二次函数图像与性质8
二次函数的性质

二次函数的性质二次函数是数学中的一个重要概念,它具有许多独特的性质。
在本文中,我们将探讨二次函数的性质,包括其图像的形状、顶点、轴对称性、零点和判别式等方面。
一、二次函数的图像形状二次函数的图像形状通常为一个开口向上或向下的抛物线。
它的开口方向由二次项的系数决定。
当二次项系数大于0时,抛物线开口向上;当二次项系数小于0时,抛物线开口向下。
二、二次函数的顶点二次函数的顶点是其图像的最低点(开口向上)或最高点(开口向下)。
顶点的横坐标称为函数的轴对称轴,可以通过公式 x = -b/2a 来计算。
顶点的纵坐标即为函数的最值。
三、二次函数的轴对称性由于二次函数是关于轴对称轴对称的,其图像可以通过轴对称轴进行折叠。
例如,如果一个点 (x, y) 在二次函数上,则点 (-x, y) 也在同一二次函数上。
四、二次函数的零点二次函数的零点即为函数与 x 轴相交的点,也就是函数的根。
我们可以通过求解二次方程 ax^2 + bx + c = 0 来找到二次函数的零点。
其中,a、b 和 c 分别代表二次函数的三个系数。
五、二次函数的判别式二次函数的判别式可以用来判断二次函数的零点情况。
判别式的计算公式为Δ = b^2 - 4ac。
当判别式大于0时,二次函数有两个不同的实根;当判别式等于0时,二次函数有两个相同的实根;当判别式小于0时,二次函数没有实根,只有虚根。
六、二次函数的导数与凹凸性二次函数的导数是一个一次函数,其斜率与二次函数切线的斜率相等。
根据导数的正负可以判断二次函数的凹凸性。
当导数大于0时,二次函数在该区间上是上凹的;当导数小于0时,二次函数在该区间上是下凹的。
七、二次函数的平移和缩放二次函数通过平移和缩放可以变换其图像的位置和形状。
平移是通过在函数中加上或减去一个常数来实现,而缩放是通过在函数的系数前面乘以一个常数来实现。
综上所述,二次函数是一个具有多种性质的函数,包括图像形状、顶点、轴对称性、零点、判别式、导数与凹凸性以及平移和缩放等方面。
二次函数的图像及性质

与对数函数的比较
值域:二次函数值域为全体实 数,而对数函数值域为实数加 一个常数
图像:二次函数图像为抛物线, 而对数函数图像为单调递增或 递减的曲线
定义域:二次函数定义域为全 体实数,而对数函数定义域为 正实数
性质:二次函数具有对称性, 而对数函数具有反函数性质
汇报人:
性质:二次函数有最小 值或最大值,反比例函 数在x>0时单调递减, 在x<0时单调递增。
应用:二次函数在数学、 物理等领域有广泛应用, 反比例函数在解决一些 实际问题时也很有用。
与指数函数的比较
开口方向:二次函数开口向上或向下,指数函数开口向右 顶点:二次函数有顶点,指数函数无顶点 函数值:二次函数有最大值或最小值,指数函数无最大值或最小值 图像:二次函数图像是抛物线,指数函数图像是指数曲线
开口变化规律
二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下。
二次函数的开口大小由系数a和b共同决定,a的绝对值越大,开口越小;b的绝对值越大,开口 越大。
二次函数的对称轴为x=-b/2a,对于开口向上的函数,对称轴左侧函数值随x的增大而减小;对 于开口向下的函数,对称轴左侧函数值随x的增大而增大。
图像的对称性
二次函数的对称中心是(k,0)
二次函数的顶点坐标是(h,k)
二次函数的对称轴是x=h
二次函数的开口方向由a决定, a>0向上开口,a<0向下开口
与一次函数的比较
函数表达式:二次函数的一般形式 为y=ax^2+bx+c,一次函数的一 般形式为y=kx+b
开口方向:二次函数的开口方向由 a的符号决定,一次函数的图像是 一条直线,没有开口方向
二次函数的图像与性质

二次函数的图像与性质二次函数是高中数学中一个重要的概念,它在数学和实际问题中有着广泛的应用。
本文将介绍二次函数的图像与性质,包括图像的形状与位置、顶点坐标、对称性、最值和零点等方面。
1. 图像的形状与位置二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为常数,且a不等于0。
二次函数的图像是一个抛物线,它的形状取决于二次项的系数a的正负和大小。
如果a大于0,则抛物线开口朝上;如果a小于0,则抛物线开口朝下。
a的绝对值越大,抛物线的开口越窄;a的绝对值越小,抛物线的开口越宽。
2. 顶点坐标二次函数的顶点是抛物线的最高点(开口朝下)或最低点(开口朝上),它的坐标可以通过顶点公式来求得。
顶点公式为:x = -b/(2a),y = f(x) = c - b²/(4a)顶点坐标的x值表示抛物线的对称轴位置,y值表示抛物线的最值。
3. 对称性二次函数的图像具有对称性。
对于任意点(x, y)在图像上,其关于对称轴的对称点也必定在图像上。
对称轴通过顶点,因此对称性可以通过对称轴方程来表示:x = -b/(2a)。
4. 最值二次函数的最值即为函数在定义区间内的最大值或最小值。
开口朝上的二次函数在顶点处取得最小值,开口朝下的二次函数在顶点处取得最大值。
最值的计算可以通过顶点坐标中的y值来得到。
5. 零点二次函数的零点是函数图像与x轴的交点。
也就是函数取值为0时的x值,可以通过解二次方程f(x) = 0来求得。
二次方程的解可以使用求根公式,即:x = (-b ±√(b²-4ac))/(2a)其中±表示两个解,可能有两个不同的零点,也可能有两个相等的零点,甚至可能没有实数解。
总结:二次函数的图像与性质可以通过以下几个方面来描述:图像的形状与位置,顶点坐标,对称性,最值和零点。
这些性质对于理解和应用二次函数都非常重要。
通过本文的介绍,相信读者对二次函数的图像与性质有了更深入的理解。
二次函数图像与性质完整归纳

3 2 -2
3 2 0 5…
2
【例 2】 求作函数 y x 2 4 x 3 的图象。
【解】 y x 2 4x 3 ( x2 4x 3)
[( x 2) 2 7] [( x 2) 2 7 先画出图角在对称轴 x 2 的右边部分,列表
x -2 -1 0 1 2 y 76 5 4 3
【点评】 画二次函数图象步骤: (1) 配方; (2) 列表; (3) 描点成图; 也可利用图象的对称性,先画出函数的左(右)边部分图象,再利 用对称性描出右(左)部分就可。
, 3 ] 上是增函数,在区间 [ 3, 10
29 ymaz 20 ) 上是减函数。
【点评】 要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:
(1) 配方法;如例 3
(2) 公式法:适用于不容易配方题目 ( 二次项系数为负数或分数 ) 如例 4,可避免出错。
任何一个函数都可配方成如下形式:
b 时, y 随 x 的增大而增大; 当 x b
2a
2a
b ,顶点坐标为 2a
b ,4ac b2 .当 2a 4a
x b 时, y 随 x 的增大而增大;当 x 2a
2
有最大值 4ac b . 4a
b 时, y 随 x 的增大而减小;当 x 2a
b 时, y 2a
六、二次函数解析式的表示方法
1. 一般式: y ax 2 bx c ( a , b , c 为常数, a 0 ); 2. 顶点式: y a ( x h)2 k ( a , h , k 为常数, a 0 );
向下
h ,k
x h 时, y 随 x 的增大而减小; x h 时, y X=h
随 x 的增大而增大; x h 时, y 有最大值 k .
二次函数的图像及其性质

单调性
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的对称 轴为x=-b/a
二次函数的最值 在对称轴上取得, 即x=-b/2a时的 函数值y=cb^2/4a
二次函数在区间 (-∞,-b/2a)和(b/2a,+∞)上单 调性相反
最值点
二次函数的最值点为顶点 顶点的坐标为(-b/2a, f(-b/2a)) 当a>0时,函数在顶点处取得最小值 当a<0时,函数在顶点处取得最大值
开口大小与一次项 系数和常数项无关
开口变化趋势
二次函数的开口方向由二次项系数a决定,a>0时向上开口,a<0时向下开口。 二次函数的开口大小由二次项系数a和一次项系数b共同决定,a的绝对值越大,开口越小。 二次函数的对称轴为x=-b/2a,当a>0时,对称轴为x=-b/2a;当a<0时,对称轴为x=-b/2a。 二次函数的最值点为顶点,顶点的坐标为(-b/2a, c-b^2/4a)。
在物理领域的应用
二次函数在抛物线运动中的应用 二次函数在弹簧振荡中的应用 二次函数在单摆运动中的应用 二次函数在简谐振动中的应用
在其他领域的应用
二次函数在经济学中的应用, 例如计算成本、收益、利润等。
二次函数在生物学中的应用, 例如种群增长、药物疗效等。
二次函数在物理学中的应用, 例如弹簧振动、单摆运动等。
二次函数的应用
解决实际问题
二次函数在物理学中的应用,例如计算抛物线的运动轨迹 二次函数在经济学中的应用,例如计算商品价格与销售量的关系
二次函数在日常生活中的应用,例如计算最优化问题,如最小费用、最大效率等
二次函数在科学实验中的应用,例如模拟实验数据,预测实验结果
二次函数的图像和性质PPT课件(共21张PPT)

相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.
二次函数的图像与性质

二次函数的图像与性质二次函数的性质二次函数()02≠++=a c bx ax y 的顶点坐标是(-a b 2,a b ac 442-),对称轴直线x=-a b 2,二次函数y=ax 2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax 2+bx+c(a≠0)的开口向上,x<-a b 2时,y 随x 的增大而减小;x>-a b 2时,y 随x 的增大而增大;x=-a b 2时,y 取得最小值a b ac 442-,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax 2+bx+c(a≠0)的开口向下,x<-a b 2时,y 随x 的增大而增大;x>-a b 2时,y 随x 的增大而减小;x=-a b 2时,y 取得最大值a b ac 442-,即顶点是抛物线的最高点.③抛物线y=ax 2+bx+c(a≠0)的图象可由抛物线y=ax 2的图象向右或向左平移a b 2个单位,再向上或向下平移ab ac 442-个单位得到的.二次函数上点坐标的特征二次函数y=ax 2+bx+c(a≠0)的图象是抛物线,顶点坐标是(-a b 2,ab ac 442-).①抛物线是关于对称轴x=-a b 2成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y 轴交点的纵坐标是函数解析中的c 值.③抛物线与x 轴的两个交点关于对称轴对称,设两个交点分别是(x 1,0),(x 2,0),则其对称轴为x=221x x +【例1】已知()()212232m x m x m m y m m +-+-=--是关于x 的二次函数,求出它的解析式,并写出其二次项系数、一次项系数及常数项.【例2】下列各式中,一定是二次函数的有()①y=2x 2﹣4xz +3;②y=4﹣3x +7x 2;③y=(2x ﹣3)(3x ﹣2)﹣6x 2;④y=21x﹣3x +5;⑤y=ax 2+bx +c (a ,b ,c 为常数);⑥y=(m 2+1)x 2﹣2x ﹣3(m 为常数);⑦y=m 2x 2+4x ﹣3(m 为常数).A .1个B .2个C .3个D .4个【例3】(2017•东莞市一模)在同一坐标系中,一次函数y=ax+b 与二次函数y=bx 2+a 的图象可能是()A.B.C.D.【例4】(2017•辽阳)如图,抛物线y=x 2﹣2x﹣3与y 轴交于点C,点D 的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD 是以CD 为底边的等腰三角形,则点P 的横坐标为()A.1+2B.1﹣2C.2﹣1D.1﹣2或1+2【例5】(2017•唐河县三模)如图,在平面直角坐标系中,抛物线y=31x 2经过平移得到抛物线y=ax 2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为38,则a、b 的值分别为()A.31,34B.31,﹣38C.31,﹣34D.﹣31,34【例6】(2016•北仑区一模)如图,抛物线y=﹣x 2+5x﹣4,点D 是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD 的面积的最大值是多少?1、(2011秋•无锡期末)下列函数中,(1)y ﹣x 2=0,(2)y=(x +2)(x ﹣2)﹣(x ﹣1)2,(3)x x y 12+=,(4)322-+=x x y ,其中是二次函数的有()A .4个B .3个C .2个D .1个2、(2015秋•五指山校级月考)函数y=(m ﹣n )x 2+mx +n 是二次函数的条件是()A .m 、n 是常数,且m ≠0B .m 、n 是常数,且m ≠nC .m 、n 是常数,且n ≠0D .m 、n 可以为任何常数3、(2014•葫芦岛二模)在同一直角坐标系中,函数y=mx +m 和函数y=mx 2+2x +2(m 是常数,且m ≠0)的图象可能是()A .B .CD .4、(2017•扬州)如图,已知△ABC 的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x 2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣25、(2012秋•高安市期末)把抛物线y=﹣2x 2﹣4x﹣6经过平移得到y=﹣2x 2﹣1,平移方法是()A.向右平移1个单位,再向上平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向下平移3个单位6、(2017•泸州)已知抛物线y=41x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y=41x 2+1上一个动点,则△PMF 周长的最小值是()A .3B .4C .5D .67、(2016•陕西校级模拟)如图,已知点A(8,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=6时,这两个二次函数的最大值之和等于()A.5B.358C.10D.528、(2010秋•西城区校级期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(1,0),则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a﹣b+c<0,其中正确的是.9、(2017•孝感模拟)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论有(填序号).10、(2016•黄冈校级自主招生)方程2x﹣x 2=x 2的正实数根有个.11、(2011•路南区一模)已知二次函数y=(x﹣3a)2﹣(3a+2)(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.图中分别是当a=﹣1,a=﹣31,a=1时二次函数的图象.则它们的顶点所满足的函数关系式为.12、(2015•泗洪县校级模拟)若直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,则常数m 的取值范围是.13、(2017春•昌江区校级期中)记实数x 1,x 2中的最小值为min{x 1,x 2},例如min{0,﹣1}=﹣1,当x 取任意实数时,则min{﹣x 2+4,3x}的最大值为.14、(2016•锡山区一模)二次函数y=﹣x 2﹣2x 图象x 轴上方的部分沿x 轴翻折到x 轴下方,图象的其余部分保持不变,翻折后的图象与原图象x 轴下方的部分组成一个“M”形状的新图象,若直线y=21x+b 与该新图象有两个公共点,则b 的取值范围为.15、(2017春•平南县月考)抛物线238942++-=x x y 与y 轴交于点A,顶点为B.点P 是x 轴上的一个动点,当点P 的坐标是时,|PA﹣PB|取得最小值.16、(2014•上城区二模)已知当x=2m+n+2和x=m+2n 时,多项式x 2+4x+6的值相等,且m﹣n+2≠0,则当x=6(m+n+1)时,多项式x 2+4x+6的值等于.17、(2017•港南区二模)二次函数y=(a﹣1)x 2﹣x+a 2﹣1的图象经过原点,则a 的值为.18、(2017•西华县二模)已知y=﹣41x 2﹣3x+4(﹣10≤x≤0)的图象上有一动点P,点P 的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为.19、(2017•鄂州)已知正方形ABCD 中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m 个单位(m>0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是.20、作出下列函数的图象:(1)y=x 2﹣4x +3;(2)y=x 2﹣4|x |+3;(3)y=|x 2﹣4|x |+3|.21、(2017•海安县一模)在平面直角坐标系xOy 中,直线y=﹣41x+n 经过点A(﹣4,2),分别与x,y 轴交于点B,C,抛物线y=x 2﹣2mx+m 2﹣n 的顶点为D.(1)求点B,C 的坐标;(2)①直接写出抛物线顶点D 的坐标(用含m 的式子表示);②若抛物线y=x 2﹣2mx+m 2﹣n 与线段BC 有公共点,求m 的取值范围.22、(2011•泰州)已知二次函数y=x 2+bx ﹣3的图象经过点P (﹣2,5)(1)求b 的值并写出当1<x ≤3时y 的取值范围;(2)设P 1(m ,y 1)、P 2(m +1,y 2)、P 3(m +2,y 3)在这个二次函数的图象上,①当m=4时,y 1、y 2、y 3能否作为同一个三角形三边的长?请说明理由;②当m 取不小于5的任意实数时,y 1、y 2、y 3一定能作为同一个三角形三边的长,请说明理由.23、(2017•邵阳县模拟)(1)已知函数y=2x+1,﹣1≤x≤1,求函数值的最大值.(2)已知关于x的函数y=(m≠0),试求1≤x≤10时函数值的最小值.(3)己知直线m:y=2kx﹣2和抛物线y=(k2﹣1)x2﹣1在y轴左边交于A、B两点,直线l 过点P(﹣2、0)和线段AB的中点M,求直线1与y轴的交点纵坐标b的取值范围.24、(2015秋•长兴县月考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=5,点E在CB边上,以每秒1个单位的速度从点C向点B运动,运动时间为t(s),过点E作AB的平行线,交AC边于点D,以DE为边向上作等边△DEF,设△ABC与△DEF重叠部分的面积为S.(1)当点F恰好落在AB边上时,求t的值;(2)当t为何值时,S有最大值?最大值是多少?。
二次函数的图像与性质

弹簧振动:描述弹 簧振动的规律
波动:描述波动现 象,如声波、水波 等
电路:在交流电路 中,二次函数用于 描述电流与电压的 关系
与一次函数的比较
表达式不同:二次函数的一般形式为y=ax^2+bx+c,一次函数的一般形式为y=kx+b 图像不同:二次函数的图像是抛物线,一次函数的图像是直线 开口方向不同:二次函数的开口方向由a的符号决定,一次函数没有开口方向 顶点不同:二次函数有顶点,一次函数没有顶点
程
对称轴的证明
证明方法:利用 二次函数的对称 性,通过代入法 证明对称轴的存 在
证明过程:通过 计算二次函数在 x轴上的交点, 推导出对称轴的 方程
证明结论:二次 函数的图像关于 对称轴对称,且 对称轴的方程为 x=-b/2a
证明意义:理解 二次函数图像的 对称性质,有助 于解决与二次函 数相关的数学问 题
与坐标轴交点坐标的证明
证明方法:通过令二次函数等于0,解出x的值,得到与y轴交点的坐标
证明过程:将二次函数的一般形式代入x=0,得到y的值,即为与y轴的交点坐标
证明结果:当x=0时,y的值即为与y轴的交点坐标 证明结论:通过以上步骤,可以证明二次函数与y轴的交点坐标为(0,c)
汇报人:XX
与反比例函数的比较
函数形式:二次 函数的一般形式
为 y=ax^2+bx+c,
反比例函数的一 般形式为y=k/x,
其中k为常数且 k≠0
添加标题
图像:二次函数的 图像是一个抛物线, 反比例函数的图像 是两条渐近线,当 k>0时,图像在第
一、三象限;当 k<0时,图像在第
二、四象限
添加标题
性质:二次函数有 最小值或最大值, 而反比例函数没有 最小值和最大值, 当k>0时,函数在 x>0时单调递减, 在x<0时也单调递 减;当k<0时,函 数在x>0时单调递 增,在x<0时也单
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习
y x 3
2 y x x
的解为
初三数学课堂作业(47)
班级__________姓名___________学号_________得分_________ 1、 二次函数 y ax2 bx ca 0 的图像如图, 则点 M (b , ) 在第_______ 象限。
c a
第 1 题 第6题
第 2 题
第 4 题
第 5 题
2、(2009 年鄂州)已知=次函数 y=ax +bx+c 的图象如图.则下列 5 个代数式:① ac, ②a+b+c, ③4a-2b+c, ④2a+b, ⑤2a-b 中, 其值大于 0 的有_______________ (填序号) 。
2
0) 、 3、 (2009 年包头)已知二次函数 y ax bx c 的图象与 x 轴交于点 (2, y 2) 的下方.下列结论:① ( x1, 0) ,且 1 x1 2 ,与 轴的正半轴的交点在 (0,
( ) A.2 个 B.3 个 C.4 个 D.5 个 2 5、 (2009 年深圳市)二次函数 y ax bx c 的图象如图所示,若点 A(1,y1) 、 B ( 2 , y2 ) 是 它 图 象 上 的 两 点 , 则 y1 与 y2 的 大 小 关 系 是 ( 定 6、已知二次函数 y ax2 bx c ( a,b,c 是常数) , x 与 y 的部分对应值如下 表,则当 x 满足的条件是 时, y 0 ;当 x 满足的条件是 时, ) A. y1 y 2 B. y1 y 2 C. y1 y 2 D .不能确
B.bc < 0
C.a + b + c > 0
D.a - b + c < 0
7、 (2009 年湖州)已知抛物线 y ax2 bx c ( a >0)的对称轴为直线 x 1 , 且经过点 1 ,y1 , 2,y2 ,试比较 y1 和 y2 的大小: y1 “<”或“=” ) 。 8、已知二次函数 y ax2 bx c 的图象过点 A(1,2) ,B(3,2) ,C(5,7) .若 点 M(-2,y1) ,N(-1,y2) ,K(8,y3)也在二次函数 y ax2 bx c 的图象 上 , 则 下 列 结 论 正 确 的 是 ( ) A、y1<y2<y3 B、y2<y1<y3 C、y3<y1<y2 D 、 y1 <y3<y2 2 9、如图所示,二次函数 y=ax +bx+c(a≠0)的图象经过点(-1,2),且与 x 轴 交点的横坐标分别为 x1、x2,其中-2<x1<-1,0<x2<1,下列结论:①4a 2 - 2b + c < 0 ;② 8a > 4ac 。其 中正确 的有 ( ) A、1 个 B、2 个 C、3 个 D、4 个 2 10、 (2009 湖北省荆门市) 函数 y=ax+1 与 y=ax +bx+1 (a≠0) 的图象可能是 ( ) _ y2 (填“>” ,
例 5、已知 a<-1,点(a-1,y1) , (a,y2) , (a+1,y2)都在函数 y=x2 的图象上, 则( ) A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y3
利 用 所 学知识完成练
例 6、 在同一坐标系中画出函数 y1 x 3 和函数 y2 x 2 x 的图象, 利用图象回答 问题: (1)观察图象,方程组 _________; (2)观察图象: 当_____________时, y1 y2 ; 当_____________时, y1 y2 ; 当_____________时, y1 y2 。 四、课堂小结(谈谈本节课你的收获) 五、课堂作业:见课堂作业纸
y bx b2 4ac 与 反 比 例 函 数 y
( )
abc 在同一坐标系内的图象大致为 x
课后反思或经验总结:本节课通过实际问题得出实际应用的二次函数的一般式,要求同学们理解
二次项的系数和次数。并且能把二次函数的关系式变形为一般式,体会二次函数与一次函 数正反比例函数的关系。
学生先独立解题,教师
例 2、为了备战世界杯,中国足球队在某次训练中,一队员在距离球门 12 米处挑
2
巡视指导,发现问题及 评。
射, 正好射中了 2. 4 米高的球门横梁, 若足球运动路线是抛物线 y=ax +bx+c 如图, 时纠正,做完后集体讲 则下列结论: ①a ( )
1 1 a 0 ,③a-b+c>0 ,④a<b<-12a 其中正确的结论是 ,② 60 60
抛物线的对称轴为 x= 6、判断在同一坐标系中两种不同的图形的正误。如:在同一种坐标系中正确画出 一次函数 y ax b 和二次函数 y ax2 bx c(a 0) ,关键是两个式子中的 a、b 值应相同。
练习检测与拓展延伸
三、新知应用 四、例题精讲(小组讨论交流) : 例 1、如图,给出八个结论:① a >0;② b >0;③ c >0; ④a+b+c=0;⑤abc< 0 ; ⑥ 2a+ b > 0 ; ⒄ a+c=1 ; ⑧ a > 1 . 其 中 正 确 的 结 论 的 序 号 是 ____________________ 。
A.①③ B. ①④ C. ②③ D. ②④ 例 3、已知抛物线 y=ax2+bx+c(a<0)经过点(-1,0)且满足 4a+2b+c>0 以下结论: ①a+b>0 , ②a+c>0 , ③-a+b+c>0 , ④b2-2ac>5a2 其 中 正 确 的 个 数 有 ( ) B.2 个
2
A.1 个
课后探究: 1、 (2009 年齐齐哈尔市)已知二次函数 y ax bx c(a 0) 的图象如图所示,
2
则下列结论:①ac 0 ;② 方程 ax bx c 0 的两根之和大于 0;③y 随 x
2
的增大而增大;④ a b c 0 ,其中正确的有___________(填序号) 。 y
A.0 b 1 2a
B.0
2
y=ax2+bx+c
图 象 如 图 , 则 下 列 关 系 中 成 立 的 是
b 2 2a
C.1
6 、二次函数 ax bx ca 0 的图像如图,则下列关系判断正确的是 ( )
b 2 2a
D.
b 1 2a
A.ab < 0
b 3、 、由对称轴 x= 的确定值判断 a 与 b 的关系。 2a b b 涉及到 2a 和 b 的代数式时常考虑对称轴 x= 的位置情况。 如: =1 能判 2a 2a 1 断出:a = b,即 2a b 1 。 2
4、与抛物线的对称轴有关的一些值的符号。
相讨论),然后回答, 若有答不全的,教师 (或其他学生)补充.
章节与主题 主备人 使用人 本课时学习目标或学习 任务
6.2 二次函数的图像和性质(8) 李淑梅 李淑梅
审核人 使用周次日期
李淑梅
1. 能利用二次函数的图像和性质确定 a、b、c 及相关代数式的符号; 2.能运用数形结合的数学思想确定函数值或自变量的取值范围; 3.进一步体验数形结合的数学方法。
本课时重点难点或学习 建议
y 0. x y
2 16
2
1 6
0 0 象限.
1 2
2 0
3
6
7、已知二次函数 y ax bx c 的图象如图所示, 则点 P(a,bc) 在第 8、 (2007 湖北孝感)二次函数 y =ax2+bx+c 的图象 如图所示,且 P=| a-b+c |+| 2a+b |,Q=| a+b+c | +| 2a-b |,则 P、Q 的大小关系为 。 14 、 ( 2009 烟台市)二次函数 y ax2 bx c 的图象如图所示,则一次函数
2
4a 2b c 0 ;② a b 0 ;③ 2a c 0 ;④ 2a b 1 0 .其中正确结
论有___________(填序号) 。
2 4、抛物线 y x bx c 的部分图象如图所示,若 y 0 ,则 x 的取值范围是
_________。 5 、 已 知 ( )
学习重点:
1. 学习难点:
本课时教学资源的使用 学习过程 自学准备与知识导学;
投影仪,试卷
自 主 备 课 学习要求或学法指导 学生举例
已知二次函数 y ax bx c(a 0) 的图象如图所示,有下列 5 个结论:
2
① abc 0 ;② b a c ;③ 4a 2b c 0 ;④ 2c 3b ; ⑤ a b m(am b) , ( m 1 的实数)其中正确的结论有 ( A. 2 个 B. 3 个 C. 4 个 D. 5 个 )
口答交流 自学交流与问题研讨: 通 过 预 习并讨论完成 题目
二、自主探究 1、确定 a、b、c 的符号 (1)二次函数: y ax bx c(a 0) , a 的符号由________决定;
2
(2)
b 的符号由________决定,结合 a 的符号,可确定______的符号; 2a
C.3 个
D.4 个
例 4、已知二次函数 y=ax +bx+c 图象与 x 轴交于(-2,0)(x,0)且 1<x1<2,与 y 轴 正半轴交点在(0, 2)下方, 下列结论, ①a<b<0, ②2a+c>0, ③4a+c<0, ④2a-b+1>0 其 ( ) A.1 个 中 正 B.2 个 确 C.3 个 个 数 D.4 个 为