直流电机的拖动及应用

合集下载

直流电机的电力拖动第部分

直流电机的电力拖动第部分
C、调速方式与负载类型旳配合
调速系统须满足下列两个准则: (1)在整个调速范围内电机不至于过热,为此,求: Ia ;IN (2)电动机旳负载能力要尽量得到充分利用。
鉴于此,不同类型旳负载必须选择合适旳调速方式。
下面分别就不同调速方式以及多种调速方式所适合旳负载类型加以讨论。
1. 调速方式
电力拖动系统旳调速方式主要分为两大类: (1)恒转矩调速方式:在保持 Ia 不IN变旳前提下, 保Tem持不变; (2)恒功率调速方式:在保持 Ia 不IN变旳前提下, 保Pe持m 不变。
直流电机旳电力拖动
3.6 直流电动机旳调速
A、与调速有关旳性能指标
a、调速范围D:
定义: 调速范围定义为拖动系统旳最高转速(或速度)与最低转速(或
速度)之比,即:
b、静差率 :
D nmax vmax nmin vmin
(3-46)
定义: 对调速系统旳静差率即转速变化率,它是指理想空载转速与额定
老式旳可调压电源可采用如图3.24所示旳发电机-电动机旋转机组方案。
图3.24 直流发电机-电动机机组旳可调直流电源 目前应用较为广泛旳是静止变流器方案,如相控变流器和斩控变流器,有关内容已在 《电力电子技术》中简介过。
2. 弱磁升速
图3.25给出了他励直流电动机弱磁调速时旳人工机械特征。
图3.25 励磁变化情况下旳直流电动机人工机械特征和负载特征
结论: 基速下列,他励直流电动机采用恒转矩调速方式,而基速以上,
则采用恒功率调速方式。
图3.27a、b分别给出了他励直流电动机在整个调速过程中旳机械特征与负载能力曲线。
图3.27 他励直流电动机调速过程中所允许旳转矩和功率
2. 调速方式旳选择

电机与电力拖动

电机与电力拖动

电机与电力拖动1. 引言电机是一种将电能转化为机械能的设备,广泛应用于各个领域中。

电力拖动则指的是利用电动机驱动机械设备或系统进行运动或操作的过程。

本文将介绍电机的基本原理以及电力拖动的应用。

2. 电机的基本原理电机是通过电磁感应原理将电能转化为机械能的设备。

其基本原理为根据施加在导体上的电流产生的磁场与外部磁场之间的相互作用,进而产生力或转矩。

电机根据其工作原理的不同可以分为直流电机和交流电机。

直流电机是利用直流电源供电,通过直流电源的正反极性变化来产生旋转运动。

交流电机则是利用交流电源供电,通过交流电源的频率来产生旋转运动。

电机的主要构成部分包括定子和转子。

定子是固定不动的部分,其中包含了产生磁场的线圈。

转子则是可以转动的部分,通过与定子的磁场相互作用来产生力或转矩。

3. 电力拖动的应用电力拖动广泛应用于各个领域,例如工业自动化、交通运输以及家用电器等。

以下列举了几个常见的电力拖动应用:3.1 工业自动化在工业自动化中,电力拖动被广泛应用于各种生产设备和机械系统。

通过电动机驱动,可以实现自动化生产线的运行,提高生产效率和质量。

例如,自动化生产线中的输送带系统就是通过电动机驱动的。

电动机的转动产生的转矩传递给输送带,使其能够带动物料或产品在生产线上移动。

3.2 交通运输电力拖动在交通运输领域中起到了重要作用。

例如,电动汽车就是利用电动机作为动力源来驱动车辆运行。

电动汽车相比传统的内燃机汽车具有环保、高效等优势。

此外,电力拖动还被应用于电动火车、电动船舶等交通工具中,实现了对传统燃油动力的替代。

3.3 家用电器家用电器中的电机和电力拖动也是不可或缺的。

例如,洗衣机、空调、冰箱等家电产品都需要电机来驱动其工作。

电机驱动使得家用电器能够实现自动化、智能化的功能,提高生活质量和舒适度。

4. 总结电机作为将电能转化为机械能的设备,通过电磁感应原理实现了这一转化过程。

电力拖动则是利用电动机驱动机械设备或系统进行运动或操作的过程。

第三章 直流电动机的电力拖动

第三章 直流电动机的电力拖动

U
Ec R1
两级起动时
I1 R2 R1 I 2 R1 Ra
推广到m级起动的一般情况
I1 Rm Rm1 R2 R1
I 2 Rm1 Rm2
R1 Ra
I1 / I2 称为起动电流比
30
R1 Ra
R2 R1 Ra 2
Rm1
Rm 2
Ra
m1
Rm Rm1 Ra m
17
B、风机与泵类负载的转矩特性
通风机负载转矩与转速的大小有关,基本上与转速的平方成正比
特点: TL Kn2
通风机类负载的转矩特性
如实际生产机械中的水泵、油泵、离心式通风机等其介质 对叶片的阻力基本上与转速的平方成正比。
18
C、恒功率负载的转矩特性
特点:
TL
k
1 n
恒功率负载的转矩特性
在不同转速下,负载转矩基本上与转速成反比,其功率基本
恒转矩负载 大多数生产机械可归纳为: 风机与泵类负载
恒功率负载
14
各类生产机械的负载转矩特性 A、恒转矩负载的转矩特性
特点: 负载转矩不受转速变化的影响。在任何转速下,负载转矩
总是保持恒定或大致恒定。
反抗性恒转矩负载 恒转矩负载
位能性恒转矩负载
15
(1) 反抗性恒转矩负载的转矩特性如下图所示。
反抗性恒转矩负载的转矩特性
22000 Ω
0.174Ω
Ce N
UN
I N Ra nN
220 116 0.174 V/(r/min) 1500
0.133 V/(r/min)
理想空载点 Te 0
n
n0
UN
Ce N
220 r/min 1650r/min 0.133

电机与拖动技术直流电机的基本知识(1)

电机与拖动技术直流电机的基本知识(1)

定子
转子
这是一台直流电机的结构装配图和结构 剖面图。旋转电机都是由定子和 转子两大部分组成,每一部分也都由 电磁部分和机械部分组成,以便满足 电磁作用的条件,换向极用来改善换向 。
定子:
主磁极、机座、换向极、端盖和电刷装置等部件组成 。
主磁极 主磁极的作用是建立主磁场。绝大多
数直流电机的主磁极不是用永久磁铁而是由励 磁绕组通以直流电流来建立磁场。主磁极由主 磁极铁心和套装在铁心上的励磁绕组构成。主 磁极铁心靠近转子一端的扩大的部分称为极靴, 它的作用是使气隙磁阻减小,改善主磁极磁场 分布,并使励磁绕组容易固定。为了减少转子 转动时由于齿槽移动引起的铁耗,主磁极铁心 采用1~1.5mm的低碳钢板冲压一定形状叠装固 定而成。主磁极上装有励磁绕组,整个主磁极 用螺杆固定在机座上。主磁极的个数一定是偶 数,励磁绕组的连接必须使得相邻主磁极的极 性按 N,S 极交替出现。
电机运用与训练
电气工程系自动化教研室
李靖
项目1:直流电机的运行与维护
项目目标
熟悉直流电机的基本工作原理与结构 掌握直流电机的运行原理和运行特性 掌握直流电动机电力拖动技术 具备直流电机拆装与维修能力 具备直流电机故障检测和排查的能力
单元1:直流电机的基本知识(1)
概述
与异步电动机相比,直流电动机的结构复杂,使 用和维护不如异步机方便,而且要使用直流电源。
二 直流电机的电枢绕组简介
1 直流枢绕组基本知识
电枢绕组是直流电机的一个重要部分,电机中机电能量的转换就是通过 电枢绕组而实现的,所以直流电机的转子也称为电枢。
元件:构成绕组的线圈称为绕组元件,分单匝和多匝两种。
所谓单匝元件,就是每个元件的元件边(一个元件 有两个元件边)里仅有一根导体。对多匝元件来说, 一个元件边里就不止一根导体了,左图就是一个多 匝元件。

06电机拖动第六章(直流电动机拖动)

06电机拖动第六章(直流电动机拖动)
电动机 生产机械
Rc Ia
(二)降压调速
n U Ce Ra CeCT
2
U E a I aR a
U 电机与拖动
Tem
Ia Rr
n B
Ea
物理过程分析 降压瞬间n(Ea)不变,
Ia U Ea Ra
If
Uf
A C
UN U1 Tem
Tem < TL n ,电机开始减速 .
随着n减小,Ea Ia Tem , 直到Tem= TL电机转速重新稳定 Tem
电机与拖动
直 流 电 动 机 的 电 力 拖 动
电机与拖动
直 流 电 动 机 的 电 力 拖 动
他励电机的机械特性 他励电机的起动和反转
他励电机的调速 他励电机的制动
电机与拖动
第六章 直流电动机的电力拖动
本 章 要 求: 掌握直流电动机起动的要求和方法。会计 算起动电阻。 掌握使直流电动机反转的原理和方法。 熟练掌握直流电动机调速的原理和方法, 并能进行调速的计算和物理过程的分析。 搞清电气制动的概念。熟练掌握直流电动 机电气制动的原理和方法,并会对制动的 物理过程进行分析。
改变励磁电压正反转接线图
电机与拖动
第三节
以恒转矩负载为例
他励电动机的调速
Tem 电动机 n TL 生产机械
一、 调速的基本概念
电动机转速由机械特性交点(工作点)决定 调速要求: 1)调速范围 D=nmax/nmin大 2)调速平滑 3)能耗小
n A B C D TL Ra
R1 R2 Tem R3
上下

m
R a;
m
R stm Ra
2 U N I N P N 1000 ) 2 3 IN

直流电机的电力拖动

直流电机的电力拖动

直流电机的电力拖动
一、概述
直流电机是一种常见的电动机,利用直流电流产生的磁场来实现转动。

在工业领域,直流电机的电力拖动应用广泛,包括但不限于电动车辆、机器人、工业生产线等领域。

二、直流电机的结构
直流电机通常包括定子和转子两部分。

定子上绕有电磁线圈,转子上则安装有电刷和电枢。

当电流通过电磁线圈产生磁场时,磁场与转子上的磁铁相互作用,导致转子产生转动。

三、直流电机的工作原理
直流电机的工作原理是基于洛伦兹力的作用。

当电流流过电磁线圈时,产生的磁场与磁铁相互作用,使转子受到一个力矩,从而实现转动。

这种力矩被称为电力拖动的基础。

1. 电动车辆
直流电机在电动车辆中广泛应用。

电动汽车利用直流电机将电能
转化为机械能,驱动车辆行驶。

电力拖动的优势在于高效、省时省力。

2. 机器人
机器人是另一个常见的使用直流电机电力拖动的例子。

直流电机
提供了机器人运动的动力,使其具备移动、抓取等功能。

3. 工业生产线
在工业生产线中,直流电机常用于传送带、旋转机械等设备的驱动。

通过电力拖动,提高了生产效率和精确度。

电力拖动具有高效、响应速度快、控制方便等特点。

通过调节电
流大小和方向,可以实现精准的转动控制,适用于多种工业应用。

六、结语
直流电机的电力拖动在现代工业中扮演着重要的角色,其应用范
围广泛且效果显著。

通过适当的控制和调节,直流电机可以实现高效、精准的电力拖动,推动各种机械设备的运行和发展。

电机与电力拖动 第3章 直流电机的基本理论讲解

电机与电力拖动 第3章 直流电机的基本理论讲解

3.6 直流电动机稳态运行时的基本方程式和工作特性(重点)
3.6.1 直流电动机稳态运行时的基本方程式(电压、转矩、功率)
1 电压平衡方程式
+ Ia
If +

U Ea M
U


2 转矩平衡方程式
励磁电路: U = Rf If 电枢电路: U= Ea + Ra Ia
U: 端电压;
Ea :电枢电动势; Ra :电枢回路电阻; Rf :励磁回路电阻; U>Ea时:电动机; U<Ea时:发电机;
If
Ia
Ea : 感应电动势
Uf
Ea MU
Ia :电枢电流 Ra :电枢电阻 I f :绕组电流
Rf Ra
Rf :绕组电阻
他励 I I N I f Ia
U UN Ea IaRa
U UN I f Rf
Ra
If
U
M
Rf
并励
Ea
I IN I f Ia U UN Ea IaRa
P

Ea
I

a
n ::转机速械;角速度, (2n ) / 60;
转矩的求法:T CT Ia
CT : 转矩常数CT ( pN ) /(2a); p : 磁极对数;
Ia:电枢电流I N ;
题2:一台他励直流电动机的额定数据为PN=17kW,UN=220V,nN=1000r/min, IN=92A,电枢绕组的电阻Ra=0.2Ω,电刷压降2△Ub=2V。试计算:(1)电 动机的额定电磁转矩。(2)理想空载转速和实际空载转速。(3)电动机的 输出转矩保持为额定值不变,在电枢回路中串入0.3Ω电阻,求电动机转速。

第4章 直流电动机的电力拖动

第4章 直流电动机的电力拖动

展,已将直流电机的励磁部分用永磁材料替代,产生了永磁无刷直流电机。
电机内部的电磁作用原理与直流电机相同。所以无刷直流电机的过载能力 高,高速性能好。由于这种直流电机的体积小,结构简单,效率高,无转
子损耗,所以目前已在中、小功率范围内得到广泛的应用。
25
4.4
直流电机的应用
4.4.1 直流电机应用概述
4
4.1
4.1.2
他励直流电动机的启动
直接启动
直接起动又称为全压起启动: 直接起动不需要专用起动启设备,操作简便,主要缺
点是起动启电流太大。额定功率在几百瓦以下的直流电动
机才能直接起启动 。
直接起动机特性曲线
5
4.1
他励直流电动机的启动
4.1.3 电枢回路串电阻起动 一般的直流电动机,在起动时在电枢回路中串入电阻来限 制起动电流。
10
4.2
他励直流电动机的制动
4.2.2 反接制动 1.电源反接制动
电源反接原理接线
+ 1 2 RZ
2 TL d o T em
电源反接机械特性
R a+ R Z n n0 a 1 Ra
-
Ia
TM Ea n TM
f -n
0
+
-
c
机械特性方程式:
Ra RZ Ra RZ U n Tem n0 Tem CE CE CT 2 CE CT 2
+ RZ T Ia
em
机械特性
U Ia
n n0 1
正向
U
-
+ RZ T em
n
n
Ea
+ TL Uf -
Ea
d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流电机的拖动及应用
摘要:近年来,随着电子技术和控制理论的不断发展,相续出现了顺序控制,可编程无触点断续控制,采样控制等多种控制方式。

而我的这篇论文则介绍的就是电力拖动在我们生活中和一般工作生产中常用的一些线路控制,它主要利用电动机拖动生产机械的工作机构,使之运转。

由于电力在生产,传输,分配,使用和控制方面的优越性,使得电力拖动具有方便,经济,效率高,调节性能好,易于实现生产过程自动化等优点,所以电力控制系统获得了广泛的应用。

目前在日常生活中使用的电风扇,洗衣机等家用电器,再生产中大量使用的各种各样的生产机械,如车床,钻床,造纸机,轧钢机等,都采用的是电力拖动。

关键词:直流他励电动机、主要结构、基本工作原理、运行特性、基本参数、应用前景
第一章电机拖动的原理
1.1电力拖动是指电动机拖动生产机械的工作机构
控制设备是用来控制电动机的运转,有各种控制电动机,电器,自动化元件及工业控制计算机组成。

电动机是生产机械的原动机,将电能转化成机械能,分为交流电动机和直流电动机。

传动机构是在电动机和工作机构之间传送动力的机构。

如速箱,联轴器,传动器等。

按电动机拖动系统中电动机的组合数量分,电力拖动的发展过程经历了成组拖动,单电动机拖动和多电动机拖动三个阶段。

1.1.1电力拖动的控制方式
可分为断续控制系统和连续控制系统两种。

在电力拖动发展的不同阶段两种拖动方式占有不同的地位,且呈现交替发展的趋势。

随着电力拖动的出现。

最早产生的是手动控制电器控制电动机运转的手动断
续控制方式。

随后逐步发展为有继电器,接触器和主令电器等组成的继电接触式有触点断续控制方式。

这种控制系统结构简单,工作稳定,成本低,维护方便,不仅可以方便地实现生产过程自动化,而且可实现集中控制和远距离控制,所以目前生产机械仍广泛使用。

但这种控制仅有通和断,这两种状态,其控制是断续的,即只能控制信号的有无,而不能连续控制信号的变化。

为了适应控制信号连续变化的场合,又出现了直流电动机连续控制。

这种控制方式可充分利用直流电动机调速性能好的优点,得到高精度,宽度范围的平滑调速系统。

第二章电机拖动的发展
近年来,随着电子技术和控制理论的不断发展,相续出现了顺序控制,可编程无触点断续控制,采样控制等多种控制方式。

在电动机调速方面,已形成了电子功率器件与自动控制相结合的领域。

不但晶闸管-直流电动机调速系统得到了广泛应用,而且交流变频调速技术发展迅速,在许多领域交流电动机变频调速系统有取代晶闸管-直流电动机调速系统的趋势。

三相交流电动机从发明以来,经历了100多年的历程,在这漫长的岁月里,它为奠定与发展这项经典的传动技术树立了丰碑,。

又由于其具有结构简单、运行可靠、维护方便、价格低廉,而广泛作用于电力拖动生产机械的动力,在机械、化工、纺织和石化等行业有大量的应用。

然而,电动机的起动特性却一直举步维艰。

这是因为电动机在恒压下直接起动,其起动电流约为额定电流的4-7倍,其转速要在很短时间内从零升至额定转速,会在起动过程中产生冲击,很容易使电力拖动对象的传动机构等造成严重磨损甚至损坏。

在起动瞬间大电流的冲击下,将引起电网电压降低,影响到电网内其它设备的正常运行。

同时由于电压降低,电动机本身起动也难以完成,造成电机堵转,严重时,可能烧坏电动机。

因而如何减少异步电动机起动瞬间的大电流的冲击,是电动机运行中的首要问题。

为此必须设法改善电动机的起动方法,使达到电动机的平滑无冲击的起动,于是各种限流起动方法也就应运而生。

对于鼠笼式异步电机一般采用定子回路串电抗器分级起动,绕线式异步电机则采用转子回路串电抗器起动。

定子边串电抗器起动,即增加定子边电抗值,可理解为降低定子实际所加电压,其目的是减少起动电流。

此起动方式属降压起动,缺点是起动转矩随定子电压的降低而成平方关系下降,外串电阻中有较大的功率损
耗。

又由于是分级起动,起动特性不平滑。

起动时定子绕组星形连接,起动后三角形连接。

在电动机绕组星形连接时,电动机电流仅为三角形连接的1/3,遗憾的是电动机的转矩也同样降低到三角形接线时的1/3,为了使电动机在额定转速时达到它的额定转矩,在经历了预先设定的时间后,又从星形接线转换到三角形接线,在转换过程中会出现二次冲击电流。

当电动机起动时,电动机的定子通过自耦变压器接到三相电源上。

当电机转速升高到一定值时,自耦变压器被切除,电动机定子直接接到电源上,电动机进入正常运行状态。

同直接起动时相比,当电压降到W2/W1倍时,起动电流和起动转矩降到(W2/W1)2倍(W2/W1为自耦变压器的变比)。

这种起动方式的优点是起动时定子电压的大小可调。

比起定子串电抗起动,当限定的起动电流相同时,起动转矩损失较少。

要使变压器的容量和耐压水平提高,将使得变压器的体积增大,成本高,且不允许频繁起动,同样也不能带重负载起动。

对于绕线式异步电机来说,如果仅仅是为了限制起动电流、增大起动转矩,则一般采用转子回路串频敏变阻器起动方式。

但此起动方式在频繁起动下,易发生温升,且结构复杂,不常用。

由此可知上述几种起动方式的共同特点是控制电路简单,起动转矩基本固定不可调,起动中都存在二次冲击电流,对负载机械有冲击转矩,且受电网电压波动的影响,一旦出现电网电压下降,会造成电机堵转,起动困难,且上述几种起动方法,在停机时都是瞬间停机,遇到负载较重时会造成剧烈的机械冲击。

第三章电动机的具体内容
3.1电动机的分类
电动机有直流电动机和交流电动机两大类,直流电动机虽不像交流电动机那样结构简单、制造容易、维护方便、运行可靠,但由于交流电动机的调速问题长期未能得到满意的解决,因此在过去一段时间内,直流电动机显示出交流电动机所不能比拟的良好的启动性能和调速性能,具有宽广的调速范围,平滑的无级调速特性,可实现频繁的无级快速启动、制动和反转;过载能力大,能承受频繁的冲击负载;能满足自动化生产系统中各种特殊运行的要求。

而直流发电机则能提供无脉动的大功率直流电源,且输出电压可以精确地调节和控制。

目前,虽然
交流电动机的调速问题已经解决,但是,速度调节要求较高,正、反转和启、制动频繁或多单元同步协调运转的生产机械,仍采用直流电动机拖动。

但直流电机也有它显著的缺点:一是制造工艺复杂,消耗有色金属较多,生产成本高;二是运行时由于电刷与换向器之间容易产生火花,因而可靠性较差,维护比较困难。

所以在一些对调速性能要求不高的领域中己被交流变频调速系统所取代。

但是在某些要求调速范围大、快速性高、精密度好、控制性能优异的场合,直流电动机的应用目前仍占有较大的比重。

3.2主要结构
直流电动机分为两部分:定子与转子。

定子包括:主磁极,机座,换向极,电刷装置等。

转子包括:电枢铁芯,电枢绕组,换向器,轴和风扇等。

定子和转子之间由空气隙分开。

3.2.1定子
定子就是发动机中固定不动的部分,它主要由主磁极、机座和电刷装置组成。

主磁极是由主磁极铁芯(极心和极掌)和励磁绕组组成,其作用时用来产生磁场。

极心上放置励磁绕组,极掌的作用是使电动机空气隙中磁感应强度分配最为合理,并用来阻挡励磁绕组。

主磁极用硅钢片叠成,固定在机座上。

机座也是磁路的一部分,常用铸钢制成。

电刷是引入电流的装置,其位置固定不变。

它与转动的交换器作滑动连接,将外加的直流电流引入电枢绕组中,使其转化为交流电流。

直流电动机的磁场是一个恒定不变的磁场,是由励志绕组中的直流电流形成的磁场方向和励磁电流的关系由右螺旋法则确定。

在微型直流电动机中,也有用永久磁铁作磁极的。

3.2.2转子
转子是电动机的转动部分,主要由电枢和换向器组成。

电枢是电动机中产生感应电动势的部分,主要包括电枢铁芯和点数饶组。

电枢铁芯成圆柱形,由硅钢片叠成,表面冲有槽,槽中放电枢绕组。

通有电流的电枢绕组在磁场中受到电磁力矩的作用,驱动转子旋转,起了能量转换的枢纽作用,故称“电枢”。

换向器
又称整流子,是直流电动机的一种特殊装置。

它是由楔形铜片叠成,片间用云母垫片绝缘。

换向片嵌放在套筒上,用压圈固定后成为换向器再压装,在转轴上电枢绕组的导线按一定的规则焊接在换向片突出的叉口中。

在换向器表面用弹簧压着固定的电刷,使转动的电枢绕组得以同外电路连接起来,并实现将外部直流电流转化为电枢绕组内的交流电流。

结束语
经历了100多年的技术发展,电动机自身的理论基本成熟。

随着电工技术的发展,对电能的转换、控制以及高效使用的要求越来越高。

电磁材料的性能不断提高,电工电子技术的广泛应用,为电动机的发展注入了新的活力。

未来电动机将会沿着体积更小、机电能量转换效率更高、控制更灵活的方向继续发展。

电动机在我国的经济建设中担当着重要的角色,随着我国加入WTO后,我国电动机行业所面临的国际社会的巨大竞争压力和挑战日益加剧。

从节约能源,保护环境出发,高效率电动机是目前国际发展的趋势。

这样看来,推广中国的高效率电动机是非常有必要的。

参考文献
[1]《机电传动控制》邓星钟华中科技大学出版社
[2]《直流电动机实际应用技巧》谷腰欣司科学出版社
[3]《电机及拖动》许晓峰高等教育出版社
[4]《电动机使用与维修》李洋、孙晋、范翠香人民邮电出版社。

相关文档
最新文档