数据挖掘实验图形

合集下载

大数据高职系列教材之数据挖掘基础PPT课件:第6章 数据挖掘应用案例

大数据高职系列教材之数据挖掘基础PPT课件:第6章 数据挖掘应用案例

6 . 1 电力行业采用聚类方法进行主变油温分析
第六章 数据挖掘应用案例
需求背景及采用的大数据分析方法
• 把正常运行油温分成几个区间段,分析各区间段的油温出现次数分布,并计算出该区间 段的油温次数分布中心点。而根据中心点的偏离程度即阈值作为设备异常的预判是有较 大参考价值的。
• 采用聚类K-Means分析方法 • 在Spark集群上实现
6.2 银行信贷评价
第六章 数据挖掘应用案例
神经网络(NN),就是构建一个含有输入层、输出层和隐含层的模型,其中隐含 层可以有多层,这组输入和输出单元相互连接,单元之间的每个连接都设置一个权 重。输入层中神经元数目根据数据集中的属性数目确定,输出层为一个神经元,经 过训练,设定迭代次数和误差及求出每个神经元的权重,确定模型,对输入数据进 行预测。
17/11/07 23:15:38 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 0.2 1000 0.2 900 0.2 1050 0.4 1500 0.4 1450 0.4 1530 0.6 2500 0.6 2430 0.6 2520 0.8 2000 0.8 1960 0.8 2030 1.0 1200 1.0 1160 1.0 1230
大数据应用人才培养系列教材
数据挖掘基础
大数据应用人才培养系列教材
第六章 数据挖掘应用案例
6.1电力行业采用聚类方法进行主变油温分析 6.2 银行信贷评价 6.3 指数预测 6.4 客户分群的精准智能营销 6.5 使用WEKA进行房屋定价 习题

数据挖掘技术与应用:绘制折线图

数据挖掘技术与应用:绘制折线图

绘制折线图
1.前置步骤
准备数据guomin.npz,下载数据guomin.npz到Linux本地的/course/DataAnalyze/data目录
2.绘制折线图
(1)使用pyplot绘制2000-2017年季度生产总值折线图,如代码错误!文档中没有指定样式的文字。

-1所示。

代码错误!文档中没有指定样式的文字。

-1 绘制2000-2017年季度生产总值折线图
(2)使用marker参数可以绘制点线图,能够使得图形更加丰富,如代码错误!文档
中没有指定样式的文字。

-2所示。

代码错误!文档中没有指定样式的文字。

-2 绘制折线散点图
(3)plot函数一次可以接收多组数据,添加多条折线图,同时还可以分别定义每条折线的颜色、点的形状和类型,可以将这三个参数连接在一起用一个字符串表示,如代码错误!文档中没有指定样式的文字。

-3所示。

代码错误!文档中没有指定样式的文字。

-3 绘制近17年我国三大产业增长值的折线散点图。

数据挖掘概念与技术ppt课件

数据挖掘概念与技术ppt课件

用户 GUI API 数据立方体 API
挖掘结果
第4层 用户界面
OLAP 引擎
第3层 OLAP/OLAM
21.05.2020
.
17
KDD过程的步骤(续)
选择挖掘算法 数据挖掘: 搜索有趣的模式 模式评估和知识表示
可视化, 变换, 删除冗余模式, 等.
发现知识的使用
21.05.2020
.
18
数据挖掘和商务智能
提高支持商务决策的潜能
制定决策
数据表示 可视化技术
数据挖掘 信息发现
21.05.2020
我们正被数据淹没,但却缺乏知识 解决办法: 数据仓库与数据挖掘
数据仓库与联机分析处理(OLAP) 从大型数据库的数据中提取有趣的知识(规则, 规律性, 模
式, 限制等)
21.05.2020
.
6
数据处理技术的演进
1960s: 数据收集, 数据库创建, IMS 和网状 DBMS
1970s: 关系数据库模型, 关系 DBMS 实现
顾客分类(Customer profiling)
数据挖掘能够告诉我们什么样的顾客买什么产品(聚类或分类)
识别顾客需求
对不同的顾客识别最好的产品 使用预测发现什么因素影响新顾客
提供汇总信息
各种多维汇总报告 统计的汇总信息 (数据的中心趋势和方差)
21.05.2020
.
11
法人分析和风险管理
搜索有趣的模式可视化变换删除冗余模式发现知识的使用2105202019提高支持商务决策的潜能最终用户商务分析人员数据分析人员dba制定决策数据表示可视化技术数据挖掘信息发现数据探查olapmda统计分析查询和报告数据仓库数据集市数据源文字记录文件信息提供者数据库系统oltp系统2105202020数据仓库数据清理数据集成过滤数据库数据库或数据仓库数据挖掘引擎模式评估图形用户界面知识库21052020www21052020概念描述

数据挖掘技术与应用实验报告

数据挖掘技术与应用实验报告

数据挖掘技术与应用 实 验 报 告专业:_______________________班级:_______________________学号:_______________________姓名:_______________________2012-2013学年 第二学期经济与管理学院实验名称:SPSS Clementine 软件安装、功能演练指导教师: 实验日期: 成绩:实验目的1、熟悉SPSS Clementine 软件安装、功能和操作特点。

2、了解SPSS Clementine 软件的各选项面板和操作方法。

3、熟练掌握SPSS Clementine 工作流程。

实验内容1、打开SPSS Clementine 软件,逐一操作各选项,熟悉软件功能。

2、打开一有数据库、或新建数据文件,读入SPSS Clementine,并使用各种输出节点,熟悉数据输入输出。

(要求:至少做access数据库文件、excel文件、txt文件、可变文件的导入、导出)实验步骤一 实验前准备:1.下载SPSS Clementine 软件安装包和一个虚拟光驱。

2.选择任意盘区安装虚拟光驱,并把下载的安装包的文件(后缀名bin)添加到虚拟光驱上,然后双击运行。

3.运行安装完成后,把虚拟光驱中CYGiSO文件中的lservrc文件和PlatformSPSSLic7.dll文件复制替换到安装完成后的bin文件中,完成破解,获得永久免费使用权。

4.运行中文破解程序,对SPSS Clementine 软件进行汉化。

二 实验操作:从 Windows 的“开始”菜单中选择:所有程序/SPSS 1、启动 Clementine:Clementine 12.0/SPSS Clementine client 12.02、Clementine窗口当第一次启动 Clementine 时,工作区将以默认视图打开。

中中,这将是用来工作的主要区域。

间的区域称作流工作区。

数据挖掘实验报告-数据预处理

数据挖掘实验报告-数据预处理

数据挖掘实验报告-数据预处理数据挖掘实验报告数据预处理一、实验目的本次实验的主要目的是深入了解和掌握数据预处理在数据挖掘过程中的重要性及相关技术,通过对实际数据集的处理,提高数据质量,为后续的数据挖掘和分析工作奠定良好的基础。

二、实验背景在当今数字化时代,数据的规模和复杂性不断增加,而原始数据往往存在着各种问题,如缺失值、噪声、异常值、不一致性等。

这些问题如果不加以处理,将会严重影响数据挖掘算法的性能和结果的准确性。

因此,数据预处理成为了数据挖掘过程中不可或缺的重要环节。

三、实验数据集本次实验使用了一个名为“销售数据”的数据集,该数据集包含了某公司在过去一年中不同产品的销售记录,包括产品名称、销售日期、销售数量、销售价格、客户信息等字段。

四、数据预处理技术(一)数据清洗1、处理缺失值首先,对数据集中的缺失值进行了识别和分析。

通过观察发现,“客户信息”字段存在部分缺失。

对于这些缺失值,采用了两种处理方法:一是如果缺失比例较小(小于5%),直接删除含有缺失值的记录;二是如果缺失比例较大,采用均值填充的方法进行补充。

2、处理噪声数据数据中的噪声通常表现为数据中的错误或异常值。

通过对销售数量和销售价格的观察,发现了一些明显不合理的数值,如销售数量为负数或销售价格过高或过低的情况。

对于这些噪声数据,采用了基于统计的方法进行识别和处理,将超出合理范围的数据视为噪声并进行删除。

(二)数据集成由于原始数据集可能来自多个数据源,存在着重复和不一致的问题。

在本次实验中,对“销售数据”进行了集成处理,通过对关键字段(如产品名称、销售日期)的比较和合并,消除了重复的记录,并确保了数据的一致性。

(三)数据变换1、数据标准化为了消除不同字段之间量纲的影响,对销售数量和销售价格进行了标准化处理,使其具有可比性。

2、数据离散化对于连续型的数据字段,如销售价格,采用了等宽离散化的方法将其转换为离散型数据,以便于后续的数据挖掘算法处理。

数据挖掘分类实验报告

数据挖掘分类实验报告

数据挖掘分类实验报告《数据挖掘分类实验报告》数据挖掘是一门利用统计学、机器学习和人工智能等技术,从大量的数据中发现隐藏的模式和知识的学科。

在数据挖掘中,分类是一种常见的任务,它通过对数据进行分析和学习,将数据划分到不同的类别中。

本文将通过一个数据挖掘分类实验报告,介绍数据挖掘分类的实验过程和结果。

实验数据集选取了一个包含多个特征和标签的数据集,以便进行分类任务。

首先,我们对数据集进行了数据预处理,包括数据清洗、特征选择、特征变换等步骤,以确保数据的质量和适用性。

接着,我们将数据集划分为训练集和测试集,用训练集训练分类模型,并用测试集评估模型的性能。

在实验中,我们尝试了多种分类算法,包括决策树、支持向量机、朴素贝叶斯等。

通过对比不同算法的准确率、精确率、召回率和F1值等指标,我们评估了各个算法在该数据集上的表现。

实验结果显示,不同算法在不同数据集上表现出不同的性能,决策树算法在某些数据集上表现较好,而支持向量机在另一些数据集上表现更优秀。

此外,我们还进行了特征重要性分析,通过对特征的重要性进行排序,找出对分类任务最具有区分性的特征。

这有助于我们理解数据集的特点,并为进一步优化分类模型提供了指导。

综合实验结果,我们得出了一些结论和启示。

首先,不同的分类算法适用于不同的数据集和任务,需要根据具体情况选择合适的算法。

其次,特征选择和特征重要性分析对于提高分类模型的性能至关重要,需要充分利用数据挖掘技术进行特征工程。

最后,数据挖掘分类实验是一个迭代的过程,需要不断尝试和调整,以优化分类模型的性能。

通过本次数据挖掘分类实验报告,我们深入了解了数据挖掘分类的实验过程和方法,对数据挖掘技术有了更深入的理解,也为实际应用中的分类任务提供了一定的指导和启示。

希望本文能够对读者有所启发,促进数据挖掘领域的研究和实践。

数据挖掘ppt课件(2024)

数据挖掘ppt课件(2024)

医疗数据类型及特点
电子病历、医学影像、基因测序等 。
数据预处理与特征提取
针对不同类型的医疗数据进行预处 理和特征提取,如文本处理、图像 识别、基因表达谱分析等。
2024/1/29
模型评估与应用
通过准确率、灵敏度、特异度等指 标评估模型性能,将模型应用于实 际医疗场景中,提高医生诊断效率 和准确性。
疾病预测与辅助诊断模型构建
贝叶斯分类器应用案例
03
如垃圾邮件识别、新闻分类、情感分析等。
17
神经网络在分类预测中应用
1 2
神经网络基本概念
模拟人脑神经元连接方式的计算模型,通过训练 学习输入与输出之间的映射关系。
神经网络在分类预测中的应用
通过构建多层感知机、卷积神经网络等模型,对 输入数据进行自动特征提取和分类预测。
3
神经网络应用案例
5
数据挖掘与机器学习关系
机器学习是数据挖掘的重 要工具之一。
2024/1/29
数据挖掘包括数据预处理 、特征提取、模型构建等 步骤,其中模型构建可以 使用机器学习算法。
机器学习算法如决策树、 神经网络、支持向量机等 在数据挖掘中有广泛应用 。
6
2024/1/29
02
数据预处理技术
7
数据清洗与去重
推荐模型构建
利用机器学习、深度学习等技 术构建推荐模型,如逻辑回归 、神经网络等。
模型评估与优化
通过准确率、召回率、F1值等 指标评估模型性能,采用交叉 验证、网格搜索等方法优化模
型参数。
32
金融欺诈检测模型构建与优化
金融欺诈类型及特点
信用卡欺诈、贷款欺诈、洗钱等。
2024/1/29
数据来源与处理

数据挖掘实验报告-聚类分析

数据挖掘实验报告-聚类分析

数据挖掘实验报告(三)聚类分析姓名:李圣杰班级:计算机1304学号:1311610602一、实验目的1、掌握k-means 聚类方法;2、通过自行编程,对三维空间内的点用k-means 方法聚类。

二、实验设备PC 一台,dev-c++5.11三、实验内容1.问题描述:立体空间三维点的聚类.说明:数据放在数据文件中(不得放在程序中),第一行是数据的个数,以后各行是各个点的x,y,z 坐标。

2.设计要求读取文本文件数据,并用K-means 方法输出聚类中心 3. 需求分析k-means 算法接受输入量k ;然后将n 个数据对象划分为 k 个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。

聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

k-means 算法的工作过程说明如下:首先从n 个数据对象任意选择k 个对象作为初始聚类中心,而对于所剩下的其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类。

然后,再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值),不断重复这一过程直到标准测度函数开始收敛为止。

一般都采用均方差作为标准测度函数,具体定义如下:21∑∑=∈-=ki iiE C p m p (1)其中E 为数据库中所有对象的均方差之和,p 为代表对象的空间中的一个点,m i 为聚类C i 的均值(p 和m i 均是多维的)。

公式(1)所示的聚类标准,旨在使所获得的k 个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

四、实验步骤Step 1.读取数据组,从N 个数据对象任意选择k 个对象作为初始聚类中心; Step 2.循环Step 3到Step 4直到每个聚类不再发生变化为止; Step 3.根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离,并根据最小距离重新对相应对象进行划分;Step 4.重新计算每个(有变化)聚类的均值(中心对象)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档