第四章指数对数函数练习题
初升高数学暑假衔接(人教版)综合测试第4章:指数函数与对数函数(教师版)

第4章:指数函数与对数函数基础检测卷(试卷满分150分,考试用时120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.函数()32x f x a -=+(0a >且1a ≠)的图象恒过定点()A .()0,1B .()0,3C .()3,3D .()4,1【答案】C【解析】对于函数()f x ,则30x -=,可得3x =,则()0323f a =+=,所以,函数()32x f x a -=+(0a >且1a ≠)的图象恒过定点坐标为()3,3.故选:C.2.设3484log 4log 8log log 16m ⋅⋅=,那么m 等于()A .92B .9C .18D .27【答案】B【解析】348lg 4lg8lg lg log 4log 8log 2lg3lg 4lg8lg3m mm ⋅⋅=⨯⨯== ,lg 2lg3lg9m ∴==,9m ∴=,故选:B.3.函数()()23log 1f x x =+的值域为()A .()0,∞+B .[)0,∞+C .()1,+∞D .[)1,+∞【答案】B【解析】令21u x =+,则1u ≥,又3log y u =在[)1,+∞上单调递增,所以()233log 1log 10x +≥=,故函数()f x 的值域为[)0,∞+.故选:B .4.碘—131经常被用于对甲状腺的研究,它的半衰期大约是8天(即经过8天的时间,有一半的碘—131会衰变为其他元素).今年3月1日凌晨,在一容器中放入一定量的碘—131,到3月25日凌晨,测得该容器内还剩有2毫克的碘—131,则3月1日凌晨,放入该容器的碘—131的含量是()A .8毫克B .16毫克C .32毫克D .64毫克【答案】B【解析】设3月1日凌晨放入该容器的碘—131的含量是x 毫克,由题意,3月1日凌晨到月25日凌晨共经历了3个半衰期,所以31()22x ⋅=,解得16x =,即放入该容器的碘—131的含量是16毫克.故选:B5.若函数(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩对任意12,x x ≠都有2121()()0f x f x x x -<-,则实数a 的取值范围是()A .()01,B .103⎛⎫⎪⎝⎭,C .]1(,17D .1173⎡⎫⎪⎢⎣⎭,【答案】D 【解析】由2121()()0f x f x x x -<-得,()f x 在R 上是减函数,则有01310314log 1a a a a a <<⎧⎪-<⎨⎪-+≥⎩,解得1173a ≤<.故选:D.6.已知函数(log )a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如图所示,则下列结论成立的是()A .1,1a c >>B .1,01a c ><<C .01,1a c <<>D .01,01a c <<<<【答案】D【解析】由函数图象可知函数为单调递减函数,结合(log )a y x c =+可知01a <<,当1x =时,log 1)0,1,0(1a c c c +<∴+>∴>,当0x =时,log 0,01a c c >∴<<,故01c <<,故选:D7.函数32()236f x x x x =-+-在区间[2,4]-上的零点必属于区间()A .[2,1]-B .[2.5,4]C .[1,1.75]D .[1.75,2.5]【答案】D【解析】解法一:二分法由已知可求得,(2)280f -=-<,(1)40f =-<,37(2.5)08f =>,(4)380f =>,97(1.75)064f =-<.对于A 项,因为()(2)10f f ->,所以A 项错误;对于B 项,因为()()2.540f f >,所以B 项错误;对于C 项,因为()()1 1.750f f >,所以C 项错误;对于D 项,因为()()1.75 2.50f f <,所以D 项正确.解法二:因为()()322()23623f x x x x x x =-+-=-+,所以()20f =,即函数32()236f x x x x =-+-在区间[2,4]-上的零点为2,故D 正确.故选:D.8.已知1312a ⎛⎫= ⎪⎝⎭,21log 3b =,121log 3c =,则()A .a b c >>B .a c b>>C .c a b>>D .c b a>>【答案】C【解析】因为12x y ⎛⎫= ⎪⎝⎭在R 上单调递减,故1103111222⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即1,12a ⎛⎫∈ ⎪⎝⎭,因为2log y x =在()0,∞+上单调递增,故221log log 103b =<=,因为12log y x =在()0,∞+上单调递减,故112211log log 132=>=c ,故c a b >>.故选:C .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列运算中正确的是()A .383log 8log 5log 5=B136a =C .若114a a -+=,则11223a a -+=D .()2log 71ln ln e 72-⎛⎫+= ⎪⎝⎭【答案】BD【解析】对于选项A ,由换底公式可得353log 8log 8log 5=,故A 不正确;对于选项B22313333262a a a a +=⋅==,故B 正确;对于选项C ,设1122a a t -+=()0t >,两边分别平方可得122a a t -++=,因为114a a -+=,所以216t =,故11224a a -+=,故C 不正确;对于选项D ,()22log 7log 71ln ln e 2ln17072-⎛⎫+=+=+= ⎪⎝⎭,故D 正确.故选:BD .10.关于函数()()01xf x a a a =>≠,且与函数()()log 01a g x x a a =>≠,且说法正确的有()A .()()f x g x 与互为反函数B .()()f x g x 与的图像关于原点对称C .()()f x g x 与必有一交点D .()()f x g x 与的图像关于y x =对称【答案】AD【解析】()()0,1xf x a a a =>≠与函数()()log 0,1a g x x a a =>≠是互为反函数,图像关于y x =对称,故AD 选项正确;()()f x g x 与的图像不关于原点对称,故B 选项错误;当1a >时,()()f x g x 与没有交点,故C 选项错误;故选:AD.11.(多选)定义在[]1,1-上的函数()2943x xf x =-⋅+⋅,则下列结论中正确的是()A .()f x 的单调递减区间是[]0,1B .()f x 的单调递增区间是[]1,1-C .()f x 的最大值是()02f =D .()f x 的最小值是()16f =-【答案】ACD【解析】设3x t =,[]1,1x ∈-,则3x t =是增函数,且1,33t ⎡⎤∈⎢⎥⎣⎦,又函数()2224212y t t t =-+=--+在1,13⎡⎤⎢⎥⎣⎦上单调递增,在[]1,3上单调递减,因此()f x 在[]1,0-上单调递增,在[]0,1上单调递减,故A 正确,B 错误;()()max 02f x f ==,故C 正确;()1019f -=,()16f =-,因此()f x 的最小值是6-,故D 正确.故选:ACD .12.关于函数()|ln |2||f x x =-,下列描述正确的有()A .()f x 在区间(1,2)上单调递增B .()y f x =的图象关于直线2x =对称C .若1212,()(),x x f x f x ≠=则124x x +=D .()f x 有且仅有两个零点【答案】ABD【解析】根据图象变换作出函数()f x 的图象(()ln 2f x x =-,作出ln y x =的图象,再作出其关于y 轴对称的图象,然后向右平移2个单位,最后把x 轴下方的部分关于x 轴翻折上去即可得),如图,由图象知()f x 在(1,2)是单调递增,A 正确,函数图象关于直线2x =对称,B 正确;12()()f x f x k ==,直线y k =与函数()f x 图象相交可能是4个交点,如图,如果最左边两个交点横坐标分别是12,x x ,则124x x +=不成立,C 错误,()f x 与x 轴仅有两个公共点,即函数仅有两个零点,D 正确.故选:ABD .三、填空题:本题共4小题,每小题5分,共20分13.求函数y =的定义域______.【答案】(,3][1,)-∞-⋃+∞【解析】要使原函数有意义,则2ln(22)0x x +-≥,即2221x x +-≥,解得3x ≤-或1x ≥.所以,函数()f x =(,3][1,)-∞-⋃+∞.故答案为:(,3][1,)-∞-⋃+∞14.设a ∈R ,22()()21x xa a f x x ⋅+-=∈+R ,()f x 为奇函数,则a 的值为__________.【答案】1【解析】要使()f x 为奇函数,∵x ∈R ,∴需()()0f x f x +-=,∴()()1222,212121x x x xf x a f x a a +-=--=-=-+++,由12202121x x x a a +-+-=++,得()2212021x x a +-=+,1a ∴=.故答案为:1.15.已知函数()34x f x x =--在区间[1,2]上存在一个零点,用二分法求该零点的近似值,其参考数据如下:(1.6000)0.200f ≈,(1.5875)0.133f ≈,(1.5750)0.067f ≈,(1.5625)0.003f ≈,(1.5562)0.029f ≈-,(1.5500)0.060f ≈-,据此可得该零点的近似值为________.(精确到0.01)【答案】1.56【解析】因为(1.5625)0.003f ≈,(1.5562)0.029f ≈-,即(1.5625)(1.5562)0f f ⋅<,所以由零点存在定理可知()f x 的零点在()1.55621.5625,之间,近似值为1.56.故答案为:1.56.16.若方程2310x ax +-=的两根分别在区间(1,0)-和(0,1)内,则实数a 的取值范围是__________.【答案】(2,2)-【解析】令()231f x x ax =+-,因为方程2310x ax +-=的两根分别在区间(1,0)-和(0,1)内,所以()()()131********f a f f a ⎧-=-->⎪=-<⎨⎪-=+->⎩,解得22a -<<,故答案为:(2,2)-四.解答题:本小题共6小题,共70分。
高中数学第四章指数函数与对数函数经典大题例题(带答案)

高中数学第四章指数函数与对数函数经典大题例题单选题1、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A2、已知函数f(x)=log a(x−b)(a>0且a≠1,a,b为常数)的图象如图,则下列结论正确的是()A.a>0,b<−1B.a>0,−1<b<0C.0<a<1,b<−1D.0<a<1,−1<b<0答案:D分析:根据函数图象及对数函数的性质可求解.因为函数f (x )=log a (x −b )为减函数,所以0<a <1又因为函数图象与x 轴的交点在正半轴,所以x =1+b >0,即b >−1 又因为函数图象与y 轴有交点,所以b <0,所以−1<b <0, 故选:D3、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D.4、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x2+2=f(x),则f(x)为偶函数,当x⩾0时,f(x)=3x+x2+2,又y=3x,y=x2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x−1)>f(3−x),即|2x−1|>|3−x|,解得x<−2或x>43,所以f(2x−1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).故选:D.5、已知函f(x)=log2(√1+4x2+2x)+3,且f(m)=−5,则f(−m)=()A.−1B.−5C.11D.13答案:C分析:令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,则先判断函数g(−x)+g(x)=0,进而可得f(−x)+f(x)=6,即f(m)+f(−m)=6,结合已知条件即可求f(−m)的值.令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,因为g(x)+g(−x)=log2(√1+4x2+2x)+log2(√1+4x2−2x)=log2(1+4x2−4x2)=0,所以f(−x)+f(x)=g(−x)+3+g(x)+3=6,则f(m)+f(−m)=6,又因为f(m)=−5,则f(−m)=11,故选:C.6、设2a=5b=m,且1a +1b=2,则m=()A.√10B.10C.20D.100 答案:A分析:根据指数式与对数的互化和对数的换底公式,求得1a =log m2,1b=log m5,进而结合对数的运算公式,即可求解.由2a=5b=m,可得a=log2m,b=log5m,由换底公式得1a =log m2,1b=log m5,所以1a +1b=log m2+log m5=log m10=2,又因为m>0,可得m=√10.故选:A.7、化简√a3b2√ab23(a14b12)4⋅√a3(a>0,b>0)的结果是()A.ba B.abC.a2bD.b2a答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a3b2√ab23(a 14b12)4⋅√ba=a32b⋅a16b13(a14b12)4⋅a−13⋅b13=a32+16−1+13b1+13−2−13=ab−1=ab故选:B8、函数y=log2(2x−x2)的单调递减区间为()A.(1,2)B.(1,2]C.(0,1)D.[0,1)答案:A分析:先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果由2x−x2>0,得0<x<2,令t=2x−x2,则y=log2t,t=2x−x2在(0,1)上递增,在(1,2)上递减,因为y=log2t在定义域内为增函数,所以y=log2(2x−x2)的单调递减区间为(1,2),故选:A多选题9、已知函数f(x)=|lgx|,则()A.f(x)是偶函数B.f(x)值域为[0,+∞)C.f(x)在(0,+∞)上递增D.f(x)有一个零点答案:BD分析:画出f(x)的函数图象即可判断.画出f(x)=|lgx|的函数图象如下:由图可知,f(x)既不是奇函数也不是偶函数,故A错误;f(x)值域为[0,+∞),故B正确;f(x)在(0,1)单调递减,在(1,+∞)单调递增,故C错误;f(x)有一个零点1,故D正确.故选:BD.10、已知函数f(x)={x2,x∈(−∞,0), lnx,x∈(0,1),−x2+4x−3,x∈[1,+∞),若函数g(x)=f(x)−m恰有2个零点,则实数m可以是()A.−1B.0C.1D.2答案:ABC分析:转化为函数y=f(x)的图象与直线y=m恰有两个交点,画出函数f(x)的图象,根据图象可得解.因为函数g(x)=f(x)−m恰有2个零点,所以函数y=f(x)的图象与直线y=m恰有两个交点,画出函数f(x)的图象如图:由图可知,m=1或m≤0,结合选项,因此m可以为-1,0,1.故选:ABC.小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11、已知函数f(x)=1−2x1+2x,g(x)=lg(√x2+1−x),则()A.函数f(x)为偶函数B.函数g(x)为奇函数C.函数F(x)=f(x)+g(x)在区间[−1,1]上的最大值与最小值之和为0D.设F(x)=f(x)+g(x),则F(2a)+F(−1−a)<0的解集为(1,+∞)答案:BCD分析:根据题意,利用奇偶性,单调性,依次分析选项是否正确,即可得到答案对于A:f(x)=1−2x1+2x ,定义域为R,f(−x)=1−2−x1+2−x=−1−2x1+2x=−f(x),则f(x)为奇函数,故A错误;对于B:g(x)=lg(√x2+1−x),定义域为R,g(−x)=lg(√(−x)2+1−(−x))=−lg(√x2+1−x)=−g(x),则g(x)为奇函数,故B正确;对于C :F (x )=f (x )+g (x ),f (x ),g (x )都为奇函数, 则F (x )=f (x )+g (x )为奇函数,F (x )=f (x )+g (x )在区间[−1,1]上的最大值与最小值互为相反数, 必有F (x )在区间[−1,1]上的最大值与最小值之和为0,故C 正确; 对于D :f (x )=1−2x 1+2x =−(2x +1−22x +1)=22x +1−1,则f (x )在R 上为减函数,g (x )=lg(√x 2+1−x)=√x 2+1+x,则g (x )在R 上为减函数,则F (x )=f (x )+g (x )在R 上为减函数, 若F (2a )+F (−1−a )<0即F (2a )<F (1+a ), 则必有2a >1+a ,解得a >1,即F (2a )+F (−1−a )<0的解集为(1,+∞),故D 正确; 故选:BCD12、若函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,则必有( ). A .0<a <1B .a >1C .b >0D .b <0 答案:BC分析:对底数a 分情况讨论即可得答案.解:若0<a <1,则y =a x −(b +1)的图像必过第二象限,而函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,所以a >1.当a >1时,要使y =a x −(b +1)的图像过第一、三、四象限,则b +1>1,即b >0. 故选:BC小提示:此题考查了指数函数的图像和性质,属于基础题.13、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14,则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 12x 1+log 12x 2=log 12(x 1x 2)=f (x 1⋅x 2),C 是;对于D ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 3x 1+log 3x 2=log 3(x 1x 2)=f (x 1⋅x 2),D 是. 故选:CD 填空题14、已知0<a <1,化简:√a 43−2a +a 23=______. 答案:a 13−a 23分析:根据指数幂的基本运算结合指数函数的性质即可求解. 解:√a 43−2a +a 23=√(a 23−a 13)2=|a 23−a 13|,因为0<a <1,23>13,所以a 23<a 13,所以√a 43−2a +a 23=a 13−a 23.所以答案是:a 13−a 23. 15、计算:27−13−(−17)−2+25634−3−1+(√2−1)0=_______.答案:16分析:根据指数幂的运算性质直接求解即可.27−13−(−17)−2+25634−3−1+(√2−1)0=(33)−13−(−7)2+(44)34−13+1=13−49+64−13+1=16. 所以答案是:16.16、若f (x )=1+a3x +1(x ∈R )是奇函数,则实数a =___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.解答题17、已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[−3,1]上是减函数,求a的取值范围.答案:(1)a=0,[ln3,+∞);(2)a∈(−5,−4]解析:(1)根据偶函数的定义,求出a=0,得f(x)=ln(2x2+3),验证定义域是否关于原点对称,求出真数的范围,再由对数函数的单调性,即可求出值域;(2)u(x)=2x2+ax+3,g(u)=lnu,由条件可得,u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,根据二次函数的单调性,得出参数a的不等式,即可求解.解:(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(−x),所以ln(2x2+ax+3)=ln(2x2−ax+3),故a=0,此时,f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t⩾3,所以lnt⩾ln3,故f(x)的值域为[ln3,+∞).(2)设u(x)=2x2+ax+3,g(u)=lnu.因为f(x)在[−3,1]上是减函数,所以u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,故{−a4⩾1,u(x)min =u(1)=5+a >0,解得−5<a ≤−4,即a ∈(−5,−4].小提示:本题考查函数的性质,涉及到函数的奇偶性、单调性、值域,研究函数的性质要注意定义域,属于中档题.18、定义在D 上的函数f(x),如果满足:对任意x ∈D ,存在常数M >0,都有|f(x)|≤M 成立,则称f(x)是D 上的有界函数,其中M 称为函数f(x)的上界,已知函数f(x)=14x+a 2x+1.(1)当a =-1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由; (2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围. 答案:(1)(1,+∞),函数f(x)在(-∞,0)上不是有界函数,理由见解析; (2)[-5,1].分析:(1)应用换元法及二次函数的性质求y =t 2-t +1在(1,+∞)上的值域,即知f(x)的值域,进而判断f(x)是否为有界函数.(2)将问题转化为−(t +4t)≤a ≤2t−t 对t ∈(0,1]恒成立,求a 的取值范围.(1)当a =-1时,y =f(x)=(12)2x −(12)x +1 (x <0),令t =(12)x ,x <0,∴t >1,y =t 2-t +1=(t −12)2+34,∴y >1,即函数f(x)在(-∞,0)上的值域为(1,+∞), ∴不存在常数M >0,使得|f(x)|≤M 成立. ∴函数f(x)在(-∞,0)上不是有界函数. (2)由题意知,|f(x)|≤3对x ∈[0,+∞)恒成立,即-3≤f(x)≤3对x ∈[0,+∞)恒成立, 令t =(12)x ,x ≥0,则t ∈(0,1].∴−(t +4t)≤a ≤2t−t 对t ∈(0,1]恒成立,即[−(t +4t)]max ≤a ≤(2t−t)min .设h (t )=−(t +4t ),p (t )=2t −t ,t ∈(0,1],∵h(t)在(0,1]上递增,p(t)在(0,1]上递减,∴h(t)在(0,1]上的最大值为h(1)=-5,p(t)在(0,1]上的最小值为p(1)=1. ∴实数a的取值范围为[-5,1].。
(精选试题附答案)高中数学第四章指数函数与对数函数典型例题

(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数典型例题单选题1、函数y=|lg(x+1)|的图像是()A.B.C.D.答案:A分析:由函数y=lgx的图象与x轴的交点是(1,0)结合函数的平移变换得函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),即可求解.由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),显然四个选项只有A选项满足.故选:A.2、青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足L=5+lgV.已知某同学视力的五分记录法的数据为10≈1.259)4.9,则其视力的小数记录法的数据为()(√10A .1.5B .1.2C .0.8D .0.6答案:C分析:根据L,V 关系,当L =4.9时,求出lgV ,再用指数表示V ,即可求解.由L =5+lgV ,当L =4.9时,lgV =−0.1,则V =10−0.1=10−110=√1010≈11.259≈0.8. 故选:C. 3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916)答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0与y =12x +m 的图像,然后通过数形结合求出答案. 函数f (x )={−2x, x <0,−x 2+2x,x ≥0 的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0, 若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916.故m ∈(0,916). 故选:D .4、已知函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点,则a 的取值范围是( )A .√e )B .(−∞,√e )C .√e )D .(0,√e ) 答案:B分析:f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0),函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,通过数形结合即可得解.f (x )=x 2+e x −12(x <0)关于y 轴对称的函数为:f(−x)=x 2+e −x −12(x >0), 函数f (x )=x 2+e x −12(x <0)与g (x )=x 2+ln (x +a )图象上存在关于y 轴对称的点, 即f(−x)=g(x)有解,即x 2+e −x −12=x 2+ln(x +a),整理的:e −x −12=ln(x +a), y =e −x −12和y =ln(x +a)的图像存在交点,如图:临界值在x=0处取到(虚取),此时a=√e,故当a<√e时y=e−x−12和y=ln(x+a)的图像存在交点,故选:B.5、已知函数f(x)=11+2x,则对任意实数x,有()A.f(−x)+f(x)=0B.f(−x)−f(x)=0C.f(−x)+f(x)=1D.f(−x)−f(x)=13答案:C分析:直接代入计算,注意通分不要计算错误.f(−x)+f(x)=11+2−x +11+2x=2x1+2x+11+2x=1,故A错误,C正确;f(−x)−f(x)=11+2−x −11+2x=2x1+2x−11+2x=2x−12x+1=1−22x+1,不是常数,故BD错误;故选:C.6、已知对数式log(a+1)24−a(a∈Z)有意义,则a的取值范围为()A.(−1,4)B.(−1,0)∪(0,4)C.{1,2,3}D.{0,1,2,3}答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可.由题意可知:{a +1>0a +1≠124−a>0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0. ∵a ∈Z ,∴a 的取值范围为{1,2,3}.故选:C.7、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A .23天B .33天C .43天D .50天答案:B分析:根据题设条件先求出m 、a ,从而得到ℎ=120⋅2110t ,据此可求失去50%新鲜度对应的时间.{10%=m ⋅a 1020%=m ⋅a 20⇒{a 10=2,m =120 ,故a =2110,故ℎ=120⋅2110t , 令ℎ=12,∴2t 10=10,∴t 10lg2=1,故t =100.3≈33,故选:B.8、设2a =5b =m ,且1a +1b =2,则m =( )A .√10B .10C .20D .100答案:A分析:根据指数式与对数的互化和对数的换底公式,求得1a =log m 2,1b =log m 5,进而结合对数的运算公式,即可求解.由2a =5b =m ,可得a =log 2m ,b =log 5m ,由换底公式得1a =log m 2,1b =log m 5,所以1a +1b =log m 2+log m 5=log m 10=2,又因为m >0,可得m =√10.故选:A.9、化简√a3b2√ab23(a 14b12)4⋅√ba3(a>0,b>0)的结果是()A.ba B.abC.a2bD.b2a答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可. √a3b2√ab23(a 14b12)4⋅√ba3=a32b⋅a16b13(a14b12)4⋅a−13⋅b13=a32+16−1+13b1+13−2−13=ab−1=ab故选:B10、方程log2x=log4(2x+3)的解为()A.−1B.1C.3D.−1或3答案:C分析:根据对数运算性质化为同底的对数方程,结合对数真数大于零可求得结果.∵log2x=log4(2x+3)=12log2(2x+3)=log2√2x+3,∴{x>02x+3>0x=√2x+3,解得:x=3.故选:C.填空题11、函数f(x)=1x+1+lnx的定义域是____________.答案:(0,+∞)分析:根据分母不为零、真数大于零列不等式组,解得结果.由题意得{x>0x+1≠0,∴x>0所以答案是:(0,+∞)小提示:本题考查函数定义域,考查基本分析求解能力,属基础题.]的值域为______.12、函数f(x)=4x−2x+1+3在(−∞,12答案:[2,3)分析:令2x=t,结合二次函数的性质即可得出答案.解:f(x)=(2x)2−2×2x+3=(2x−1)2+2,设2x=t,]时,0<t≤√2,所以2≤(t−1)2+2<3,当x∈(−∞,12]的值域为[2,3).所以f(x)在(−∞,12所以答案是:[2,3).13、若a>0且a≠1,则函数f(x)=a x−4+3的图像恒过的定点的坐标为______.答案:(4,4)分析:任意指数函数一定过定点(0,1),根据该性质求解.令x−4=0,得x=4,所以f(4)=a0+3=4,所以函数f(x)=a x−4+3的图像恒过定点(4,4).所以答案是:(4,4)14、设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底数),则x2、y2的算术平均值的最小值为__________.答案:1分析:利用指数的运算性质可得出x+y=2,再利用基本不等式可求得结果.由已知条件可得e x⋅e y=e x+y=e2,所以,x+y=2,因为x>0,y>0,由基本不等式可得x2+y2≥2xy,≥1,即2(x2+y2)≥x2+y2+2xy=(x+y)2=4,所以,x2+y22当且仅当x=y=1时,等号成立.因此,x 2、y 2的算术平均值的最小值为1.所以答案是:1.15、计算:2√3×√126×√323=___________. 答案:6分析:根据根式指数幂的互化,以及指数幂的运算性质,准确运算,即可求解.根据根式指数幂的互化,以及指数幂的运算性质,可得2√3×√126×√323=2⋅312⋅(22⋅3)16⋅(32)13=21+13−13⋅312+16+13=2×3=6. 所以答案是:6解答题16、某化工企业致力于改良工艺,想使排放的废气中含有的污染物数量逐渐减少.设改良工艺前所排放的废气中含有的污染物数量为r 0mg /m 3,首次改良工艺后所排放的废气中含有的污染物数量为r 1mg /m 3,第n 次改良工艺后所排放的废气中含有的污染物数量为r n mg /m 3,则可建立函数模型r n =r 0−(r 0−r 1)⋅50.5n+P (P ∈R ,n ∈N ∗),其中n 是指改良工艺的次数.已知r 0=2,r 1=1.94(参考数据:lg2≈0.3).(1)试求该函数模型的解析式;(2)若该地环保部门要求,企业所排放的废气中含有的污染物数量不能超过0.08mg /m 3,试问至少进行多少次改良工艺才能使该企业所排放的废气中含有的污染物数量达标?答案:(1)r n =2−0.06⋅50.5n−0.5(n ∈N ∗);(2)6.分析:(1)将r 0=2,r 1=1.94代入函数模型解解得答案;(2)结合题意,解出指数不等式即可.(1)根据题意,1.94=2−(2−1.94)⋅50.5+P ⇒P =−0.5,所以该函数模型的解析式为r n =2−0.06⋅50.5n−0.5(n ∈N ∗).(2)由(1),令r n =2−0.06⋅50.5n−0.5≤0.08⇒50.5n−0.5≥32⇒(0.5n −0.5)lg5≥5lg2⇒n ≥10lg2lg5+1, 则n ≥10×0.30.7+1,10×0.30.7+1≈5.3,而n ∈N ∗,则n ≥6.综上:至少进行6次改良工艺才能使该企业所排放的废气中含有的污染物数量达标.17、若函数y =3x 2−5x +a 的两个零点分别为x 1,x 2,且有−2<x 1<0,1<x 2<3,试求出a 的取值范围. 答案:−12<a <0.分析:根据题意,利用二次函数的性质和根的分布,列出不等式组,即可求出实数a 的取值范围.令f (x )=3x 2−5x +a ,则{f(−2)>0f(0)<0f(1)<0f(3)>0得a 的取值范围是−12<a <0. 故实数a 的取值范围为−12<a <0.小提示:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.18、数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a >0,且a ≠1,M >0,那么log a M n =nlog a M (n ∈R );(2)请你运用上述对数运算性质计算lg3lg4(lg8lg9+lg16lg27)的值; (3)因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断20192020的位数.(注lg2019≈3.305)答案:(1)见解析(2)1712 (3)20192020的位数为6677解析:(1)根据指数与对数的转换证明即可.(2)根据对数的运算性质将真数均转换成指数幂的形式再化简即可.(3)分析lg20192020的值的范围再判断位数即可.(1)方法一:设x=log a M所以M=a x所以M n=(a x)n=a nx所以log a M n=nx=nlog a M,得证. 方法二:设x=nlog a M所以xn=log a M所以a xn=M所以a x=M n所以x=log a M n所以nlog a M=log a M n方法三:因为a log a M n=M na nlog a M=(a log a M)n=M n 所以a log a M n=a nlog a M所以log a M n=nlog a M得证.(2)方法一:lg3 lg4(lg8lg9+lg16lg27)=lg3lg22(lg23lg32+lg24lg33) =lg32lg2(3lg22lg3+4lg23lg3)=lg32lg2⋅17lg26lg3=1712.方法二:lg3 lg4(lg8lg9+lg16lg27)=log43(log98+log2716) =log223(log3223+log3324)=12log23(32log32+43log32)=12log23⋅176log32=1712.(3)方法一:设10k<20192020<10k+1,k∈N∗所以k<lg20192020<k+1所以k<2020lg2019<k+1所以k<2020×3.305<k+1所以6675.1<k<6676.1因为k∈N∗所以k=6676所以20192020的位数为6677方法二:设20192020=N所以2020lg2019=lgN所以2020×3.305=lgN所以lgN=6676.1所以N=106676.1=100.1×106676因为1<100.1<10,所以N有6677位数,即20192020的位数为6677小提示:本题主要考查了对数的运算以及利用对数的运算求解数字位数的问题,需要取对数分析对数值进行分析,属于中档题.19、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x2+x−2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果.(2)由题意两次利用完全平方公式,计算求得结果.(1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x−12=√6,∴x+1x+2=6,x+1x=4,∴x2+x﹣2+2=16,∴x2+x﹣2=14.。
(精选试题附答案)高中数学第四章指数函数与对数函数真题

(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数真题单选题1、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x 3+x 2−2x −2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B . 故选:B3、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.4、已知函数f (x )={a +a x ,x ≥03+(a −1)x,x <0(a >0 且a ≠1),则“a ≥3”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A分析:先由f(x)在R 上单调递增求得a 的取值范围,再利用充分条件,必要条件的定义即得. 若f(x)在R 上单调递增, 则{a >1a −1>0a +1≥3 , 所以a ≥2,由“a ≥3”可推出“a ≥2”,但由“a ≥2”推不出 “a ≥3”, 所以“a ≥3”是“f(x)在R 上单调递增”的充分不必要条件. 故选:A.5、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x)在(1,+∞)上单调递增,所以f(10)>f(8),即a>b,又因为f(9)=9log910−10=0,所以a>0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b的形式构造函数f(x)=x m−x−1(x>1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.7、已知x ,y ,z 都是大于1的正数,m >0,log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A .160B .60C .2003D .320答案:B分析:根据换底公式将log x m =24,log y m =40,log xyz m =12,化为log m x =124,log m y =140,log m xyz =112,再根据同底数的对数的加减法运算即可得解. 解:因为log x m =24,log y m =40,log xyz m =12, 所以log m x =124,log m y =140,log m xyz =112,即log m x +log m y +log m z =112,∴log m x =112−log m y −log m z =112−124−140=160, ∴log z m =60. 故选:B .8、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D,f(x)=√x3为R上的增函数,符合题意,故选:D.9、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0. 故选:B.填空题11、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2=(1+1232)(1+1216)(1+128)×(1−128)×2=(1+1232)(1+1216)×(1−1216)×2=(1+1232)×(1−1232)×2=(1−1264)×2=2−1263所以答案是:2−1263﹒12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可. 由题设,可得:log 4x ≤log 4412,则0<x ≤412=2, ∴不等式解集为(0,2]. 所以答案是:(0,2].13、在用二分法求函数f (x )的零点近似值时,若第一次所取区间为[−2,6],则第三次所取区间可能是______.(写出一个符合条件的区间即可) 答案:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可). 分析:根据二分法的概念,可求得结果.第一次所取区间为[−2,6],则第二次所取区间可能是[−2,2],[2,6];第三次所取区间可能是[−2,0],[0,2],[2,4],[4,6].所以答案是:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可).14、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).15、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2 ,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题16、(1)计算:(1100)−12−√(1−√2)2−8×(√5−√3)0+816;(2)已知x +x −1=4,求x 12+x −12. 答案:(1)3;(2)x 12+x −12=√6.分析:(1)根据指数幂的运算法则进行计算,求得答案; (2)先判断出x >0,然后将x 12+x −12平方后结合条件求得答案. (1)原式=[(100)−1]−12−(√2−1)−8+(23)16,=10012−√2+1−8+212=10+1−8=3.(2)由于x +x−1=4>0,所以x >0,(x 12+x −12)2=x +x −1+2=6,所以x 12+x −12=√6.17、(1)证明对数换底公式:log b N =log a N log a b(其中a >0且a ≠1,b >0且b ≠1,N >0)(2)已知log 32=m ,试用m 表示log 3218. 答案:(1)证明见解析;(2)log 3218=2+m 5m.分析:(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. (1)设log b N =x ,写成指数式b x =N . 两边取以a 为底的对数,得xlog a b =log a N .因为b >0,b ≠1,log a b ≠0,因此上式两边可除以log a b ,得x =log a N log a b.所以,log b N =log a N log a b.(2)log 3218=log 318log 332=log 332+log 32log 325=2+log 325log 32=2+m 5m.小提示:本题考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. 18、已知函数f (x )=a x −1a x +1(a >0,且a ≠1). (1)若f (2)=35,求f (x )解析式; (2)讨论f (x )奇偶性.答案:(1)f (x )=2x −12x +1;(2)奇函数.分析:(1)根据f (2)=35,求函数的解析式;(2)化简f (−x ),再判断函数的奇偶性. 解:(1)∵f (x )=a x −1a x +1,f (2)=35.即a 2−1a 2+1=35,∴a =2.即f (x )=2x −12x +1.(2)因为f (x )的定义域为R ,且f (−x )=a −x −1a −x +1=1−a x1+a x =−f (x ),所以f (x )是奇函数.19、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?答案:(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S =x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,由题意得,x(50−2x)=300,解得x 1=15,x 2=10,∵50−2x ≤25,∴x ≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.。
高中数学必修一第四章指数函数与对数函数经典知识题库(带答案)

高中数学必修一第四章指数函数与对数函数经典知识题库单选题1、已知f(x)={2x−x2,x≥5f(x+3),x<5,则f(4)+f(-4)=()A.63B.83C.86D.91答案:C分析:由给定条件求得f(-4)=f(5),f(4)=f(7),进而计算f(5)、f(7)的值,相加即可得解.依题意,当x<5时,f(x)=f(x+3),于是得f(-4)=f(-1)=f(2)=f(5),f(4)=f(7),当x≥5时,f(x)=2x-x2,则f(5)=25-52=7,f(7)=27-72=79,所以f(4)+f(-4)=86.故选:C2、Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e−0.23(t−53),其中K为最大确诊病例数.当I(t∗)=0.95K时,标志着已初步遏制疫情,则t∗约为()(ln19≈3)A.60B.63C.66D.69答案:C分析:将t=t∗代入函数I(t)=K1+e−0.23(t−53)结合I(t∗)=0.95K求得t∗即可得解.∵I(t)=K1+e−0.23(t−53),所以I(t∗)=K1+e−0.23(t∗−53)=0.95K,则e0.23(t∗−53)=19,所以,0.23(t∗−53)=ln19≈3,解得t∗≈30.23+53≈66.故选:C.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.3、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果多长时间后失去40%新鲜度()A.25天B.30天C.35天D.40天答案:B分析:根据给定条件求出m 及a 10的值,再利用给定公式计算失去40%新鲜度对应的时间作答.依题意,{10%=m ⋅a 1020%=m ⋅a20 ,解得m =120,a 10=2,当ℎ=40%时,40%=120⋅a t, 即40%=120⋅a 10⋅a t−10,解得a t−10=4=(a 10)2=a 20,于是得t −10=20,解得t =30, 所以采摘下来的这种水果30天后失去40%新鲜度. 故选:B4、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t 分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e −kt ,其中k 是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1) A .3B .3.6C .4D .4.8 答案:B分析:根据题意求出k 的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e −kt 即可求得t 的值.由题可知:50=20+(100−20)e −12k ⇒(e −k )12=38⇒e −k =(38)112, 冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e −kt ⇒(e −k )t =34⇒t ⋅ln e −k =ln 34⇒t =ln34ln (38)112=12(ln 3−2ln 2)ln 3−3ln 2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.5、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0, 所以(12)a+(12)b=1,故选:B .6、用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( ) A .0.9B .0.7C .0.5D .0.4 答案:B分析:利用二分法求函数零点的近似值的条件及方法分析判断即得.依题意,函数的零点在(0.68,0.72)内,四个选项中只有0.7∈(0.68,0.72),且满足|0.72-0.68|<0.1, 所以所求的符合条件的近似值为0.7. 故选:B7、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2) 答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,∴{0<a <1a −2<0(a −2)×0+3a ≤a 0,解得0<a ≤13, ∴a 的取值范围是(0,13].故选:C .8、我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)(x ∈[120,500])之间的函数关系可近似表示为y ={13x 3−80x 2+5040x,x ∈[120,144)12x 2−200x +80000,x ∈[144,500],当处理量x 等于多少吨时,每吨的平均处理成本最少( ) A .120B .200C .240D .400 答案:D分析:先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分x ∈[120,144)和x ∈[144,500]分析讨论求出其最小值即可由题意得二氧化碳每吨的平均处理成本为S ={13x 2−80x +5040,x[120,144)12x −200+80000x,x ∈[144,500],当x ∈[120,144)时,S =13x 2−80x +5040=13(x −120)2+240,当x =120时,S 取得最小值240, 当x ∈[144,500] 时,S =12x +80000x−200≥2√12x ⋅80000x−200=200,当且仅当12x =80000x,即x =400时取等号,此时S 取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D多选题9、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项. 依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD10、已知函数f(x)=lg(√x2−2x+2−x+1),g(x)=2x+62x+2则下列说法正确的是()A.f(x)是奇函数B.g(x)的图象关于点(1,2)对称C.若函数F(x)=f(x)+g(x)在x∈[1−m,1+m]上的最大值、最小值分别为M、N,则M+N=4D.令F(x)=f(x)+g(x),若F(a)+F(−2a+1)>4,则实数a的取值范围是(−1,+∞)答案:BCD分析:利用函数的奇偶性的定义,可判定A错误;利用图像的平移变换,可判定B正确;利用函数的图象平移和奇偶性,可得判定C正确;利用函数的单调性,可判定D正确.由题意函数f(x)=lg(√x2−2x+2−x+1)=lg(√(x−1)2+1−(x−1)),因为√(x−1)2+1−(x−1)>0恒成立,即函数f(x)的定义域为R,又因为f (0)=lg(√2+1)≠0,所以f (x )不是奇函数,所以A 错误; 将g (x )=2x +62x +2的图象向下平移两个单位得到y =2x +62x +2−2=2−2x2+2x , 再向左平移一个单位得到ℎ(x )=2−2x+12+2x+1=1−2x 1+2x,此时ℎ(−x )=1−2−x1+2−x =2x −12x +1=−ℎ(x ),所以ℎ(x )图象关于点(0,0)对称, 所以g (x )的图象关于(1,2)对称,所以B 正确;将函数f (x )的图象向左平移一个单位得m (x )=lg(√x 2+1−x), 因为m (−x )+m (x )=lg(√x 2+1+x)+lg(√x 2+1−x)=lg1=0, 即m(−x)=−m(x),所以函数m (x )为奇函数, 所以函数f (x )关于(1,0)点对称,所以F (x )若在1+a 处 取得最大值,则F (x )在1−a 处取得最小值,则F(1+a)+F(1−a)=f(1+a)+f(1−a)+g(1+a)+g(1−a)=0+4=4,所以C 正确; 由F(a)+F(−2a +1)>4,可得f(a)+f(1−2a)+g(a)+g(1−2a)>4, 由f (x )=lg(√(x −1)2+1−(x −1)), 设m (x )=lg(√x 2+1−x),t =√x 2+1−x , 可得t ′=√x 2+1−1<0,所以t =√x 2+1−x 为减函数,可得函数m (x )=lg(√x 2+1−x)为减函数,所以函数f (x )=lg(√(x −1)2+1−(x −1))为单调递减函数, 又由g (x )=2x +62x +2=1+42x +2为减函数,所以F (x )为减函数, 因为F (x )关于点(1,2)对称,所以F (a )+F (−2a +1)>4=F(a)+F(2−a),即F(−2a +1)>F(2−a), 即−2a +1<2−a ,解得a >−1,所以D 正确. 故选:BCD.小提示:求解函数有关的不等式的方法及策略: 1 、解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为f(x 1)>f(x 2)的形式;②根据函数f (x )的单调性去掉对应法则“f ”转化为形如:“x 1>x 2”或“x 1<x 2”的常规不等式,从而得解. 2 、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.11、为了得到函数y =ln (ex)的图象,可将函数y =ln x 的图象( ) A .纵坐标不变,横坐标伸长为原来的e 倍 B .纵坐标不变,横坐标缩短为原来的1eC .向上平移一个单位长度D .向下平移一个单位长度 答案:BC分析:根据函数图像变换求得结果.解:由题意函数y =lnx 的图象纵坐标不变,横坐标缩短为原来的1e ,可得到函数y =ln (ex)的图象,则A 错误,B 正确; 因为y =ln (ex)=ln x +1,则将函数y =ln x 的图象向上平移一个单位可得到函数y =ln (ex)的图象, 则C 正确,D 错误. 故选:BC. 填空题12、已知函数f(x)={x +1,x ≤0,log 2x,x >0则函数y =f [f (x )]的所有零点之和为___________.答案:12分析:利用分段函数,分类讨论,即可求出函数y =f [f (x )]的所有零点,从而得解.解:x ⩽0时,x +1=0,x =−1,由f(x)=−1,可得x +1=−1或log 2x =−1,∴x =−2或x =12; x >0时,log 2x =0,x =1,由f(x)=1,可得x +1=1或log 2x =1,∴x =0或x =2; ∴函数y =f [f (x )]的所有零点为−2,12,0,2,所以所有零点的和为−2+12+0+2=12所以答案是:12.13、对于实数a 和b ,定义运算“∗”:a ∗b ={a 2−ab,b 2−ab, a ≤ba >b ,设f(x)=(2x −1)∗(x −1),且关于x 的方程为f(x)=m(m ∈R )恰有三个互不相等的实数根,则m 的取值范围是___________. 答案:(0,14)分析:根据代数式2x −1和x −1之间的大小关系,结合题中所给的定义,用分段函数的形式表示函数f (x )的解析式,画出函数的图象,利用数形结合求出m 的取值范围. 由2x −1≤x −1可得x ≤0,由 2x −1>x −1可得x >0, 所以根据题意得f (x )={(2x −1)2−(2x −1)(x −1),x ≤0(x −1)2−(2x −1)(x −1),x >0,即 f (x )={2x 2−x ,x ≤0x −x 2,x >0,作出函数f (x )的图象如图,当x >0时,f (x )=x −x 2开口向下,对称轴为x =12, 所以当x >0时,函数的最大值为f (12)=12−(12)2=14, 函数的图象和直线y =m (m ∈R )有三个不同的交点. 可得m 的取值范围是(0,14),所以答案是:(0,14)14、当x ∈[k −12,k +12), k ∈Z 时,f(x)=k .若函数g(x)=xf(x)−mx −1没有零点,则正实数m 的取值范围是___________. 答案:[1,43)∪[85,2)分析:将问题转化为函数f(x)与ℎ(x)=1x +m 图象的交点问题,结合图象得出正实数m 的取值范围. 当x =0时,g(0)=−1≠0当x ≠0时,xf(x)−mx −1=0可化为f(x)=1x +m 作出函数f(x)与ℎ(x)=1x +m 的图象由图可知当x <0时,要使得函数g(x)=xf(x)−mx −1没有零点 必须满足−1≤ℎ(−12)<0,解得1≤m <2当x >0时,要使得函数g(x)=xf(x)−mx −1没有零点必须满足1≤ℎ(32)<2或者2≤ℎ(52)<3,解得13≤m <43或85≤m <135综上,m ∈[1,43)∪[85,2) 所以答案是:[1,43)∪[85,2)小提示:关键点睛:解决本题的关键在于将问题转化为函数图象的交点问题,结合数形结合的思想方法解决问题. 解答题15、已知f(x)=(log12x)2−2log12x+4,x∈[2 , 4].(1)设t=log12x,x∈[2 , 4],求t的最大值与最小值;(2)求f(x)的值域.答案:(1)最大值-1,最小值-2;(2)[7,12]解析:(1)t=log12x,x∈[2,4],可得t在x∈[2,4]上是减函数,即可得出.(2)f(x)=t2−2t+4=(t−1)2+3=g(t),可得g(t)在t∈[−2,−1]单调递减,即可得出值域.(1)t=log12x,x∈[2,4],∴t在x∈[2,4]上是减函数,∴x=2时t有最大值log122=−1;x=4时t有最小值log124=−2.(2)f(x)=t2−2t+4=(t−1)2+3=g(t),∴g(t)在t∈[−2,−1]单调递减,∴t=−2(即x=4),取得最大值,g(−2)=12.t=−1(即x=2),取得最小值,g(−1)=7.所以函数f(x)的值域[7,12].小提示:利用换元法求函数值域是常用的方法也是重要方法.。
高中试卷-第4章 指数函数与对数函数 练习(1)(含答案)

第四章 指数函数与对数函数复习与小结一、选择题1.(2019·广东佛山一中高一期中)函数()()21log 1f x x =-的定义域为( )A .()1,+¥B .()2,+¥C .()()1,22,U +¥D .()()1,33,+¥U 【答案】C【解析】:要使函数有意义x 需满足:210log (1)0x x ->ìí-¹î,得1x >,且2x ¹,故函数的定义域为()()1,22,U +¥.故选:C 2.(2019·贵州高一期中)计算:1324lg100ln e +-=( )A .7-B .3-C .1D .7【答案】C【解析】原式1222(2)lg103ln e =+-223=+-1=.故选:C 3.(2019·广西高一期中)以下函数在R 上是减函数的是( )A .2y x =-B .12log y x=C .1y x=D .1(2xy =【答案】D【解析】选项A :在R 上先增后减;选项B :定义域为:(0,+∞),在(0,+∞)上是减函数,不满足在R 上是减函数;选项C :定义域中就没有0,不满足在R 上是减函数;选项D 正确.故选:D .4.(2019·吉林高一期中)2()log 5f x x x =+-的零点所在区间为( )A .()1,2B .()2,3C .()3,4D .()4,5【答案】C【解析】201(1)log 154f =+-=-<,202(2)log 252f =+-=-<,22g 3(3)log 35lo 203f =+-=-<,204(4)log 451f =+-=>22(5)log 55log 055f =+-=>,根据零点存在性定理可得()()340f f ×<,则2()log 5f x x x =+-的零点所在区间为()3,4故选:C5.(2019·江西宜春九中高一期中)若0.33131(,log 2,log 53a b c -===则,它们的大小关系正确的是()A .a b c >>B .b a c>>C .c b a>>D .a c b>>【答案】A【解析】∵y 13xæö=ç÷èø为减函数,y13log x =为减函数,∴a 0.31133-æöæö==ç÷ç÷èøèø>1,c113351log log ==<0,又y =log 3x 为增函数,∴0=log 31<b =log 32<log 33=1,∴a >b >c .故选:A .6.(2019·山东高一期中)若1log 13a <,则a 的取值范围是( )A .10,3æöç÷èøB .1,13æöç÷èøC .10,(1,)3æö+¥ç÷èøU D .110,,33æöæöÈ+¥ç÷ç÷èøèø【答案】C【解析】当1a >时,1log 013a<<,成立,当01a <<时,1log 1log 3a a a <=,103a <<,综上1(0,)(1,)3a Î+¥U .故选:C .7.(2019·河北邯郸一中高一期中)已知函数()f x 是奇函数,且当0x <时,()51xf x -=-,则()75 log 3log 7f ×的值为( )A .4-B .2-C .23D .43【答案】B【解析】5575555log 3log 7 log 3log 7==log 3log 7log 5××513log =-;又x <0时,f (x )=5﹣x ﹣1,且f (x )为奇函数;∴()75 log 3log 7f ×51355115133log f log flog -æöæöæö=-=-=--=-ç÷ç÷ç÷èøèøèø2.故选:B .8.(2019·河北高一期中)函数1()lg 2xf x x æö=-ç÷èø的零点个数为( )A .3B .0C .1D .2【答案】D【解析】由1()|lg |(02xf x x =-=得1||()2xlgx =,分别作出函数|lg |y x =与,1(2xy =的图象如图:由图象可知两个函数有2个交点,即函数1()|lg |()2xf x x =-的零点个数为2个,故选:D.9.(2019·江苏高一期中)数学学习的最终目标:让学习者会用数学眼光观察世界,会用数学思维思考世界,会用数学语言表达世界.“双11”就要到了,电商的优惠活动很多,某同学借助于已学数学知识对“双11”相关优惠活动进行研究.已知2019年“双11”期间某商品原价为a 元,商家准备在节前连续2次对该商品进行提价且每次提价10%,然后在“双11”活动期间连续2次对该商品进行降价且每次降价10%.该同学得到结论:最后该商品的价格与原来价格a 元相比( ).A .相等B .略有提高C .略有降低D .无法确定【答案】C【解析】设现价为b ,则222(110%)(110%)(10.01)b a a =+-=-,则b a <,则该商品的价格与原来价格相比略有降低,故选:C.10.(2019·福建厦门外国语学校高一期中)一元二次方程2510x x m -+-=的两根均大于2,则实数m 的取值范围是( )A .21,4éö-+¥÷êëøB .(),5-¥-C .21,54éö--÷êëøD .21,54æö--ç÷èø【答案】C【解析】设()251f x x x m =-+-,则二次函数()y f x =的图象开口向上,对称轴为直线522x =>.由于一元二次方程2510x x m -+-=的两根均大于2,则()()25410250m f m ìD =--³ïí=-->ïî,解得2154m -£<-,因此,实数m 的取值范围是21,54éö--÷êëø.二、填空题11.(2019·陕西高一期中)已知函数1()ln 21xf x x-=++,若()1f a =,则()f a -= 【答案】3【解析】()121xf x lnx-=++;()121xf x lnx+-=+-.故f (x )+()4f x -=,则()()43f a f a -=-=12.(2017·北京清华附中高一期中)已知函数()2x f x -=,给出下列命题:①若0x >,则()1f x <;②对于任意的1x ,2x ÎR ,120x x -¹,则必有1212()[()()]0x x f x f x --<;③若120x x <<,则2112()()x f x x f x <;④若对于任意的1x ,2x ÎR ,120x x -¹,则1212()()22f x f x x x f ++æö>ç÷èø,其中所有正确命题的序号是_____.【答案】②④【解析】1()22xxf x -æö==ç÷èø,对于①,当0x >时,1(0,1)2xæöÎç÷èø,故①错误.对于②,1()2xf x æö=ç÷èø在R 上单调递减,所以当12x x <时2()()f x f x >,即:1212()[()()]0x x f x f x --<,故②正确.对于③()f x x 表示图像上的点与原点连线的斜率,由1()2xf x æö=ç÷èø的图像可知,当120x x <<时,1212()()f x f x x x >,即:2112()()x f x x f x >,故③错误.对于④,由()f x 得图像可知,1212()()22f x f x x x f ++æö>ç÷èø,故④正确.综上所述,正确命题的序号是②④.13.(2017·天津高一期中)若关于x 的不等式2log 0a x x -<在内恒成立,则a 的取值范围是__________.【答案】1[,1)2【解析】由2log 0a x x -<,得2log a x x <,在同一坐标系中作2y x =和y log a x =的草图,如图所示要使2log 0a x x -<在æççè内恒成立,只要y log a x =在æççè内的图象在2y x =的上方,于是01a <<.因为x =1y 2=所以只要x =,1y log 2a=³12a £,即12a ³.又01a <<,所以112a £<即实数a 的取值范围为112a £<.14.(2019·苏州市相城区高一期中)已知函数若42log ,04()1025,4x x f x x x x ì<=í-+>î…,a b c d ,,,是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是_____.【答案】()24,25【解析】先画出函数42log ,04()1025,4x x f x x x x ì<=í-+>î…的图象,如图所示:因为a b c d ,,,互不相同,不妨设a b c d <<<,且()()()()f a f b f c f d ===,而44log log b -=,即有44log log 0a b +=,可得1ab =,则abcd cd =,由10c d +=,且c d <,可得2252c d cd +æö<=ç÷èø,且2(10)(5)25cd c c c =-=--+,当4c =时,6d =,此时24cd =,但此时b ,c 相等,故abcd 的范围为(24,25).故答案为:2425(,).三、解答题15.(2018·河北高一期中)已知函数f(x)=b ⋅a x (a,b 为常数且a >0,a ≠1)的图象经过点A(1,8),B(3,32),(1)试求a,b 的值;(2)若不等式a x +b x ―2m ≥1在x ∈[―1,2]有解,求m 的取值范围.【答案】(1)a =2,b =4;(2)m ≤192【解析】(1)则,.(2)a x +b x ―2m ≥1在x ∈[―1,2]有解等价于在2m ≤2x +4x ―1在x ∈[―1,2]有解设t =2x 由x ∈[―1,2]得t ∈[12,4]则2m ≤t 2+t ―1在t ∈[12,4]上有解,令ℎ(t)=t 2+t ―1,t ∈[12,4]则2m ≤ℎ(t)max ,又ℎ(t)=t 2+t ―1=(t +12)2―54在[12,4]上为增函数,所以ℎ(t)max =ℎ(4)=19所以2m ≤19,所以m ≤192.16.(2019·湖北高一期中)已知A, B 两地的距离是130 km ,每辆汽车的通行费为50元.按交通法规规定, A, B 两地之间的公路车速应限制在50~100 km/h .假设汽油的价格是7元/L , 一辆汽车的耗油率(L/h )与车速的平方成正比,如果此车的速度是90 km/h ,那么汽车的耗油率为22.5 L/h ,司机每小时的工资是70元.从A 地到B 地最经济的车速是多少?如果不考虑其它费用,这次行车的总费用是多少(精确到1元)?【答案】最经济的车速是60 km/h ,此时的行车总费用约为353元.【解析】设车速为(50100)x x <<,油耗率为m ,行车总费用为()f x ,因为一辆汽车的耗油率(L/h )与车速的平方成正比,所以2m kx =(0k >),又此车的速度是90 km/h 时,汽车的耗油率为22.5 L/h ,所以222.590k =´,解得1360k =,故21360m x =,因此,由题意可得,()211301307131307091077050505050353360363f x x x x x x ´´=´´+´+=++³=+»,当且仅当7131307036x x´´=,即60x =时,()f x 取最小值.因此,从A 地到B 地最经济的车速是60 km/h ,此时的行车总费用约为353元.17.(2019·广东实验中学高一期中)已知定义域为R 的函数()221x x af x -+=+是奇函数(1)求a 的值(2)判断并证明该函数在定义域R 上的单调性(3)若对任意的t R Î,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围。
第四章 指数函数与对数函数【章节复习专项训练】(解析版)

第四章指数函数与对数函数【章节复习专项训练】【考点1】:指数、对数的运算例题1.下列各式正确的是()A .248πππ=B .23e =C .ln 6ln 2ln 3=D .lg 4lg 252+=【答案】D 【分析】由指数的运算法则可判断AB ;由换底公式可判断C ;由对数的加法运算法则可判断D.【详解】对于A ,22644ππππ+==,故A 错误;对于B ,23e =,故B 错误;对于C ,3ln 6log 6ln 3=,故C 错误;对于D ,()lg 4lg 25lg 425lg1002+=⨯==,故D 正确.故选:D.【变式1】以下对数式中,与指数式56x =等价的是()A .5log 6x =B .5log 6x =C .6log 5x =D .log 65x =【答案】A 【分析】根据指数式和对数式的关系即可得出.【详解】根据指数式和对数式的关系,56x =等价于5log 6x =.故选:A.【变式2】已知log 92a =-,则a 的值为()A .3-B .13-C .3D .13【答案】D 【分析】直接将对数式化为指数式求解即可.【详解】∵log 92a =-,0a >,∴29a -=,解得13a =,故选:D.【点睛】本题主要考查了对数的概念,属于基础题.【变式3】若1log 24a =,则a =()A .2B .4C .12D .14【答案】C 【分析】利用指数式与对数式的互化以及指数幂的运算即可求解.【详解】2111log 2442aa a =⇒=⇒=.故选:C 【点睛】本题考查了指数式与对数式的互化,考查了基本知识的掌握情况,属于基础题.【变式4】计算122121(2)()248n n n ++-⋅⋅(n ∈N *)的结果为()A .416B .22n+5C .2n 2-2n +6D .1(22n -7【答案】D 【分析】结合指数的运算公式化简即可求出结果.【详解】原式272221722626222122222n n n n n n -+-----⋅⎛⎫==== ⎪⋅⎝⎭,故选:D.【考点2】:指数函数、对数函数的概念例题1.下列函数表达式中,是对数函数的有()①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =log 2(x +1).A .1个B .2个C .3个D .4个【答案】B 【分析】根据对数函数的概念确定正确选项.【详解】形如log a y x =(0a >且1a ≠)的函数为对数函数,故③④为对数函数,所以共有2个.故选:B 【点睛】本小题主要考查对数函数的概念,属于基础题.【变式1】已知正整数指数函数()(2)x f x a a =-,则(2)f =()A .2B .3C .9D .16【答案】C 【分析】由函数是指数函数可求出3a =,即可求出(2)f .【详解】因为函数()(2)x f x a a =-是指数函数,所以21a -=,则3a =,所以()3x f x =,+∈x N ,所以2(2)39f ==.故选:C.【点睛】本题考查指数函数概念的理解,属于基础题.【变式2】若函数()f x 是指数函数,且()22f =,则()f x =()A .xB .2xC .12x⎛⎫ ⎪⎝⎭D .2x⎫⎪⎪⎝⎭【答案】A 【分析】利用待定系数法求解即可.【详解】解:由题意,设()(0xf x a a =>且)1a ≠,因为()22f =所以22a =,解得a =所以()xf x =.故选:A.【点睛】本题考查待定系数法求指数函数解析式,是基础题.【变式3】已知函数2x y a =⋅和2x b y +=都是指数函数,则a b +=()A .不确定B . 0C .1D . 2【答案】C 【分析】根据指数函数的概念,得到1a =,0b =,即可求出结果.【详解】因为函数2x y a =⋅是指数函数,所以1a =,由2x b y +=是指数函数,得0b =,所以1a b +=.故选:C.【点睛】本题主要考查由指数函数概念求参数的问题,属于基础题型.【变式4】已知函数f (x )=log a (x +1),若f (1)=1,则a =()A .0B .1C .2D .3【答案】C 【分析】根据指数式与对数式互化公式,结合代入法进行求解即可.【详解】∵f (1)=log a (1+1)=1,∴a 1=2,则a =2,故选:C.【考点3】:指数函数、对数函数的图像和性质例题1.如图,若1C ,2C 分别为函数log a y x =和log b y x =的图象,则()A .01a b <<<B .01b a <<<C .1a b >>D .b a l>>【答案】B 【分析】根据对数函数的图象特征,即可直接得到,a b 大小关系.【详解】根据1C ,2C 分别为函数log a y x =和log b y x =的图象,可得01b <<,01a <<,且b a <.故选:B 【点睛】本题考查根据对数函数图象求参数范围,注意规律的总结,属简单题.【变式1】函数()()ln 31y x x =-+的定义域是()A .()1,3-B .[]1,3-C .()(),13,-∞-+∞D .(][),13,-∞-+∞【答案】A 【分析】由对数函数定义要求其真数大于零构建不等式,求解即可.【详解】在对数函数()()ln 31y x x =-+中,真数()()()()310310x x x x -+>⇒-+<,所以()1,3x ∈-.故选:A 【点睛】本题考查求对数函数的定义域,属于基础题.【变式2】函数12(1)log 1y x =+-的图象一定经过点()A .()1,1B .()1,0C .()2,1D .()2,0【答案】C 【分析】根据对数函数的性质,结合图象的平移变换规律进行求解即可.【详解】把12log y x =的图象向右平移1个单位,再向上平移1个单位即可得到12(1)log 1y x =+-的图象,因为12log y x =的图象恒过(1,0)点,所以12(1)log 1y x =+-的图象经过点(2,1).故选:C 【点睛】本题考查了对数型函数恒过定点问题,考查了函数图象的平移变换性质,属于基础题.【变式3】已知函数()2xy a =-,且当0x <时,1y >,则实数a 的取值范围是()A .3a >B .23a <<C .4a >D .34a <<【答案】B 【分析】利用指数函数的性质求解即可【详解】当0x <时,1021y a >∴<-<,,解得23a <<,故选:B.【变式4】函数y =2|x |的图象是()A .B .C.D.【答案】B 【分析】将函数写成分段函数,再结合指数函数的图象,即可容易判断.【详解】y =2|x |=2,01,02x x x x ⎧≥⎪⎨⎛⎫<⎪ ⎪⎝⎭⎩,故当0x ≥时,函数图象同2x y =单调递增;当0x <时,函数图象同1()2xy =单调递减,且0x =时,1y =.满足以上条件的只有B .故选:B .【点睛】本题考查指数型函数的图象,属简单题.【考点4】:函数的零点与方程的解整式的乘法例题1.设1x ,2x 分别是函数()1x f x xa =-和()log 1a g x x x =-的零点(其中1a >),则122x x +的取值范围是()A .[2,)+∞B .(2,)+∞C .[3,)+∞D .(3,)+∞【答案】D 【分析】解法一:(图象法)根据题意可知12,x x 分别为x y a =与1y x =和log a y x =与1y x=交点的横坐标,,再根据同底数的指数对数函数互为反函数,有121x x =.代入1222122x x x x +=+,再根据区间(1,)+∞上单调递增,所以1223x x +>.解法二:(定义法)根据函数零点的定义可知1x 、2x 是方程1x a x=和1log a x x =的根,又1a >,所以函数1()xF x a x=-在(0,)+∞上单调递增,所以121x x =.代入1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.【详解】解:解法一:(图象法)根据函数零点的定义可知函数x y a =与1y x =的图象交点为111,x x ⎛⎫ ⎪⎝⎭,同理可得函数log a y x =与1y x =的图象交点为221,x x ⎛⎫ ⎪⎝⎭.又因为函数x y a =与log a y x =的图象关于直线y x =对称,函数1y x=的图象也关于直线y x =对称,所以点111,x x ⎛⎫ ⎪⎝⎭与点221,x x ⎛⎫ ⎪⎝⎭关于直线y x =对称,所以121x x =.由1a >可知21>x ,所以1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.故选:D解法二:(定义法)根据函数零点的定义可知1x 是方程1xa x=的根,所以1x 也是函数1()xF x a x=-的零点.同理可得2x 是方程1log a x x=的根,即221log a x x =,所以212x ax =,所以21x 也是函数1()xF x a x=-的零点.又1a >,所以函数1()xF x a x=-在(0,)+∞上单调递增,所以121x x =.由1a >可知21>x ,所以1222122x x x x +=+在区间(1,)+∞上单调递增,所以1223x x +>.故选:D 【点睛】本题考查了方程的根的确定、反函数性质的应用以及利用函数的单调性求最值,属于基础题.【变式1】函数()33x f x x =+的零点所在区间为()A .()1,0-B .()0,1C .()1,2D .()2,3【答案】A 【分析】判断出所给区间的端点值的乘积小于0可得答案.【详解】()()31213103f --=+-=-<;()()3003010f =+=>;()()3113140f =+=>;()()32232170f =+=>;()()33333540f =+=>;所以()()100f f -<.故选:A.【变式2】已知函数(),0ln ,0x e x f x x x ⎧≤=⎨>⎩,()()g x f x a =+,若()g x 恰有2个零点,则实数a的取值范围是()A .()1,0-B .[)1,0-C .()0,1D .(]0,1【答案】B 【分析】利用数形结合的方法,作出函数()f x 的图象,简单判断即可.【详解】依题意,函数()y f x =的图象与直线y a =-有两个交点,作出函数图象如下图所示,由图可知,要使函数()y f x =的图象与直线y a =-有两个交点,则01a <-≤,即10a -≤<.故选:B .【点睛】本题考查函数零点问题,掌握三种等价形式:函数零点个数等价于方程根的个数等价于两个函数图象交点个数,属基础题.【变式3】函数()232f x x x =-+的零点是()A .()1,0B .()1,0和()2,0C .1和2D .以上都不是【答案】C 【分析】当()0f x =时对应的x 的值即为所求的零点.【详解】令()0f x =,即2320x x -+=,解得:1x =或2x =,()f x ∴的零点是1和2.故选:C .【点睛】本题考查函数零点的求解问题,易错点是误认为零点为一个点的坐标,实际零点是函数值为零时,对应的自变量的值.【变式4】已知函数21ln ()xf x x -=,那么方程f (x )=0的解是()A .1=x eB .x =1C .x =eD .x =1或x =e【答案】C 【分析】通过解方程求得()0f x =的解.【详解】依题意()21ln 0xf x x -==,所以1ln 0,ln 1,x x x e -===.故选:C 【点睛】本小题主要考查函数零点的求法,属于基础题.【考点5】:用二分法求方程的近似解例题1.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在(1,1.5)内的近似解的过程中,有f (1)<0,f (1.5)>0,f (1.25)<0,则该方程的根所在的区间为()A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定【答案】B 【分析】根据零点存在性定理即可判断零点所在区间.【详解】∵f (1.25)·f (1.5)<0,且f (x )是单调增函数,∴该方程的根所在的区间为(1.25,1.5).故选:B.【变式1】下列函数不宜用二分法求零点的是()A .f (x )=x 3-1B .f (x )=ln x +3C .f (x )=x 2++2D .f (x )=-x 2+4x -1【答案】C 【分析】根据二分法的概念可知,只有存在区间[](),a b a b <,使得()()0f a f b <,才能应用二分法求零点,即可判断出各选项对应的函数是否可用二分法求零点.【详解】对于A ,存在区间[]0,2,使得()()020f f <,所以A 宜用;对于B ,存在区间4,1e -⎡⎤⎣⎦,使得()()410f e f -<,所以B 宜用;对于C ,()(20f x x =≥,不存在区间[](),a b a b <,使得()()0f a f b <,所以C 不宜用;对于D ,存在区间[]0,1,使得()()010f f <,所以D 宜用.故选:C .【点睛】本题主要考查二分法的概念的理解以及应用,属于容易题.【变式2】函数33()log 2f x x x=-在区间[1,3]内有零点,则用二分法判断含有零点的区间为()A .31,2⎡⎤⎢⎥⎣⎦B .3,22⎡⎤⎢⎥⎣⎦C .52,2⎡⎤⎢⎥⎣⎦D .5,32⎡⎤⎢⎥⎣⎦【答案】C【分析】先求(1),(3)f f ,再求(2)f ,发现(3),(2)f f 异号,再求5(2f 的值,再利用零点存在性定理判断即可【详解】解:因为31(1)0,(3)022f f =-<=>,3433333(2)log 2log 2log 3log log 04f =-=-==<,353333355355log log log 3log log log 022524f ⎛⎫=-=-=>=> ⎪⎝⎭因此,函数f (x )的零点在区间52,2⎡⎤⎢⎥⎣⎦内,故选:C.【点睛】此题考查二分法判断零点,考查了零点存在性定理的应用,属于基础题.【变式3】用二分法求函数()f x 在(,)a b 内的唯一零点时,精确度为0.001,则经过一次二分就结束计算的条件是()A .||0.2a b -<B .||0.002a b -<C .||0.002a b ->D .||0.002a b -=【答案】B【分析】根据二分法的步骤分析可得.经过一次二分后,零点所在区间长度为||2b a -,结束计算的条件是零点所在区间的长度满足精确度,由此可得.【详解】据二分法的步骤知,经过一次二分后,零点所在区间长度为||2b a -,此时结束计算,所以||2b a -0.001<,所以||0.002b a -<.故选B【点睛】本题考查了二分法的步骤,属于基础题.【变式4】下面关于二分法的叙述,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循D.只有在求函数零点时才用二分法【答案】B【分析】A C D进行判断,可以排除,从而选B.根据二分法的概念对,,【详解】只有函数的图象在零点附近是连续不断且在该零点左右两侧函数值异号,オ可以用二分法求函数的零点的近似值,故A错;二分法有规律可循,可以通过计算机来进行,故C错;求方程的近似解也可以用二分法,故D错.故选B.【点睛】本题考查了二分法的概念,属于基础题.。
高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
让孩子更优秀!
《指数函数与对数函数》测试题
一、选择题
1、函数x
x
a a x f 2211)(-+=(0>a 且1≠a ),则函数)(x f 是( )
A .奇函数
B .偶函数
C .非奇非偶函数
D .既是奇函数又是偶函数 2、设p =2log 8,q =5log 8,用p 、q 表示5lg 式子是( )
A .pq
B .
q p q + C .q p pq ++1 D .pq
pq
+1 3.下列运算错误的是( )
A.1
(0)n n a a a -=≠ B.()n n n ab a b = C.()m n mn a a = D.01a =
4、若()[]1log log log 222=x ,则x =( )
A .0
B .2
C .8
D .16 5、已知1>a ,1-<b ,则函数b a y x +=的图象必定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
6、已知a
a
-=12log 3,则3log 2=( )
A .a a 22-
B .a a -12
C .12-a a
D .2
2-a a
7、函数()
23log 22
1+-=x x y 的单调增区间是( )
A .)1,(-∞
B .),2(+∞
C .⎪⎭⎫ ⎝⎛∞-23,
D .⎪⎭⎫
⎝⎛+∞,23
8.已知函数⎩⎨⎧>≤=)
0(log )0(3)(2x x x x f x ,那么)]41
([f f 的值为 ( )
A.9
B.91
C.9-
D.9
1
-
9.函数2()(1)x f x a =-在R 上是减函数,则a 的取值范围是( )
A.1>a
B.2a >
C.2a <
D.12a << 10.若2lg(2)lg lg x y x y -=+,则2
log x
y
的值为( ) A.0 B.-2 C.2 D.0或2
11.考察如下四个结论:
①x x a a log 2)(log 2= ②
y x
y x a a a log log log = ③n a a x n
x log log = ④)(log log log xy y x a a a =⋅ 其中正确的结论有( )
A. 1个
B. 2个
C. 3个
D. 4个 12.
3
log 9
log 28的值是( ) A.
32 B. 1 C. 2
3
D. 2 13.函数2)1(log 282
11+-+-=+x y x 的定义域是( )
A.{x │x >1}
B.{x │x ≤2}
C.{x │1<x <2}
D.{x │1<x ≤2} 14.函数31x y =-的定义域是( )
A .(-∞,0)∪(0,+∞)
B . (-∞,+∞)
C . (-∞,0)
D .[)+∞,0 15. 函数22log x y =在区间()()+∞⋃∞-,00,上( )
A.是奇函数,且在()+∞,0上是增函数
B.是偶函数,且在()+∞,0上是增函数
C.是奇函数,且在()+∞,0上是减函数
D.是偶函数,且在()+∞,0上是减函数
让孩子更优秀!
二、填空题:
1、4log 233log =__________;x =-+)223(log )
12(
,则x =__________; 2
1
8log =
x ,则x =__________。
2、已知()077log 2
=+-x x a ,则x =__________。
3、函数)2(l o g 2-=x y 的反函数为__________,反函数的定义域为__________,值域为__________。
4、函数)
13(log 28+-=x y a x (0>a 且1≠a )的定义域为__________。
5、设1052==b a ,则
b
a 1
1+=__________。
6、已知函数)2(log x y a -=是x 的增函数,则a 的取值范围为__________。
7.化简
x
x x x 32的结果是_________________.
8.若2log 2,log 3,m n a a m n a +===________________. 9.若4
log 15
a
>,则a 的取值范围是_________________. 10.设0.90.7 1.1log 0.8,log 0.9, 1.1a b c ===,则,,a b c 的大小关系是___________
三、解答题:
1、计算下列各式的值:
(1)2log 9log 1.0lg 2lg 25lg 21
32⨯--+ (2)2lg 50lg 2lg 25lg 2++
(3)25lg 50lg 2lg )2(lg 2+⋅+的
2、1
325
432
2
+--->x x x x a a (0>a 且1≠a )中x 的取值范围。
3、求函数3
2241++-⎪
⎭
⎫
⎝⎛=x x y 的单调区间。
4、已知3234+∙-=x x y ,当其值域为]7,1[时,求x 的取值范围。
5、若α、β是方程02lg lg 22=--x x 的两个根,求αββαlog log +的值。
6、已知x
x
x f a
-+=11log )((0>a 且1≠a ) (1)求)(x f 的定义域; (2)判断)(x f 的奇偶性; (3)求使0)(>x f 的x 取值范围。
7.已知函数1
()(1)1
x x
a f x a a -=>+,判断函数的奇偶性。