Copernicus

合集下载

哥白尼怎么死的

哥白尼怎么死的

哥白尼怎么死的尼古拉斯·哥白尼(Nicolaus Copernicus)是一位波兰天文学家、数学家和经济学家,被公认为现代天文学的奠基人之一。

他的《天体运行论》(De Revolutionibus Orbium Coelestium)被认为是近代天文学的里程碑,引领了日心说的提出和发展。

然而,哥白尼是如何结束自己的生命的呢?本文将探讨哥白尼的死因及背后的故事。

哥白尼生平简介哥白尼于1473年2月19日出生在波兰的托尔劳,是一个富有的商人家庭的孩子。

他在克拉科夫大学学习了文法、修辞和哲学,并在学术界取得了很好的声誉。

然而,他对天文学的兴趣使他决定深入研究这个领域。

哥白尼的《天体运行论》于1543年出版,提出了地球自转和绕太阳公转的观点,与当时普遍接受的地心说相悖。

这一理论颠覆了传统的宇宙观念,引起了巨大的争议和反对。

哥白尼生平中的争议哥白尼的《天体运行论》一经出版,就遭到了教会和保守派学者的强烈反对。

当时的教会认为地球位于宇宙中心,而哥白尼的提出的日心说直接挑战了教义。

教会对于这一理论的反对使得哥白尼在科学界的声誉受到了一定的损害,他受到了一些批评和打压。

然而,哥白尼并没有因此而放弃他的理论研究和追求。

他继续在天文学领域进行研究,并进行了大量的观测和数据收集。

尽管他的理论受到争议,但他的工作为后来科学家们提供了宝贵的参考和基础。

哥白尼的晚年生活自从哥白尼发表《天体运行论》以来,他的观点逐渐得到了一些支持者。

他也逐渐在学术界获得了一定的认可,并成为了皇家医师和波兰国王的顾问。

然而,哥白尼的晚年生活并不如意。

据历史记载,哥白尼在晚年时身体状况逐渐恶化。

他患有脑溢血和卒中等疾病,严重影响了他的健康状况。

哥白尼的离世哥白尼最终在1543年5月24日去世,享年70岁。

关于他的离世,历史上并没有详细的记录,因此,哥白尼的确切死因仍然有争议。

有一种观点认为,哥白尼死于中风所致。

根据他晚年身体状况的描述,他的卒中和健康问题使他的生活非常困难。

哥白尼中学课文原文

哥白尼中学课文原文

哥白尼中学课文原文【实用版】目录1.哥白尼生平简介2.哥白尼的科学成就3.哥白尼的“日心说”理论4.哥白尼对后世的影响正文1.哥白尼生平简介哥白尼,全名尼古拉·哥白尼(Nicolaus Copernicus),生于 1473 年,是一位波兰天文学家和数学家。

他在天文学领域有着重要的贡献,特别是提出了日心说,这一理论彻底改变了人类对宇宙的认识。

2.哥白尼的科学成就哥白尼在科学领域有多方面的成就。

在数学方面,他发表了关于货币兑换和利息计算的论文;在天文学方面,他提出了日心说,并详细描述了太阳系行星的运动规律。

此外,哥白尼还研究了地球的形状和大小,并提出了地球自转的理论。

3.哥白尼的“日心说”理论哥白尼最著名的成就是他的“日心说”理论。

在此之前,人们普遍认为地球是宇宙的中心,所有天体都围绕地球运动。

而哥白尼提出了一种新的观点,认为太阳是宇宙的中心,地球和其他行星围绕太阳运动。

这一理论对于现代天文学和物理学的发展产生了深远的影响。

哥白尼的日心说主要包括以下三个方面:(1)太阳是宇宙的中心,地球和其他行星围绕太阳运动。

(2)地球和其他行星在不同的轨道上绕太阳运动,距离太阳越近的行星运动速度越快。

(3)地球自转,产生了昼夜更替和地球磁场。

4.哥白尼对后世的影响哥白尼的日心说对后世产生了深远的影响。

他的理论推翻了长期以来居于统治地位的地心说,使得人们开始重新认识宇宙。

日心说为后世的天文学家和科学家提供了一个全新的研究视角,推动了天文学、物理学、数学等领域的发展。

此外,哥白尼的成就也鼓励了人们敢于质疑权威,勇攀科学高峰。

总之,哥白尼是一位伟大的科学家,他的日心说理论对后世产生了深远的影响。

第1页共1页。

copernicus'-revolutionary-theory

copernicus'-revolutionary-theory
disastrous consequences. 这样一个错误可能导致灾难性的 后果。
18
Only if you put the sun there did the
movements of the other planets in the sky make sense.只有当你把太阳放在中心位置 上,天空中其他行星的运动才能说得清楚。
Skim the text and draw the two theories of the universe with the following pictures.
Sun
earth
Before Copernicus’ theory theory
Sun
earth
Showing Copernicus’
Sun
earth
11
Reading-II----detailed reading (2m)
Read the text and answer the following question.
1. Why couldn’t he tell anyone about the theory?
2. How many years did Copernicus work on the problem to complete his theory?
only if只有,只要,当only修饰副词,介短语或 状语从句放在句首时,主句要部分倒装。
Only if a teacher get permission is a student allowed to enter the room.只有得到老师的允许,学生才能进这个房间。
哥白尼经过长期的天文观测和研 究, 创立了更为科学的宇宙结构体 系——日心说, 从此否定了在西方统 治达一千多年的地心说。

药品生产技术《β 受体阻滞剂》

药品生产技术《β 受体阻滞剂》

抗心绞痛药β受体阻滞剂中文名:β受体阻滞剂英文名:β-rece力衰竭患者总体死亡率、心血管病死亡率、心源性猝死以及心力衰竭恶化引起的死亡,通常从小剂量开始,逐渐加量以到达最大耐受量。

但在有包括肺底啰音在内的多种体征的急性心力衰竭患者中使用β受体阻滞剂应慎重。

4、心律失常β受体阻滞剂常用于快速性心律失常的治疗,包括窦速、房早、室早、房速、室上性心动过速及室速。

5、主动脉夹层内科治疗常联合应用β受体阻滞剂和硝普钠,减少血流对主动脉的冲击,减少左心室的收缩速率以减缓病情进展。

6、心肌病在有病症的肥厚性心肌病患者中,β受体阻滞剂是首选治疗,可控制心室率,降低心肌收缩力,使心室充盈及舒张末容量最大化,改善心肌顺应性。

β受体阻滞剂用于扩张性心肌病伴或不伴心力衰竭的治疗,可减轻病症、预防猝死和改善预后。

7、遗传性QT延长综合征除非有严重的禁忌证,β受体阻滞剂是当今对有病症的LQTS 患者的首选治疗。

假设无绝对禁忌证,推荐终身服用最大耐受剂量的β受体阻滞剂,可明显降低心血管事件的发生。

目前认为,对于无病症的LQTS患者,也推荐应用β受体阻滞剂。

用药考前须知1、禁忌症:支气管哮喘;严重心动过缓、房室传导阻滞;重度心力衰竭、急性肺水肿;心源性休克;孕妇禁用。

2、不良反响观察:头昏、乏力、失眠、皮疹、心动过缓、诱发心衰与支气管痉挛,长期使用可致血糖、血脂增高,故要定期检查血糖,血脂。

3、个体差异大,宜从小剂量开始,长期服药者不宜突然停药,4、静脉推注时需在心电、血压监护下进行。

5、对出现严重心脏抑制者,可予以异丙肾上腺素静脉滴注,静推时出现低血压,心动过缓可静脉推注阿托品对抗。

6、食物可减少药物吸收,需饭前服用。

天文学家哥白尼

天文学家哥白尼

1986年回归时 的哈雷彗星
日心说对后代科学家的影响
• 日心说引起伽利略的注意,他听说有人发明了望远镜,他 自己也动手造了一架长4米的望远镜。 • 伽利略是第一位用望远镜观察天体的天文学家。 • 他发现月球上有山脉, • 发现太阳有自转, • 发现木星有卫星, • 发现银河是许多星体组成的。
对牛顿的影响
天文学家哥白尼 Nicolaus Copernicus
——一位信仰稳固的基督徒
Nicolaus Copernicus
• 尼古拉· 哥白尼(拉丁语:Nicolaus Copernicus,1473年2 月19日-1543年5月24日),文艺复兴时期波兰数学家、 天文学家。 • 1473年出生于波兰,通晓多国语言,了解经典文学,能够 胜任翻译,做过执政官、外交官,也是一名经济学家。 • 40岁时提出了日心说,并经过长年的观察和计算完成他的 伟大著作《天球运行论》。他的“日心说”更改了天主教 会的错误的宇宙观。 • 1543年5月24日哥白尼在弗龙堡辞世. • 2010年5月22日遗骨在波兰弗龙堡大教堂重新下葬。
• 托勒密认为,地球静止不动地坐镇宇宙的中心,所有的天体,包括太 阳在内,都围绕地球运转。但是,人们在观测中,发现天体的运行有 一种忽前忽后、时快时慢的现象。为了解释忽前忽后的现象,托勒密 说,环绕地球作均衡运动的,并不是天体本身,而是天体运动的圆轮 中心。他把环绕地球的圆轮叫做“均轮”,较小的圆轮叫做“本轮”。 为了解释时快时慢的现象,他又在主要的“本轮”之外,增加一些辅 助的“本轮”,还采用了“虚轮”的说法,这样就可以使“本轮”中 心的不均衡的运动,从“虚轮”的中心看来仿佛是“均衡”的。托勒 密就这样对古代的观测资料作出了牵强附会的解释。
从地球上观察火星的逆行现象

欧洲哥白尼计划的现状和未来

欧洲哥白尼计划的现状和未来

欧洲哥白尼计划的现状和未来文|李俊杰 陈卫荣 孙学娇中国资源卫星应用中心图1 哨兵家族卫星示意图(来自ESA)哨兵任务的目标如下:Sentinel-1:雷达观测任务,提供用于陆地和海洋服务的全天候昼夜雷达成像,同时可用于地表形变监测;Sentinel-1A于2014年4月发射,Sentinel-1B于2016年4月发射并在2022年8Sentinel-2:高分辨光学陆地观测任务,宽幅高分辨率双星多光谱成像,为美国陆地卫星(Landsat)和法国斯波特卫星(SPOT)任务的数据连续性和增强而设计,用于哥白尼计划的陆地和安全业务;Sentinel-2A于2015年6月发射,Sentinel-2B于月发射。

Sentinel-3:中分辨陆地和海洋观测任务,为这些数据将以高空间分辨率每小时生成一次;卫星预计2024年发射。

Sentinel-5P/5:近地轨道全球大气观测任务,提供大气成分数据产品(如臭氧、二氧化氮、二氧化硫、甲烷和气溶胶光学厚度等),提供全球空气质量监测服务;Sentinel-5P于2017年10 Sentinel-5预计2025年发射。

Sentinel-6:绘制海平面图任务,量化和监测全球和区域海平面变化和海平面上升率,以支持海洋气象学和海洋学业务服务;Sentinel-6A年11月发射,Sentinel-6B预计2025年发射。

2.贡献任务哥白尼计划除了专用的哨兵卫星提供数据外,图2 哥白尼计划贡献任务卫星概览图(来自ESA)三、数据和信息服务哥白尼计划的数据和信息是通过一组服务提供给用户,大多数用户可在线获取。

哥白尼计划目前每天可提供16TB的数据,是世界上最大的空间数据提供商。

哥白尼计划的数据和信息主要通过以下两种方式对外提供服务:一是哥白尼数据空间生态系统,主要提供对地观测数据产品,也提供基于数据衍生的信息;二是哥白尼服务,面向6大应用领域提供专业信息服务,包括土地、海洋、大气、应急、安全和气候变化。

试述哥白尼日心说的基本观点及其在近代科学革命中的划时代意义

试述哥白尼日心说的基本观点及其在近代科学革命中的划时代意义

哥白尼(Nicolaus Copernicus)是16世纪的天文学家,他的日心说是指地球围绕太阳运转的理论。

哥白尼日心说的基本观点是:
1. 太阳是宇宙的中心:哥白尼认为太阳是宇宙的中心,而不是地球。

他认为地球只是太阳系中的一个行星,围绕太阳运转。

2. 地球的自转和公转:哥白尼认为地球自转一次需要24小时,公转一次需要365.25天。

他提出了地球自转和公转的概念,解释了日出日落和四季变化的原因。

3. 行星轨道的圆形运动:哥白尼认为行星的轨道是圆形的,而不是古代的认为行星在天球上运动的复杂理论。

哥白尼日心说在近代科学革命中具有划时代意义的原因如下:
1. 打破了地心说观念:哥白尼的日心说打破了古代地心说观念,认为太阳是宇宙的中心,地球只是一个行星。

这一观点颠覆了人们对宇宙结构的认知,对当时的宗教和哲学观念产生了重大冲击。

2. 推动了科学方法的发展:哥白尼的观点基于观察和实证,他通过观察天体运动和数学计算,提出了日心说。

这种基于观察和实证的科学方法为后来的科学家提供了范例,推动了科学方法的发展。

3. 为后来的天文学研究奠定了基础:哥白尼的日心说为后来的天文学研究提供了基础。

他的观点激发了伽利略、开普勒等科学家的兴趣,他们进一步发展了天文学的理论和观测方法,为现代天文学的发展奠定了基础。

总之,哥白尼日心说的基本观点打破了古代地心说观念,推动了科学方法的发展,并为后来的天文学研究奠定了基础。

它在近代科学革命中具有划时代的意义,对人们对宇宙的认知产生了重大影响。

哥白尼,开普勒,伽利略,牛顿简介【英文】

哥白尼,开普勒,伽利略,牛顿简介【英文】

The Platonic Solids
Kepler’s Nested Spheres
How Did Kepler Know the Spacing?
The Kepler Solids
The Poinsot Solids
Strange Start - Good Finish
• Kepler started off with mystical ideas, and ended up correctly describing the motions of the planets. How can this be?
A Neat Coincidence that’s Too Neat
Rosenkranz and Guldenstern are Dead
Who were they?
Hamlet
• Hamlet’s Uncle has:
– Murdered his father – Married his mother – Usurped Hamlet’s Crown
How Did Kepler Do It?
• One Mars year (687 days) = 2 Earth years (730 days) minus 43 days • After 687 days, Mars is in the same place in its orbit, but Earth is not • Mars appears to be in a different location in the sky
The Southern Cross
A Star Map
Western Constellations
Chinese Constellations
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CopernicusPolish name: Mikolaj Kopernik. Polish astronomer and mathematician who, as a student, studied canon law, mathematics, and medicine at Cracow, Bologna, Rome, Padua, and Ferrara. Copernicus became interested in astronomy and published an early description of his "heliocentric" model of the solar system in Commentariolus (1512). In this model, the sun was actually not exactly the center of the solar system, but was slightly offset from the center using a device invented by Ptolemy known as the equant point. The idea that the Sun was the center of the solar system was not new (similar theories had been proposed by Aristarchus and Nicholas of Cusa), but Copernicus also worked out his system in full mathematical detail. Even though the mathematics in his description was not any simpler than Ptolemy's, it required fewer basic assumptions. By postulating only the rotation of the Earth, revolution about the sun, and tilt of Earth's rotational axis, Copernicus could explain the observed motion of the heavens. However, because Copernicus retained circular orbits, his system required the inclusion of epicycles. Unfortunately, out of fear that his ideas might get him into trouble with the church, Copernicus delayed publication of them.In 1539, Copernicus took on Rheticus as a student and handed over his manuscript to him to write a popularization of the heliocentric theory, published as Narratio Prima in 1540. Shortly before his death, Rheticus convinced Copernicus to allow publication of his original manuscript, and De Revolutionibus Orbium Coelestium was published in 1543. Copernicus proposed his theory as a true description, not just a theory to save appearances. Unlike Buridan and Oresme, he did not think that any theory which saved appearances was valid, instead believing that there could only be a single true theory. When the work was published, however, Andreas Osiander added an unauthorized preface stating that the contents was merely a device to simplify calculations.Copernicus adapted physics to the demands of astronomy, believing that the principles of Ptolemy's system were incorrect, not the math or observations. He was the first person in history to create a complete and general system, combiningmathematics, physics, and cosmology. (Ptolemy, for instance, had treated each planet separately.) Copernicus's system was taught in some universities in the 1500s but had not permeated the academic world until approximately 1600. Some people, among whom John Donne and William Shakespeare were the most influential, feared Copernicus's theory, feeling that it destroyed hierarchal natural order which would in turn destroy social order and bring about chaos. Indeed, some people (such as Bruno), used Copernicus's theory to justify radical theological views.Before Copernicus formulated his theory of the solar system, astronomy in Europe had stagnated. After the Almagest had been translated into Latin, European astronomers such as the Austrian mathematician Georg von Peurbach and the German astronomer Regiomontanus proposed no new theories, attempting instead to refine the flawed system already laid out by Ptolemy. The astronomy textbook used for teaching was still The Sphere, the same book that had been in use since the 1200s. Rather than formulating new theories, astronomers had busied themselves in "saving appearances," which consisted of trying to patch it up Ptolemy's cumbersome and inaccurate model. Copernicus, however, wiped the slate clean in a single broad stroke, and proposed a fundamentally different model in which the planets all circled the Sun in De Revolutionibus Orbium Coelestium. While radically different from Ptolemy's model, Copernicus's heliocentric theory was hardly an original idea. Similar theories had been proposed by Aristarchus as early as the third century B. C., and Nicholas de Cusa, a German scholar, had independently made the same assertion in a book he published in 1440. We know for a fact that Copernicus was well aware of Aristarchus's priority, since his original draft of De Revolutionibus has survived and features a passage referring to Aristarchus which Copernicus crossed out so as not to compromise the originality of his theory. In his belief that his theory was an accurate description of nature rather than just a mathematical model, Copernicus was therefore not truly revolutionary.What was a little revolutionary was that Copernicus worked out his system in full mathematical detail in De Revolutionibus. By doing this, Copernicus went a step beyond Ptolemy, de Cusa, and Aristarchus. Ptolemy had regarded his theory as simplya mathematic tool for calculation, having no physical basis. On the other side of the coin, de Cusa and Aristarchus had proposed a purely physical model, not endeavoring to mathematically investigate its consequences. Copernicus's most significant achievement was his combination of mathematics and physics, adapting physics to conform to his view of astronomical truth, with a good bit of cosmology thrown in for good measure.This achievement alone, however, hardly qualifies as a "revolution." Copernicus offered mathematics which were every bit as entangled as Ptolemy's, and because he retained circular orbits, his system required the inelegant inclusion of epicycles and their accompanying complication. To Copernicus's credit, although his description was not any simpler than Ptolemy's, it did require fewer basic assumptions. In addition, Copernicus's theory explained some problems, such as the reason that Mercury and V enus are only observed close to the Sun (their orbits always kept them nearer the sun than Earth ) and Mars's retrograde motion (the Earth, traveling in its smaller orbit, overtakes Mars, causing Mars to appear to move change direction and move backward relative to distant "fixed" stars). However, like Ptolemy, Copernicus could still not explain variations in the brightness of V enus. Copernicus was the first person in history to create a complete and general system, combining mathematics, physics, and cosmology. Y et, by themselves Copernicus's achievements, do not constitute a revolution. Copernicus had been motivated to this theory by Neoplatonic and Pythagorean considerations. His reasoning seems to have been predominantly motivated by aesthetics. In his view, equally spaced planets in circular orbits would represent harmony in the universe. But Copernicus had made no observations and stated no general laws. His mathematics could describe the motion of the planets, but his theory was of a very ad hoc nature.It took the accurate observational work of Brahe, the exhaustive mathematics of Kepler, and the mathematical genius of Newton to take Copernicus's theory as a starting point, and glean from it the underlying truths and laws governing celestial mechanics. Copernicus was an important player in the development of these theories, but his work would likely have likely remained in relative obscurity without theobservational work of Brahe. It would have been discarded by the wayside, until subsequent investigation brought it back to light. It is likely, in fact, that given Kepler would have independently arrived at a heliocentric theory just in the process of interpreting Brahe's data, and the scientific revolution would have been born anyway. To a large extent, then, Copernicus has achieved his prominent place in history through what amounted to a lucky, albeit shrewd, guess. It is therefore more appropriate to view Copernicus's achievements as a preliminary step towards scientific revolution, rather than a revolution in itself.。

相关文档
最新文档