错角相等,两直线平行.
已知:如图,直线l3分别与l1,l2交于点A,点B,且∠1=∠2.
求证:l1∥l2. 证明:∵ ∠1=∠2 (已知),
∠3=∠2 (对顶角相等),
l3
1(
)3 B
l2
)2 A
l1
∴ ∠1=∠3 (等量代换).
∴ l1∥l2 (同位角相等,两直线平行).
随堂练习
1.下列句子中,哪些是命题?哪些不是命题? ⑴对顶角相等; 是 ⑵画一个角等于已知角; 不是 ⑶两直线平行,同位角相等; 是 ⑷a,b两条直线平行吗?不是 ⑸温柔的李明明; 不是 ⑹玫瑰花是动物; 是 ⑺若a2=4,求a的值; 不是 ⑻若a2= b2,则a=b. 是

人教版七级下册数学5.3.2《命题 定理 证明》【教案优秀课件】

人教版七级下册数学5.3.2《命题 定理 证明》【教案优秀课件】
7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。
5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
同学们再见
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。
怎样分类?
真命题:如果题设成立,那么结论 是真命题。
一成定立;正
命题分为真命题和假命题。
问题五:你能再举出一个真命题和一个假命题的例
例:你能快速判断下列命题的真假吗?说说为
(1)若a=b,则ac=bc; (真 ) (2)一个锐角与一个钝角的和等于一个平角; (假
(3)如果 a=b ,那么 a b ; (真 ) (4)如果 a b ,那么a=b ; (假 )

5.3.2 命题、定理、证明

5.3.2 命题、定理、证明

解:不是真命题,如下图中∠1=∠2, 但∠1与∠2不是对顶角.
知识拓展
命题的真假是以对事情所作出判断 的正确与否来划分的.
例:(教材例2)如图所示,已知直线 b∥c,a⊥b.求证a⊥c.
„解析‟要证明a⊥c,只需要 证明∠2为90°即可.如果能证 明∠1=∠2,问题即可解决.
证明:因为a⊥b(已知), 所以∠1=90°(垂直的定义). 又b∥c(已知), 所以∠2=∠1(两直线平行,同位角相等). 所以∠1=∠2=90°(等量代换), 所以a⊥c(垂直的定义).
3.证明中的每一步推理都要有根据,根据可以是已知条件,也可以是 学过的定义、基本事实、定理等.
检测反馈
1.下列语句中不是命题的是
A.锐角小于钝角 B.作角A的平分线
( B )
C.对顶角不相等 D.股票不是人民币
解析:根据命题的定义:对一件事情作出判断的语句叫做命 题进行解答.“锐角小于钝角,对顶角不相等,股票不是人 民币”都对一件事情作出了判断,而“作角A的平分线”描 述的是一种行为,没有作出判断,不是命题.故选B.
2.下列命题中,正确的是
( A )
A.对顶角相等 B.同位角相等
C.内错角相等 D.同旁内角互补
解析:对顶角相等,正确;在两平行线被第三条 直线所截的条件下,B,C,D才正确.故选A.
3.请给假命题“一个正数永远大于它的倒数” 举出一个反例:
1 2
.
解析:判断“一个正数永远大于它的倒数”什 么情况下不成立,即找出一个正数小于或等于 它的倒数即可.答案不唯一。
凡是命题都是正确或者是错误的吗?
1.判断下列命题是否正确. (1)如果两个数互为相反数,那么这两个数的商为-1; (2)如果两个角是邻补角,那么这两个角互补; (3)如果两个数互为相反数,那么这两个数的和为0; (4)如果两个数的商为-1,那么这两个数互为相反数; (5)如果两个数的和为0,那么这两个数互为相反数; (6)如果两个角互补,那么这两个角是邻补角.

七年级数学人教版下册习题课件第五章5.3.2 命题、定理、证明

七年级数学人教版下册习题课件第五章5.3.2 命题、定理、证明
∵AD⊥BC(已知), ∴∠BDA=90°(___垂__直__的__定__义______), ∴∠BGF=90°(__等__量__代__换____), ∴FG⊥BC(__垂__直__的__定__义____).
④如果a=b,那么a2=b2; 第五章 相交线与平行线 ②对于任意有理数a,|a|>-a; ∴∠2=∠3(_______________), ∴∠B+∠C=180°(__________). 15.(练习2变式)分别指出下列命题的题设和结论, 4.命题“邻补角相等”的题设是__________________, 4.命题“邻补角相等”的题设是__________________, ②如果b∥a,c∥a,那么b∥c; ④是定理.其中正确的说法有( ) B.两直线平行,内错角互补 16.(习题13变式)如图,已知∠ABC=∠ACB,BD平分∠ABC, (4)题设:两个角互补,结论:一个为锐角,一个为钝角,是假命题. 并判断是真命题还是假命题,如果是假命题,请举一个反例说明. 交AC于点D,CE平分∠ACB,交AB于点E,∠DBF=∠F,求证:EC∥DF. ∴∠BDA=90°(_________________), ④如果b⊥a,c⊥a,那么b∥c. (3)题设:ac=bc,结论:a=b,是假命题. 5.把命题“同旁内角互补”写成“如果……那么……”的形式 ③如果b⊥a,c⊥a,那么b⊥c;
10.在下面的括号内,填上推理的根据:
又∵∠1=B∠.3(已对知)顶, 角相等
7.下列各命题中,属于假命题的是( )
1③5.经(过练一习点C2变有.式且不)只分有别是一指条对出直下顶线列平命角行题于不的已题相知设直和等线结;论,
(1)如图①,已知AB∥CD,BE∥CF,求证:∠B+∠C=180°.
④是定理.D其.中作正确∠的说A法O有B( 的) 平分线

第五章相交线与平行线5.3.2命题、定理、证明

第五章相交线与平行线5.3.2命题、定理、证明

第五章相交线与平行线5. 3.2 命题、定理、证明(1)教学设计教学目标:【知识与技能】1、了解什么是命题,并且会把一些简单命题改写成如果……那么……”的形式。

2、了解命题的题设和结论,并能够分析出命题的题设和结论。

3、了解什么是真命题和假命题,并能够判断哪些是真命题,哪些是假命题。

【过程与方法】通过对若干个命题的分析,了解什么叫命题及命题的组成,知道什么是真命题,什么是假命题;【情感态度】通过本节课的学习让同学们知道命题在数学上的重要作用,不仅如此,命题在其他许多学科上都有重要作用。

教学重点:命题的定义和命题的组成;教学难点:1、命题的判断;2、命题的题设和结论的区分;3、真假命题的判断;学情分析:七年级的学生自主学习能力和独立思考能力不强,但大部分学生对数学感兴趣,有些学生学习方法不对路。

虽然说时间花费很多,但效果不是最佳的,学习方法很重要,要养成良好的学习方法,才能有所上升。

教学过程:一、回顾旧知,导入新课:平行线的判定和性质设计目的:回顾旧知的同时给学生呈现命题的例句,让学生对命题有个初步的体会和认识,并导入新课。

二、学习目标1、了解什么是命题,并且会把一些简单命题改写成“如果…… 那么……”的形式。

2、了解命题的题设和结论,并能够分析出命题的题设和结论。

3、了解什么是真命题和假命题,并能够判断哪些是真命题,哪些是假命题。

设计目的:让学生有目的的学习。

三、预习板块通过预习,我学到了什么?在预习中,我存在的疑惑是什么?需要解决哪些问题?1什么是命题?命题由几部分组成?2、命题可以被改写成什么形式?并试着改写命题对顶角相等”。

3、什么是真命题?什么是假命题?设计目的:要求学生课前预习,养成良好的学习习惯。

四、合作探究一(设计目的:让同学们通过合作探究的方式将句子改写成“如果…..那么……”的形式来体会什么是命题)1、观察下列两组语句有什么区别?A组:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边加同一个数,结果仍是等式•B组:⑴画线段AB=CD(2)点P在直线AB外.(3)对顶角相等吗?总结:1、_____________________________ 的语句,叫做命题。

人教版数学七年级下册5-3-2命理、定理、证明(第2课时) 课件

人教版数学七年级下册5-3-2命理、定理、证明(第2课时)  课件

①BC平分∠ABE; ②∠BCE+∠D=90°; ③AC∥BE; ④∠DBF=2∠ABC. 其中正确的有( C ) A.1个 B.2个 C.3个 D.4个
12.若a=b,则a2=b2是____真_____命题(选填“真”或“假”), 其中“a=b”是_题__设_______,“a2=b2”是_结__论________.
7.如图,EF⊥AB于点F,CD⊥AB于点D,E是AC上一点,∠1 =∠2,则图中互相平行的直线是__E_F_∥__C_D__,__B_C_∥__D_E___________.
8.如图,给出下面的推理,其中正确的是____①__②__④________. ①因为∠B=∠BEF,所以AB∥EF; ②因为∠B=∠CDE,所以AB∥CD; ③因为∠B+∠BEC=180°,所以AB∥EF; ④因为AB∥CD,CD∥EF,所以AB∥EF.
9.如图,AC⊥BC,垂足为点C,∠BCD是∠B的余角.求证: ∠ACD=∠B.
证明:∵AC⊥BC(已知), ∴∠ACB=90°(______垂__直__的__定__义________), ∴∠BCD是∠ACD的余角. ∵∠BCD是∠B的余角(已知), ∴∠ACD=∠B(____同__角__的__余__角__相__等______).
c
2
a
证明的一般步骤: 1.分清命题的题设和结论,如果与图形有关,应先根 据题意,画出图形,并在图形上标出有关字母与符号; 2.根据题设、结论,结合图形,写出已知、求证; 3.经过分析,找出由已知推出结论的途径,有条理地 写出证明过程.
如何判定一个命题是假命题呢?
只要举出一个例子(反例),它符合命题 的题设,但不满足结论即可.
歌德的话蕴含了什么数学道理?
合作探究

人教版七年级下册数学第5章 相交线与平行线 命题、定理、证明

人教版七年级下册数学第5章 相交线与平行线  命题、定理、证明
2. 命题“同位角相等”是真命题吗?如果是,说 知3-练 出理由;如果不是,请举出反例.
解:不是真命题.如图 所示,直线a与b不平行, 直线c与直线a,b分别 相交,∠1与∠2是同位 角,但∠1≠∠2.
感悟新知
3. 下列说法错误的是( C ) A.命题不一定是定理,定理一定是命题
知3-练
B.定理不可能是假命题
感悟新知
知识点 3 定理与证明(举反例)
知3-讲
1.定理:经过推理证实得到的真命题叫做定理. 2.证明:在很多情况下,一个命题的正确性需要经 过推理,才能作出判断,这个推理过程叫做证明.
感悟新知
例4 如图,已知直线b//c,a⊥b.求证a⊥c.
证明:∵a⊥b (已知), ∴∠1=90° (垂直的定义). 又b//c(已知), ∴∠1=∠2 (两直线平行,同位角相等). ∴∠2=∠1=90° (等量代换). ∴a⊥c (垂直的定义).
解: (1)题设:两个角互为补角;结论:这两个角相 等.假命题. (2)题设:a=b;结论:a+c=b+c.真命题. (3)题设:两个长方形的周长相等;结论:这两个 长方形的面积相等.假命题.
感悟新知
归纳
知2-讲
判断命题的真假时,真命题需说明理由;假命 题只需举一反例即可;举反例是说明一个命题是假 命题的常用方法,而所列举的反例一般应满足命题 的题设,不满足命题的结论.
作业1 必做:请完成教材课后习题 补充:
作业2
第五章相交线与平行线
5.3平行线的性质
第3课时命题、定理、 证明
学习目标
1 课时讲解
命题的定义及结构 命题的分类 定理与证明(举反例)
2 课时流程
逐导入
请阅读以下几句话: (1)具有中华人民共和国国籍的人,叫做中华人民 共和国公民. (2)两点之间线段的长度,叫做这两点之间的距离. (3)无限不循环小数称为无理数. (4)今天要下雨. (5)我们要充满梦想,执着地飞翔.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3.2 命题、定理、证明
命题的定义:
判断一件事情的语句叫做命题。
1、只要对一件事情作出了判断, 不管正确与否,都是命题。 2、如果一个句子没有对某一件事情
作出任何判断,那么它就不是命题。
语句都是对某一件事情作出“是”或
“不是”的判断.其中问句,画图,感叹句, 祈使句不是命题!
下列语句是命题吗? ①请你吃饭。 ②大象是红色的 ③同位角相等. ④连接A、B两点. ⑤你多大了?
如果两个角是对顶角,那么这两个角相等. 题设是: 两个角是对顶角 结论是: 这两个角相等
④同位角相等. 如果两个角是同位角,那么这两个角相等.
题设是:两个角是同位角 结论是:这两个角相等
★ 如:对顶角相等
题设
结论
如果两个角是对顶角,那么这两个角相等 题设 结论
问题5
下列语句是命题吗?如果是,请将它们 改写成“如果„„,那么„„”的形式.
(5)对顶角相等.
如果两个角是对顶角,那么这两个角相等.
问题7 下列哪些命题是正确的, 哪些命题是错误的?
(1)两条直线被第三条直线所截,同旁内角互补;

(2)等式两边都加同一个数,结果仍是等式;
(3)互为相反数的两个数相加得0; (4)同旁内角互补; (5)对顶角相等.的真假
有些命题如果题设成立,那么结论一定成立;
请同学们判断下列两个命题的真假
命题 :相等的角是对顶角. (3)你能举出反例吗?
如命题:“如果一个数能被4整除,那么它也 能被2整除”对么?
如命题:“如果两个角互补,那么它们是邻补角” 对么? 确定一个命题真假的方法:
利用已有的知识,通过观察、验证、推理、 举反例等方法。
问题1 请同学们判断下列命题哪些是真命题?
哪些是假命题?
1、数学中有些命题的正确性是人们在长期 实践中总结出来的,并把它们作为判断其 他命题真假的原始依据,这样的真命题叫 做公理。
用逻辑推理的方法判断它们是正确的,并且 可以进一步作为判断其他命题真假的依据, 这样的真命题叫做定理。
2、有些命题可以从公理或其他真命题出发,
公理和定理都是真命题,但 它们的来历却不同。
句子 ② ③ 能判断一件事情. 是命题 句子 ① ④ ⑤ 不能判断一件事情. 不是命题
下列语句在表述形式上,哪些是对事情作 了判断?哪些没有对事情作出判断?
1、对顶角相等;
2、画一个角等于已知角; 3、两直线平行,同位角相等; 4、a、b两条直线平行吗? 5、温柔的李明明;
6、玫瑰花是动物;
是 否 是 否 否 是
垂直于两条平行线中的一条, 那么它也垂直于另一条.
(1)命题是真命题 , 还是假命题?
(2)你能将命题所叙述的内容
用图形语言来表达吗?
命题1 在同一平面内,如果一条直线 垂直于两条平行线中的一条,那么它也 垂直于另一条. (3)你能结合图形用符号语言 表述命题的题设和结论吗?
已知:b∥c, a⊥b . 求证:a⊥c.
(1)两条直线被第三条直线所截,同旁内角互补;
如果两条直线被第三条直线所截,那么同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
如果等式两边都加同一个数,那么结果仍是等式;
(3)互为相反数的两个数相加得0;
如果两个数互为相反数,那么这两个数相加得0;
(4)同旁内角互补;
如果两个角是同旁内角,那么这两个角互补;
在数学中,这种方法称为“举
证明命题:
“一个锐角与一个钝角的和等于 一个平角”是假命题.
只需举出一个反例: “某一锐角与某一钝角的和不是180°”
即可.
判断下列命题是真命题还是假命题,
若是假命题则举一个反例加以说明.
(1)一个钝角、一个锐角的和必为一个平角;
假,92°+ 30° ≠ 180°
(2)两直线被第三条直线所截,同位角相等;
(5)请同学们思考如何利用已经学过的 定义定理来证明这个结论呢?
已知:b∥c,a⊥b . 求证:a⊥c.
证明:∵ a⊥b(已知), ∴∠1=90º (垂直的定义). 又∵ b∥c(已知), ∴∠1=∠2(两直线平行,同位角相等).
∴∠2=∠1=90º(等量代换).
∴ a⊥c(垂直的定义).
课堂小结
定理举例:
1、补角的性质: 同角或等角的补角相等。
2、余角的性质:
同角或等角的余角相等。
3、对顶角的性质: 对顶角相等。
4、垂线的性质:
①过一点有且只有一条直线 与已知直线垂直;
②垂线段最短。
5、平行公理的推论: 如果两条直线都和第三条 直线平行,那么这两条直 线也互相平行。
定理举例: 6、平行线的判定定理: 内错角相等,两直线平行。 同旁内角互补,两直线平行。
命题都可以写成下列形式:
.......... ........ .......... ........ 如果 · · · · · · ,那么· · · · · · 结论 题设
注意:添加“如果”、“那么”后,命 题的意义不能改变. 改写的句子要完整,语句要通顺, 使命题的题设和结论更明朗,易于分辨. 改写过程中,要适当增加词语,切 不可生搬硬套。
如命题:熊猫没有翅膀。改写为:
如果这个动物是熊猫,那么它就没有翅膀。
下列命题中的题设是什么?结论是什么?
①如果两个角是邻补角,那么这两个角互补
题设是: 两个角是邻补角 结论是: 这两个角互补
② 如果a>b,b>c,那么a=c . 题设是: a>b,b>c 结论是:a=c
下列命题中的题设是什么?结论是什么? ③对顶角相等.
1、命题:判断一件事情的语句叫命题。 (1)命题的结构:命题由题设和结论两部分构成,常可写成 “如果„,那么„”的形式。 (2)命题的分类:正确的命题称为真命题,错误的命题称为假 命题。 2、公理:人们在长期实践中总结出来的真命题叫做公理。 3、定理:经过推理证实的真命题叫做定理。 4、判断一个命题是真命题,可以从公理或定理出发,用逻辑推 理的方法证明(公理和定理都是真命题); 判断一个命题是假命题,只要举出一个例子,说明该命题不 成立就可以了,这种方法称为举反例。
7、平行线的性质定理:
两直线平行,内错角相等。 两直线平行,同旁内角互补。
课堂小结
1、命题:判断一件事情的语句叫命题。 (1)正确的命题称为真命题,错误的命题称为假命题。 (2)命题的结构:命题由题设和结论两部分构成, 常可写成“如果„,那么„”的形式。 2、公理:人们长期以来在实践中总结出来的,并作为判断 其他命题真假的根据的命题,叫做公理。 3、定理:经过推理论证为正确的命题叫定理。
也可作为继续推理的依据。 4、判断一个命题是真命题,可以从公理或定理出发, 用逻辑推理的方法证明(公理和定理都是真命题);
判断一个命题是假命题,只要举出一个例子, 说明该命题不成立就可以了,这种方法称为举反例。
问题 请同学们判断下列两个命题的真假, 并思考如何判断命题的真假.
命题1: 在同一平面内,如果一条直线
假,只有两条直线平行时才对
(3)两个锐角的和等于直角; 假 , 30° + 50° = 80° ≠ 90° (4)有三条边对应相等的两个三角形全等; 真
请同学们判断下列两个命题的真假
命题: 相等的角是对顶角.
(1)判断这个命题的真假. (2)这个命题题设和结论分别是什么? 题设:两个角相等;
结论:这两个角互为对顶角.
前者来源于实践,后者通过 推理论证得来的.
公理和定理都可作为判断其
他命题真假的依据。
公理举例:
1、直线公理: 经过两点有且只有一条直线。 2、线段公理: 两点的所有连线中,线段最短。 3、平行公理: 经过直线外一点,有且只有一条 直线与已知直线平行。
4、平行线判定公理: 同位角相等,两直线平行。
5、平行线性质公理:两直线平行,同位角相等。
问题4 请同学们观察一组命题, 并思考命题是由几部分组成的?
(1)如果两条直线都与第三条直线平行, 那么这两条直线也互相平行; (2)两条平行线被第三条直线所截, 同旁内角互补; (3)如果两个角的和是90º, 那么这两个角互余;
命题是由题设(或条件)和结论 两部分组成。题设是已知事项(条
件),,结论是由已知事项推出的 事项。
而有些命题题设成立时,结论不一定成立。
真命题:如果题设成立,那么结论一定成立,
这样的命题叫做真命题.
假命题:如果题设成立时,不能保证结论
一定成立,这样的命题叫做假命题.
要判断一个命题是真命题,可 以用逻辑推理的方法加以论证;
而要判断一个命题是假命题,
只要举出一个例子,说明该命题不 成立,即只要举出一个符合该命题 题设而不符合该命题结论的例子就 可以了.
相关文档
最新文档