2018年高考数学江苏专版二轮专题复习训练填空题综合仿真练(一)及答案
最新-江苏专用2018高考数学二轮复习 专题限实规范训练

专题四立体几何(时间∶120分钟满分∶160分)一、填空题(本大题共14小题,每小题5分,共70分)1.(2018·湖南)图中的三个直角三角形是一个体积为20 cm3的几何体的三视图,则h=________cm.2.已知m,n是不重合的直线,α,β是不重合的平面,有下列命题:①若α∩β=n,m∥n,则m∥α,m∥β;②若m⊥α,m⊥β,则α∥β;③若m∥α,m⊥n,则n⊥α;④若m⊥α,n⊂α,则m⊥n,其中所有真命题的序号是________.3.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为________.4.有一棱长为a的正方体骨架,其内放置一气球,使其充气且尽可能地大(仍保持为球的形状),则气球表面积的最大值为________.5.如图所示,用平行于AD且过BC的平面BCFE截长方体,得到几何体ABCD-A1EFD1,设AB=BC=5,B1E=4,其主视图的面积为6,则其左视图的面积为________.6.α、β是两个不同的平面,m、n是平面α及β之外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α,以其中三个论断作为条件,剩余的一个论断作为结论,写你认为正确的一个命题______________.7.已知平面α⊥β,α∩β=l,P是空间一点,且P到平面α、β的距离分别是1、2,则点P到l的距离为________.8.已知几何体的三视图(如图),则该几何体的体积为______________.9.已知各顶点都在同一个球面上的正四棱锥高为3,体积为6,则这个球的表面积是________.10.如图,设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别为B、D.若增加一个条件,就能推出BD⊥EF.现有:①AC⊥β;②AC与α,β的夹角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.那么上述几个条件中能成为增加条件的是________(填上你认为正确的所有答案序号).11.如图,在直三棱柱ABC-A1B1C1中,BB1=2,∠ABC=90°,E、F分别为AA1、C1B1的中点,沿棱柱的表面从E到F两点最短路径的长度是 .12.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为____________.13.已知直线a,b和平面α,β,试利用上述元素并借助于它们之间的位置关系,构造出一个判断α∥β的真命题:______________________________________________________.14.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为____________.二、解答题(本大题共6小题,共90分)15.(14分)(2018·安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB.16.(14分)如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=3,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E-PAD的体积;(2)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(3)证明:无论点E在边BC的何处,都有PE⊥AF.17.(14分)如图:四棱锥P-ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,AB=1,AD=2,E、F分别为PC和BD的中点.(1)证明:EF∥面PAD;(2)证明:面PDC⊥面PAD;(3)求四棱锥P-ABCD的体积.18.(16分)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA =PD ,求证:平面PQB ⊥平面PAD ;(2)点M 在线段PC 上,PM =tPC ,试确定实数t 的值,使得PA ∥平面MQB .19.(16分)四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥平面ABCD ,PA =AD =CD =2AB=2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定点N 的位置;若不 存在,请说明理由.20.(16分)(2018·北京)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .答案1.42.②④3.73πa 2 4.2πa 2 5.10 6.可填①③④⇒②与②③④⇒①中的一个7. 5 8.423 9. 16π 10.①③12.8 3 13. a ⊥α,a ⊥β⇒α∥β14.8 315.(1)证明 如图(1),设AC 与BD 交于点G ,则G 为AC 的中点,连接EG ,GH .又H 为BC 的中点,∴GH 綊12AB .又EF 綊12AB ,∴EF 綊GH .∴四边形EFHG 为平行四边形.∴EG ∥FH .而EG ⊂平面EDB ,∴FH ∥平面EDB .(2)证明 由四边形ABCD 为正方形,有AB ⊥BC . 图(1)又EF ∥AB ,∴EF ⊥BC .而EF ⊥FB ,∴EF ⊥平面BFC ,∴EF ⊥FH ,∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC .∴FH ⊥平面ABCD .∴FH ⊥AC .又FH ∥EG ,∴AC ⊥EG .又AC ⊥BD ,EG ∩BD =G ,∴AC ⊥平面EDB .16.(1)解 三棱锥E -PAD 的体积V =13PA ·S △ADE =13PA ·(12·AD ·AB )=36. (2)解 当点E 为BC 的中点时,EF 与平面PAC 平行.∵在△PBC 中,E 、F 分别为BC 、PB 的中点,∴EF ∥PC ,又EF ⊄平面PAC ,PC ⊂平面PAC ,∴EF ∥平面PAC .(3)证明 ∵PA ⊥平面ABCD ,BE ⊂平面ABCD ,∴BE ⊥PA ,又BE ⊥AB ,AB ∩PA =A ,AB ,PA ⊂平面PAB ,∴BE ⊥平面PAB .又AF ⊂平面PAB ,∴AF ⊥BE .又PA =AB =1,点F 是PB 的中点,∴PB ⊥AF ,又∵PB ∩BE =B ,PB ,BE ⊂平面PBE ,∴AF ⊥平面PBE .∵PE ⊂平面PBE ,∴AF ⊥PE .17.(1)证明 如图,连接AC ,∵ABCD 为矩形且F 是BD 的中点,∴AC 必经过F ,又E 是PC 的中点,所以EF ∥AP ,∵EF 在面PAD 外,AP 在面PAD 内,∴EF ∥面PAD .(2)证明 ∵面PAD ⊥面ABCD ,CD ⊥AD ,面PAD ∩面ABCD =AD ,∴CD ⊥面PAD ,∴CD ⊥AP .∵AP ⊥PD ,PD 和CD 是相交直线,∴AP ⊥面PCD ,又AP 在面PAD 内,所以面PDC ⊥面PAD .(3)解 作PH ⊥AD 于H ,∵△PAD 为等腰直角三角形,∠APD =90°,AD =2,∴PH =12AD =1. 又面PAD ⊥面ABCD ,∴PH ⊥面ABCD ,即PH 为棱锥P -ABCD 的高.S ABCD =2×1=2.∴V P -ABCD =13×2×1=23. 18.(1)证明 底面ABCD 为菱形,∠BAD =60°,Q 为AD 的中点,所以AD ⊥QB ,又PA =PD ,则PQ ⊥AD ,所以AD ⊥平面PQB ,而AD ⊂面PAD ,∴平面PQB ⊥平面PAD .(2)解 连接AC ,交QB 于O 点,连接OM ,BM ,QM ,若使得PA ∥平面MQB ,则PA ∥OM ,∵PM =tPC ,∴AO =tAC ,在底面菱形ABCD 中,可得t =13.19.(1)证明 取PD 中点E ,连接EM 、AE ,∴EM 綊12CD ,而AB 綊12CD ,∴EM 綊AB .∴四边形ABME 是平行四边形.∴BM ∥AE .∵AE ⊂平面APD ,BM ⊄平面APD ,∴BM ∥平面PAD .(2)解析 ∵PA ⊥平面ABCD ,∴PA ⊥AB .而AB ⊥AD ,∴AB ⊥平面PAD ,∴AB ⊥PD .∵PA =AD ,E 是PD 的中点,∴PD ⊥AE .∴PD ⊥平面ABME .作MN ⊥BE ,交AE 于点N .∴MN ⊥平面PBD .易知△BME ∽△MEN .而BM =AE =2,EM =12CD =1,由EN EM =EM BM ,得EN =EM 2BM =12=22,∴AN =22.即点N 为AE 的中点.20.证明 (1)如图,设AC 与BD 交于点G .因为EF ∥AG ,且EF =1,AG =12AC =1,所以四边形AGEF 为平行四边形.所以AF ∥EG .因为EG ⊂平面BDE ,AF ⊄平面BDE ,所以AF ∥平面BDE . (2)连接FG .因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF. 所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.。
2018年江苏高考数学二轮复习:专项限时集训1与三角变换、平面向量综合的三角形问题有答案

专项限时集训(一)与三角变换、平面向量综合的三角形问题(对应学生用书第113页)(限时:60分钟)1.(本小题满分14分)(2015·江苏高考)在△ABC 中,已知AB =2,AC =3,A =60˚.(1)求BC 的长; (2)求sin 2C 的值.[解] (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知,AB sin C =BCsin A,所以sin C =AB BC ·sin A =2sin 60˚7=217.因为AB <BC ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277.因此sin 2C =2sin C ·cos C =2×217×277=437. 14分2.(本小题满分14分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. [解] (1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C . 可得cos C =12,所以C =π3.6分(2)由已知,12ab sin C =332.又C =π3,所以ab =6.10分由已知及余弦定理得a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7.14分3.(本小题满分14分)(江苏省南通市如东高中2017届高三上学期第二次调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos C =310.(1)若CA →·CB →=92,求△ABC 的面积;(2)设向量x =(2sin B ,-3),y =⎝⎛⎭⎪⎫cos 2B ,1-2sin 2B 2,且x ∥y ,求角B 的值.【导学号:56394091】[解] (1)根据题意,∵CB →·CA →=92,∴ab cos C =92,∴ab =15,又∵cos C =310,C ∈(0,π),sin C =9110.所以S △ABC =12ab sin C =3914.6分(2)根据题意,∵x ∥y ,∴2sin B ⎝ ⎛⎭⎪⎫1-2sin 2B 2-(-3)·cos 2B =0,即2sin B ⎝⎛⎭⎪⎫1-2sin 2B 2+3cos 2B =0,2sin B cos B +3cos 2B =0,即sin 2B +3cos 2B =0,显然cos 2B ≠0, 所以tan 2B =-3,10分 所以2B =2π3或5π3,即B =π3或5π6,因为cos C =310<32,所以C >π6,所以B =5π6(舍去),即B =π3.14分 4.(本小题满分16分)已知向量a =⎝ ⎛⎭⎪⎫k sin x 3,cos 2x 3,b =⎝ ⎛⎭⎪⎫cos x3,-k ,实数k 为大于零的常数,函数f (x )=a ·b ,x ∈R ,且函数f (x )的最大值为2-12. (1)求k 的值;(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若π2<A <π,f (A )=0,且a =210,求AB →·AC→的最小值.[解] (1)由已知f (x )=a ·b =⎝ ⎛⎭⎪⎫k sin x 3,cos 2x 3·⎝ ⎛⎭⎪⎫cos x3,-k=k sin x 3cos x 3-k cos 2x 3=12k sin 2x 3-k ·1+cos2x 32=k 2⎝ ⎛⎭⎪⎫sin 2x3-cos 2x 3-k 2=2k 2⎝ ⎛⎭⎪⎫22sin 2x 3-22cos 2x 3-k 2=2k 2sin ⎝ ⎛⎭⎪⎫2x 3-π4-k 2. 5分因为x ∈R ,所以f (x )的最大值为2-k2=2-12, 则k =1.7分(2)由(1)知,f (x )=22sin ⎝ ⎛⎭⎪⎫2x 3-π4-12, 所以f (A )=22sin ⎝ ⎛⎭⎪⎫2A 3-π4-12=0, 化简得sin ⎝⎛⎭⎪⎫2A 3-π4=22.9分因为π2<A <π,所以π12<2A 3-π4<5π12.则2A 3-π4=π4,解得A =3π4. 因为cos A =-22=b 2+c 2-a 22bc =b 2+c 2-402bc ,所以b 2+c 2+2bc =40,则b 2+c 2+2bc =40≥2bc +2bc , 所以bc ≤402+2=20(2-2).14分则AB →·AC →=|AB →||AC →|cos 3π4=-22bc ≥20(1-2).所以AB →·AC →的最小值为20(1-2).16分5.(本小题满分16分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a cos B .(1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.[解] (1)证明:由正弦定理得sin B +sin C =2sin A cos B , 故2sin A cos B =sin B +sin(A +B ) =sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π, 所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . 8分(2)由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B .因为sin B ≠0,所以sin C =cos B . 12分又B ,C ∈(0,π),所以C =π2±B . 当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.16分6.(本小题满分16分)(江苏省苏州市2017届高三上学期期中)如图2,有一块平行四边形绿地ABCD ,经测量BC =2百米,CD =1百米,∠BCD =120°,拟过线段BC 上一点E 设计一条直路EF (点F 在四边形ABCD 的边上,不计路的宽度),将绿地分为面积之比为1∶3的左右两部分,分别种植不同的花卉,设EC =x 百米,EF =y 百米.图2(1)当点F 与点D 重合时,试确定点E 的位置; (2)试求x 的值,使路EF 的长度y 最短.[解] (1)∵S 平行四边形ABCD =2×12×1×2sin 120°=3,当点F 与点D 重合时,由已知S △CDE =14S 平行四边形ABCD =34,又∵S △CDE =12CE ·CD ·sin 120°=34x =34⇒x =1,E 是BC 的中点.6分(2)①当点F 在CD 上,即1≤x ≤2时,利用面积关系可得CF =1x,再由余弦定理可得y =x 2+1x2+1≥3;当且仅当x =1时取等号.②当点F 在DA 上时,即0≤x <1时,利用面积关系可得DF =1-x ,10分(ⅰ)当CE <DF 时,过E 作EG ∥CD 交DA 于G (图略),在△EGF 中,EG =1,GF =1-2x ,∠EGF =60°, 利用余弦定理得y =4x 2-2x +1.(ⅱ)同理当CE ≥DF ,过E 作EG ∥CD 交DA 于G (图略),在△EGF 中,EG =1,GF =2x -1,∠EGF =120°, 利用余弦定理得y =4x 2-2x +1.由(ⅰ)、(ⅱ)可得y =4x 2-2x +1,0≤x <1, ∴y =4x 2-2x +1=4⎝ ⎛⎭⎪⎫x -142+34, ∵0≤x <1,∴y min =32,当且仅当x =14时取等号, 由①②可知当x =14时,路EF 的长度最短为32.16分。
2018年高考数学江苏专版三维二轮专题复习训练:14个填空题专项强化练(二) 函数的概念与性质

14个填空题专项强化练(二) 函数的概念与性质A 组——题型分类练 题型一 函数的基本概念1.函数f (x )=1-x +lg(x +2)的定义域为________.解析:要使f (x )有意义,则⎩⎪⎨⎪⎧1-x ≥0,x +2>0,解得-2<x ≤1.答案:(-2,1]2.函数y =1-x 2-2的值域为________. 解析:因为1-x 2≥0,且1-x 2≤1,所以-2≤1-x 2-2≤-1.所以所求函数的值域是[-2,-1]. 答案:[-2,-1]3.已知函数f (x )的定义域为实数集R ,∀x ∈R ,f (x -90)=⎩⎪⎨⎪⎧lg x ,x >0,-x ,x ≤0,则f (10)-f (-100)的值为________.解析:因为f (10)=f (100-90)=lg 100=2,f (-100)=f (-10-90)=-(-10)=10, 所以f (10)-f (-100)=2-10=-8. 答案:-84.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,-x ,x >1.若f (x )=2,则x =________.解析:依题意得当x ≤1时,3x =2,所以x =log 32;当x >1时,-x =2,x =-2(舍去).故x =log 32. 答案:log 325.下列函数中,满足f (2x )=2f (x )的序号是________. ①f (x )=|x |;②f (x )=x -|x |; ③f (x )=x +1;④f (x )=-x .解析:对于①,f (2x )=|2x |=2|x |=2f (x );对于②,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于③,f (2x )=2x +1=2f (x )-1≠2f (x ).对于④,f (2x )=-2x =2(-x )=2f (x ).答案:①②④题型二 函数的单调性与最值1.已知函数f (x )=log 5(x 2-3x -4),则该函数的单调递增区间为________. 解析:由题意x 2-3x -4>0,则x >4或x <-1, 令y =x 2-3x -4,则其图象的对称轴为x =32,∴y =x 2-3x -4的单调递增区间为(4,+∞).单调递减区间为(-∞,-1),由复合函数的单调性知f (x )的单调递增区间为(4,+∞). 答案:(4,+∞) 2.函数f (x )=11-x (1-x )的最大值是________.解析:1-x (1-x )=x 2-x +1=⎝⎛⎭⎫x -122+34≥34.因此,有0<11-x (1-x )≤43,所以f (x )的最大值为43.答案:433.已知函数f (x )是定义在R 上的奇函数,且对任意互异的实数x 1,x 2,均有(x 1-x 2)[f (x 1)-f (x 2)]<0成立,则使得不等式f (t 2-3)+f (2t )<0成立的实数t 的取值范围为____________.解析:因为对任意互异的实数x 1,x 2,均有(x 1-x 2)·[f (x 1)-f (x 2)]<0成立,所以函数f (x )在定义域R 上单调递减,又f (x )为奇函数,故不等式f (t 2-3)+f (2t )<0可化为f (t 2-3)<f (-2t ),结合单调性可知,t 2-3>-2t ,即t 2+2t -3>0,解得t <-3或t >1.答案:(-∞,-3)∪(1,+∞) 题型三 函数的奇偶性与周期性1.若f (x )=12x -1+a 是奇函数,则a =________.解析:因为f (x )为奇函数,所以f (-x )=-f (x ),即12-x -1+a =-12x -1-a ,化简得2a =1,解得a =12.答案:122.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=________. 解析:由f (x )是R 上周期为5的奇函数,知f (3)=f (-2)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1,所以f (3)-f (4)=-1.答案:-13.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R)是偶函数,且它的值域为(-∞,2],则该函数的解析式f (x )=________.解析:由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:-2x2+24.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-4x,则不等式f(x)>x 的解集为________.解析:若x<0,则-x>0,∵当x>0时,f(x)=x2-4x,∴当-x>0时,f(-x)=x2+4x.∵f(x)是定义在R上的奇函数,∴f(-x)=x2+4x=-f(x),则f(x)=-x2-4x,x<0,当x>0时,不等式f(x)>x等价为x2-4x>x,即x2-5x>0,得x>5或x<0,此时x>5,当x<0时,不等式f(x)>x等价为-x2-4x>x,即x2+5x<0,得-5<x<0,当x=0时,不等式f(x)>x等价为0>0不成立,综上,不等式的解为x>5或-5<x<0,故不等式的解集为(-5,0)∪(5,+∞).答案:(-5,0)∪(5,+∞)B组——高考提速练1.已知集合A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁R B)=________.解析:∵A={x|-1≤x≤1},B={x|x2-2x<0}={x|0<x<2},∴A∪(∁R B)=(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)2.函数f (x )=2xx +1在[1,2]内的最大值和最小值分别是________.解析:f (x )=2(x +1)-2x +1=2-2x +1,故f (x )在(-1,+∞)上为增函数,所以f (x )在[1,2]上的最大值为f (2)=43,最小值为f (1)=1.答案:4313.设函数f (x )=x 3cos x +1,若f (a )=11,则f (-a )=________.解析:观察可知,y =x 3cos x 为奇函数,且f (a )=a 3cos a +1=11,故a 3cos a =10,则f (-a )=-a 3cos a +1=-10+1=-9.答案:-94.已知一个函数的解析式为y =x 2,它的值域为{1,4},这样的函数有________个. 解析:列举法:定义域可能是{1,2},{-1,2},{1,-2},{-1,-2},{1,-2,2},{-1,-2,2},{-1,1,2},{-1,1,-2},{-2,-1,1,2},故共有9个这样的函数.答案:95.已知函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上为增函数,那么f (2)的取值范围是________.解析:因为函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.答案:[7,+∞)6.定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈(1,2],当x ∈[-2,1]时,f (x )∈[-4,-1]; 当x ∈(1,2]时,f (x )∈(-1,6]. 故当x ∈[-2,2]时,f (x )∈[-4,6]. 答案:[-4,6]7.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=________. 解析:由题意知2f (x )-f (-x )=3x +1.①将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1. 答案:x +18.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x >0,0,x =0,2x -1,x <0,则不等式f (x 2-2)+f (x )<0的解集为__________.解析:函数f (x )=⎩⎪⎨⎪⎧2x +1,x >0,0,x =0,2x -1,x <0的图象如图所示,∴f (x )是定义域为R 的奇函数也是增函数,∴不等式f (x 2-2)+f (x )<0⇔ f (x 2-2)<f (-x )⇔x 2-2<-x ,解得-2<x <1, ∴原不等式的解集为(-2,1). 答案:(-2,1)9.定义在R 上的奇函数f (x )满足当x ≥0时,f (x )=log 2(2+x )+(a -1)x +b (a ,b 为常数),若f (2)=-1,则f (-6)=________.解析:由题意可得f (0)=1+b =0,解得b =-1.又f (2)=2+2(a -1)+b =2a -1=-1,解得a =0,所以f (x )=log 2(2+x )-x -1(x ≥0).又由奇函数的定义可得f (-6)=-f (6)=-(3-6-1)=4.答案:410.设函数y =f (x )在R 上有定义.对于给定的正数M ,定义函数f M (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)=________.解析:由题意得f M (x )=⎩⎪⎨⎪⎧2-x 2,x ≤-1或x ≥1,1,-1<x <1,故f M (0)=1. 答案:111.已知奇函数f (x )的图象关于直线x =-2对称,当x ∈[0,2]时,f (x )=2x ,则f (-9)=________.解析:∵f (x )的图象关于直线x =-2对称, ∴f (-4-x )=f (x ).∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (-4-x )=-f (-x ),即-f (-4+x )=f (x ),故f (x -8)=f [(x -4)-4]=-f (x -4)=f (x ),进而f (x +8)=f (x ).∴f (x )是以8为周期的周期函数. ∴f (-9)=f (-1)=-f (1)=-2. 答案:-212.已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=2x -2,则不等式f (x -1)≤2的解集是________.解析:法一:由题意可得f (x )=⎩⎪⎨⎪⎧2x -2,x ≥0,2-x -2,x <0,则不等式f (x -1)≤2⇔⎩⎪⎨⎪⎧x -1≥0,2x -1-2≤2或⎩⎪⎨⎪⎧x -1<0,2-x +1-2≤2,解得1≤x ≤3或-1≤x <1,故不等式f (x -1)≤2的解集是[-1,3].法二:当x ≥0时,f (x )=2x -2在[0,+∞)上单调递增,且f (2)=2.又函数f (x )是偶函数,则f (x -1)≤2⇔f (|x -1|)≤f (2)⇔|x -1|≤2⇔-2≤x -1≤2,解得-1≤x ≤3,故不等式f (x -1)≤2的解集为[-1,3].答案:[-1,3]13.已知函数f (x )=x 2-2|x |+4的定义域为[a ,b ],其中a <b ,值域[3a,3b ],则满足条件的数组(a ,b )为____________.解析:因为f (x )=x 2-2|x |+4=(|x |-1)2+3≥3,所以3a ≥3⇒a ≥1,从而f (b )=b 2-2b +4=3b ⇒b =1(舍去)或b =4;f (a )=a 2-2a +4=3a ⇒a =1或a =4(舍去).即满足条件的数组(a ,b )为(1,4).答案:(1,4)14.设函数y =⎩⎪⎨⎪⎧-x 3+x 2,x <e ,a ln x ,x ≥e 的图象上存在两点P ,Q ,使得△POQ 是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是________.解析:由题意不妨设P (x ,y 1),Q (-x ,y 2),其中x >0.因为OP ⊥OQ ,所以y 1x ·y 2-x =-1,则方程y 1y 2=x 2有解.当0<x <e 时,(-x 3+x 2)(x 3+x 2)=x 2,即(x 2)2-x 2+1=0,该方程无实数解;当x ≥e 时,a ln x ·(x 3+x 2)=x 2,易知a ≠0,则ln x ·(x +1)=1a .设函数y =(x +1)ln x ,该函数在区间[e ,+∞)上为增函数,所以y ∈[e +1,+∞),故1a ∈[e +1,+∞),得a ∈⎝ ⎛⎦⎥⎤0,1e +1.综上,实数a 的取值范围是⎝ ⎛⎦⎥⎤0,1e +1.答案:⎝⎛⎦⎤0,1e +1。
江苏专版2018年高考数学二轮复习14个填空题专项强化练十空间几何体

14个填空题专项强化练(十) 空间几何体A 组——题型分类练题型一 平面及其基本性质1.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).解析:若两直线为异面直线,则两直线无公共点,反之不一定成立. 答案:充分不必要2.设a ,b ,c 是空间中的三条直线,下面给出四个命题: ①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ∥c ;③若a 与b 相交,b 与c 相交,则a 与c 相交;④若a ⊂平面α,b ⊂平面β,则a ,b 一定是异面直线. 上述命题中正确的命题是________(写出所有正确命题的序号).解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行或异面,故②错;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③错;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④错.答案:①题型二 空间中的平行与垂直1.给出下列条件:①l ∥α;②l 与α至少有一个公共点;③l 与α至多有一个公共点.能确定直线l 在平面α外的条件的序号为________.解析:直线l 在平面α外指:l ∥α或直线l 与平面α仅有一个交点. 答案:①③2.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =AN ND,则直线MN 与平面BDC 的位置关系是________.解析:因为AM MB =AN ND,所以MN ∥BD , 又MN ⊄平面BCD ,BD ⊂平面BCD , 所以MN ∥平面BDC . 答案:平行3.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的序号是________.①若α⊥γ,α⊥β,则γ∥β ②若m ∥n ,m ⊂α,n ⊂β,则α∥β③若m∥n,m⊥α,n⊥β,则α∥β④若m∥n,m∥α,则n∥α解析:垂直于同一个平面的两个平面平行或相交,所以①错误;两个平面内的两条直线平行,这两个平面不一定平行,所以②错误;两个平面同时垂直于两条平行直线,这两个平面平行,所以③正确;两条平行直线中的一条平行于一个平面,另一条不一定平行于该平面,所以④错误.答案:③4.α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是________(写出所有正确命题的序号).①若α∥β,m⊂α,则m∥β;②若m∥α,n⊂α,则m∥n;③若α⊥β,α∩β=n,m⊥n,则m⊥β;④若n⊥α,n⊥β,m⊥α,则m⊥β.解析:在①中,若α∥β,m⊂α,则由面面平行的性质定理得m∥β,故①正确;在②中,若m∥α,n⊂α,则m∥n或m与n异面,故②错误;在③中,若α⊥β,α∩β=n,m⊥n,则m与β相交、平行或m⊂β,故③错误;在④中,若n⊥α,n⊥β,则α∥β.又m⊥α,所以m⊥β,故④正确.答案:①④5.如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.解析:①AE⊂平面PAC,BC⊥AC,BC⊥PA,AC∩PA=A,AC⊂平面PAC,PA⊂平面PAC⇒BC⊥平面PAC⇒AE⊥BC,故①正确;②AE⊥PB,AF⊥PB,AE∩AF=A,AE⊂平面AEF,AF⊂平面AEF⇒PB⊥平面AEF⇒EF⊥PB,故②正确;③若AF⊥BC⇒AF⊥平面PBC,则AF∥AE与已知矛盾,故③错误,由①可知④正确.答案:①②④题型三空间几何体的表面积和体积1.正六棱柱的高为6,底面边长为4,则它的表面积为________.解析:S底=6×34×42=243,S侧=6×4×6=144,所以S表=S侧+2S底=144+483=48(3+3).答案:48(3+3)2.已知正四棱锥的底面边长是2,侧棱长是3,则该正四棱锥的体积为________. 解析:如图,在正四棱锥P ABCD 中,AB =2,PA =3, 设正四棱锥的高为PO ,连结AO ,则AO =12AC = 2.在直角三角形POA 中,PO =PA 2-AO 2=1. 所以V P ABCD =13·S 四边形ABCD ·PO =13×4×1=43.答案:433.若圆锥底面半径为2,高为5,则其侧面积为________.解析:因为圆锥的底面半径为2,高为5,所以母线长为l =4+5=3,所以圆锥的侧面积为πrl =π×2×3=6π.答案:6π4.如图,在三棱柱ABC A 1B 1C 1中,AB 1=BB 1=BA =BC =2,∠B 1BC =90°,D 为AC 的中点,AB ⊥B 1D ,则三棱锥A 1B 1AD 的体积为________.解析:取AB 的中点O ,连结DO ,B 1O ,因为BB 1=AB 1,所以OB 1⊥AB ,又AB ⊥B 1D ,OB 1∩B 1D =B 1,所以AB ⊥平面B 1OD ,因为OD ⊂平面B 1OD ,所以AB ⊥OD ,由已知BC ⊥BB 1,又OD ∥BC ,所以OD ⊥BB 1,因为AB ∩BB 1=B ,所以OD ⊥平面ABB 1A 1,又O ,D 分别为AB ,AC 的中点,BC =2,所以OD =12BC =1,所以VA 1B 1AD =VD B 1AA 1=13×34×4×1=33. 答案:335.如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上,当∠APC 最大时,三棱锥P ABC 的体积为________.解析:连结BD 交AC 于点O ,连结PO ,则∠APC =2∠APO , ∵tan ∠APO =AO PO,∴当PO 最小时,∠APO 最大, 即PO ⊥BD 1时,∠APO 最大.如图,作PE ⊥BD 于点E ,此时PB =13BD 1,∴三棱锥P ABC 的高为点P 到平面ABCD 的距离PE =13,∴三棱锥P ABC 的体积V =13S △ABC·PE =13×12×13=118.答案:118B 组——高考提速练1.如图为正方体表面的一种展开图,则图中的四条线段AB ,CD ,EF ,GH 在原正方体中互为异面的对数为________.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB ,CD ,EF 和GH 在原正方体中,显然AB 与CD ,EF 与GH ,AB 与GH 都是异面直线,而AB 与EF 相交,CD 与GH 相交,CD 与EF 平行.故互为异面的直线有且只有3对.答案:32.设b ,c 表示两条直线,α,β表示两个平面,现给出下列命题: ①若b ⊂α,c ∥α,则b ∥c ; ②若b ⊂α,b ∥c ,则c ∥α; ③若c ∥α,α⊥β,则c ⊥β; ④若c ∥α,c ⊥β,则α⊥β.其中正确的命题是________.(写出所有正确命题的序号)解析:①b 和c 可能平行或异面,故①错;②可能平行或c ⊂α,故②错;③可能c ⊥β,c ∥β,c ⊂β,故③错;④根据面面垂直判定α⊥β,故④正确.答案:④3.已知高与底面半径相等的圆锥的体积为8π3,其侧面积与高为22的圆柱OO 1的侧面积相等,则圆柱OO 1的体积为________.解析:设圆锥的底面半径为r ,圆柱OO 1的底面半径为R ,因为高与底面半径相等的圆锥的体积为8π3,所以13πr 2·r =8π3,所以r =2.又圆锥的侧面积与高为22的圆柱OO 1的侧面积相等,所以π·r ·2r =2πR ·22,所以R =1,所以圆柱OO 1的体积为πR 2·22=22π.答案:22π4.已知正三棱柱的各条棱长均为a ,圆柱的底面直径和高均为b .若它们的体积相等,则a 3∶b 3的值为________.解析:由题意可得12·a 2·32·a =π⎝ ⎛⎭⎪⎫b 22·b ,即34a 3=14πb 3,则a 3b 3=π3=3π3. 答案:3π35.已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有______个.解析:若α,β换为直线a ,b ,则命题化为“a ∥b ,且a ⊥γ⇒b ⊥γ”,此命题为真命题;若α,γ换为直线a ,b ,则命题化为“a ∥β,且a ⊥b ⇒b ⊥β”,此命题为假命题;若β,γ换为直线a ,b ,则命题化为“a ∥α,且b ⊥α⇒a ⊥b ”,此命题为真命题.答案:26.如图,在正方体ABCD A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:因为EF ∥平面AB 1C ,EF ⊂平面ACD ,平面ACD ∩平面AB 1C =AC , 所以EF ∥AC ,又E 为AD 的中点,AB =2, 所以EF =12AC =12×22+22= 2.答案: 27.如图,在圆锥V O 中,O 为底面圆心,半径OA ⊥OB ,且OA =VO =1,则O 到平面VAB 的距离为________.解析:设O 到平面VAB 的距离为h ,由圆锥的几何性质可得VO ⊥平面OAB ,VO ⊥OA ,VO ⊥OB .在Rt △VOA 中,VA =VO 2+AO 2=2,在Rt △VOB中,VB =VO 2+BO 2=2,在Rt △OAB 中,AB =OA 2+OB 2=2,在△VAB 中,S △VAB =12×2×62=32.因为V V AOB =13S △AOB ×VO =16,V V AOB =13S △VAB ×h =16,所以h =33. 答案:338.已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥D ABC 的体积为________.解析:在平面DAC 内作DO ⊥AC ,垂足为点O ,因为平面DAC ⊥平面BAC ,且平面DAC ∩平面BAC =AC ,所以DO ⊥平面BAC ,因为AB =4,BC =3,所以DO =125,S △ABC =12×3×4=6,所以三棱锥D ABC 的体积为V =13×6×125=245.答案:2459.已知α,β是两个不同的平面,l ,m 是两条不同的直线,l ⊥α,m ⊂β.给出下列命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ; ③m ∥α⇒l ⊥β;④l ⊥β⇒m ∥α.其中正确的命题是________(填写所有正确命题的序号). 解析:①由l ⊥α,α∥β,得l ⊥β. 又因为m ⊂β,所以l ⊥m ,①正确; ②由l ⊥α,α⊥β,得l ∥β或l ⊂β,又因为m ⊂β,所以l 与m 或异面或平行或相交,②错误;③由l ⊥α,m ∥α,得l ⊥m .因为l 只垂直于β内的一条直线m ,所以不能确定l 是否垂直于β,③错误;④由l ⊥α,l ⊥β,得α∥β.因为m ⊂β,所以m ∥α,④正确. 答案:①④10.已知PD 垂直于正方形ABCD 所在的平面,连结PB ,PC ,PA ,AC ,BD ,则一定互相垂直的平面有________对.解析:如图,由于PD ⊥平面ABCD .故平面PAD ⊥平面ABCD ,平面PDB ⊥平面ABCD ,平面PDC ⊥平面ABCD ,平面PDA ⊥平面PDC ,平面PAC ⊥平面PDB ,平面PAB ⊥平面PAD ,平面PBC ⊥平面PDC ,共7对.答案:711.以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________.解析:设圆锥的底面半径为 r ,由题意圆锥底面半径等于圆锥的高, 可知圆锥的侧面积为: πr ·2r =2πr 2.圆柱的侧面积为:2πr ·r =2πr 2.所以圆锥的侧面积与圆柱的侧面积之比为: 2πr 2∶2πr 2= 22. 答案:2212.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水的体积除以盆口的面积;②一尺等于十寸)解析:作出圆台的轴截面如图,由题意知,BF =14(单位寸,下同),OC =6,OF =18,OG =9,即G 是OF 中点,所以GE 为梯形的中位线,所以GE =14+62=10,即积水的上底面半径为10.所以盆中积水的体积为13(100π+36π+100π×36π)×9=588π.盆口的面积为142π=196π,所以588π196π=3,即平地降雨量是3寸.答案:313.已知三棱锥P ABC 中,△ABC 为等边三角形,PA =PB =PC ,PA ⊥PB ,点P 到平面ABC 的距离为23,则三棱锥P ABC 的体积为________.解析:法一:因为△ABC 为等边三角形,PA =PB =PC ,所以△PAB ≌△PAC ≌△PBC .因为PA ⊥PB ,所以PA ⊥PC ,PB ⊥PC .设PA =PB =PC =a ,点P 在平面ABC 上的射影为O ,则AB =AC =BC =2a ,AO =63a .又点P 到平面ABC 的距离为23,所以PO =2 3.在Rt △POA 中,PO 2+OA 2=PA 2,即12+23a 2=a 2,解得a =6,所以三棱锥P ABC 的体积为13×34×(62)2×23=36.法二:设PA =PB =PC =a ,因为△ABC 为等边三角形,所以△PAB ≌△PAC ≌△PBC .因为PA ⊥PB ,所以PA ⊥PC ,PB ⊥PC ,以PA ,PB ,PC 为棱作正方体,如图所示,则PA 2+PB 2+PC 2=3a 2,故正方体的体对角线长为3a .又点P 到平面ABC 的距离为23×12×3a =23,解得a =6,所以三棱锥P ABC 的体积为13×12×6×6×6=36.答案:3614.如图,在四棱锥P ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,PD =AD =2,M ,N 均为线段AC 上的点.若∠MBN =30°,则三棱锥M PNB的体积的最小值为________.解析:易知V M PNB =V P MNB=13PD ·S △MNB =13PD ·12MN ·h ,h 为点B 到AC 的距离,又h =12BD =2,所以V M PNB =13×2×12×MN ×2=23MN ,显然当△MNB 为等腰三角形时,MN 取得最小值,此时MN =22tan 15°=42-26,从而可得(V M PNB )min =23×(42-26)=8-433. 答案:8-433。
2018年高考数学江苏专版三维二轮专题复习训练:14个填空题综合仿真练(二) Word版含解析

14个填空题综合仿真练(二)1.已知全集U ={1,2,3,4},集合A ={1,4},B ={3,4},则∁U (A ∪B )=_________. 解析:因为A ={1,4},B ={3,4},所以A ∪B ={1,3,4},因为全集U ={1,2,3,4},所以∁U (A ∪B )={2}.答案:{2}2.已知复数z =1-i 2i,其中i 为虚数单位,则复数z 的虚部为________. 解析:z =1-i 2i =i (1-i )2i 2=1+i -2=-12-12i.所以z 的虚部为-12. 答案:-123.某校有足球、篮球、排球三个兴趣小组,共有成员120人,其中足球、篮球、排球的成员分别有40人、60人、20人.现用分层抽样的方法从这三个兴趣小组中抽取24人来调查活动开展情况,则在足球兴趣小组中应抽取________人.解析:设足球兴趣小组中抽取人数为n ,则n 24=40120,所以n =8. 答案:84.如图是一个算法的流程图,则输出的n 的值为________.解析:由题意,n =1,a =1,第1次循环,a =5,n =3,满足a <16,第2次循环,a =17,n =5,不满足a <16,退出循环,输出的n 的值为5.答案:55.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的概率为__________.解析:从集合{1,2,3,4}中任取两个不同的数,基本事件总数n =6,这两个数的和为3的倍数包含的基本事件有:(1,2),(2,4),共2个,故这两个数的和为3的倍数的概率P =26=13. 答案:136.设x ∈R ,则p :“log 2x <1”是q :“x 2-x -2<0”的__________条件.(填“充分不必要”“必要不充分”“既不充分也不必要”“充要”)解析:由log 2x <1,得0<x <2,由x 2-x -2<0可得-1<x <2,所以p ⇒q ,q ⇒/p ,故p 是q 的充分不必要条件.答案:充分不必要7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点到渐近线的距离等于实轴长,则双曲线C 的离心率为________.解析:由题意,双曲线C 的左焦点到渐近线的距离d =bc a 2+b 2=b ,则b =2a ,因此双曲线C 的离心率e =c a =1+⎝⎛⎭⎫b a 2= 5. 答案: 58.记公比为正数的等比数列{a n }的前n 项和为S n .若a 1=1,S 4-5S 2=0,则S 5的值为________.解析:由题意q ≠1,设等比数列的公比为q (q ≠1),由a 1=1,S 4-5S 2=0,得1-q 41-q-5(1+q )=0, 化简得1+q 2=5,解得q =±2.∵数列{a n }的各项均为正数,∴q =2.故S 5=1-251-2=31. 答案:319.如图所示,在棱长为4的正方体ABCD -A1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BB 1C 1C 的体积为________. 解析:因为四棱锥P -BB 1C 1C 的底面积为16,高PB 1=1,所以VP -BB 1C 1C =13×16×1=163. 答案:163 10.已知函数f (x )=sin ⎝⎛⎭⎫2x +π3(0≤x <π),且f (α)=f (β)=13(α≠β),则α+β=__________. 解析:由0≤x <π,知π3≤2x +π3<7π3,因为f (α)=f (β)=13<32,所以⎝⎛⎭⎫2α+π3+⎝⎛⎭⎫2β+π3=2×3π2,所以α+β=7π6. 答案:7π611.已知函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥0,-x +1,x <0.若函数y =f (f (x ))-k 有3个不同的零点,则实数k 的取值范围是________.解析:当x <0时,-x >0,故-x +1>0,所以f (-x +1)=x 2-2x +1-1=x 2-2x ,当x ≥0时,f (x )=x 2-1,当0≤x <1时,x 2-1<0,故f (x 2-1)=-x 2+2,当x ≥1时,x 2-1≥0,故f (x 2-1)=x 4-2x 2.故f (f (x ))=⎩⎪⎨⎪⎧ x 2-2x ,x <0,-x 2+2,0≤x <1,x 4-2x 2,x ≥1,作出函数f (f (x ))的图象如图所示,可知当1<k ≤2时,函数y =f (f (x ))-k 有3个不同的零点.答案:(1,2]12.已知△ABC 外接圆O 的半径为2,且AB ―→+AC ―→=2AO ―→,|AB ―→|=|AO ―→|,则CA ―→·CB―→=__________.解析:由AB ―→+AC ―→=2AO ―→,可得OB ―→+OC ―→=0,即BO ―→=OC ―→,所以圆心在BC 中点上,且AB ⊥AC .因为|AB ―→|=|AO ―→|=2,所以∠AOC =2π3,C =π6, 由正弦定理得AC sin 2π3=AO sin π6,故AC =23, 又BC =4,所以CA ―→·CB ―→=|CA ―→|·|CB ―→|·cos C =4×23×32=12. 答案:1213.设a ,b ,c 是三个正实数,且a (a +b +c )=bc ,则a b +c的最大值为__________. 解析:由a (a +b +c )=bc ,得1+b a +c a =b a ·c a ,设x =b a ,y =c a ,则x +y +1=xy ,a b +c=1x +y ,因为x +y +1=xy ≤⎝⎛⎭⎫x +y 22,所以x +y ≥2+22,所以a b +c 的最大值为2-12.答案:2-1214.设a 为实数,记函数f (x )=ax -ax 3⎝⎛⎭⎫x ∈⎣⎡⎦⎤12,1的图象为C .如果任何斜率不小于1的直线与C 都至多有一个公共点,则a 的取值范围是__________.解析:因为任何斜率不小于1的直线与C 都至多有一个公共点,所以f ′(x )≤1在x ∈⎣⎡⎦⎤12,1上恒成立.因为f ′(x )=a -3ax 2,所以3ax 2-a +1≥0在⎣⎡⎦⎤12,1上恒成立. 设g (t )=3at -a +1,t ∈⎣⎡⎦⎤14,1,只需⎩⎪⎨⎪⎧ g ⎝⎛⎭⎫14≥0,g (1)≥0,即⎩⎪⎨⎪⎧ 34a -a +1≥0,3a -a +1≥0,解得-12≤a ≤4. 答案:⎣⎡⎦⎤-12,4。
2018年高考数学江苏专版三维二轮专题复习训练:14个填空题专项强化练(十五) 推理与证明 含解析

14个填空题专项强化练(十五) 推理与证明A 组——题型分类练 题型一 合情推理1.已知不等式1+14<32,1+14+19<53,1+14+19+116<74,照此规律总结出第n 个不等式为________________________________.解析:由已知,三个不等式可以写成1+122<2×2-12,1+122+132<2×3-13,1+122+132+142<2×4-14,所以照此规律可得到第n 个不等式为1+122+132+…+1n 2+1(n +1)2<2(n +1)-1n +1=2n +1n +1.答案:1+122+132+…+1n 2+1(n +1)2<2n +1n +12.对于命题:若O 是线段AB 上一点,则有||OB ―→ ·OA ―→+||OA ―→·OB ―→=0. 将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA ―→+S △OCA ·OB ―→+S △OBA ·OC ―→=0.将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________________________________________________________________________.解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知:若O 为四面体ABCD 内一点,则有V O BCD ·OA ―→+V OACD·OB ―→+V O ABD·OC ―→+V O ABC·OD ―→=0. 答案:V OBCD ·OA ―→+V O ACD·OB ―→+V O ABD·OC ―→+V O ABC·OD ―→=0 3.观察下列等式:21+2=4,21×2=4;32+3=92,32×3=92;43+4=163,43×4=163;…,根据这些等式反映的结果,可以得出一个关于自然数n 的等式,这个等式可以表示为________________________.解析:由归纳推理得n +1n +(n +1)=n +1+(n 2+n )n =(n +1)2n , n +1n ×(n +1)=(n +1)2n ,所以得出结论n +1n +(n +1)=n +1n ×(n +1)(n ∈N *).答案:n +1n +(n +1)=n +1n ×(n +1)(n ∈N *)4.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为xx 0+yy 0=r 2.类比上述性质,可以得到过椭圆x 2a 2+y 2b2=1上一点P (x 0,y 0)的切线方程为________.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1. 答案:x 0x a 2+y 0yb 2=1 题型二 演绎推理1.已知函数f (x )=x 3+x ,对于等差数列{a n }满足:f (a 2-1)=2,f (a 2 016-3)=-2,S n是其前n 项和,则S 2 017=________.解析:因为函数f (x )=x 3+x 为奇函数,且在R 上单调递增,又因为f (a 2-1)=2,f (a 2 016-3)=-2,则a 2-1=-(a 2 016-3),即a 2+a 2 016=4,即a 1+a 2 017=4.则S 2 017=2 0172(a 1+a 2 017)=4 034. 答案:4 0342.如图,在平面直角坐标系xOy 中,分别在x 轴与直线y =33(x +1)上从左向右依次取点A k ,B k ,k =1,2,…,其中A 1是坐标原点,使△A k B k A k +1都是等边三角形,则△A 10B 10A 11的边长是________.解析:因为△A k B k B k -1是一个内角为π3的直角三角形,易得A 1A 2=1,且A k B k A k B k -1=2,所以△A 10B 10A 11的边长是以A 1A 2=1为首项,2为公比的等比数列的第10项,所以△A 10B 10A 11的边长是1×29=512.答案:5123.如图,在平面斜坐标系xOy 中,∠xOy =θ,平面上任意一点P关于斜坐标系的斜坐标这样定义:若OP ―→=xe 1+ye 2(其中e 1,e 2分别是x 轴,y 轴正方向上的单位向量),则点P 的斜坐标为(x ,y ),向量OP ―→的斜坐标为(x ,y ).给出以下结论:①若θ=60°,P (2,-1),则|OP ―→|=3;②若P (x 1,y 1),Q (x 2,y 2),则OP ―→+OQ ―→=(x 1+x 2,y 1+y 2); ③若OP ―→=(x 1,y 1),OQ ―→=(x 2,y 2),则OP ―→·OQ ―→=x 1x 2+y 1y 2;④若θ=60°,以O 为圆心、1为半径的圆的斜坐标方程为x 2+y 2+xy -1=0. 其中所有正确结论的序号是________.解析:对于①,OP 是两邻边长分别为2,1,且一内角为60°的平行四边形较短的对角线,解三角形可知|OP ―→|=3,故①正确;对于②,若P (x 1,y 1),Q (x 2,y 2),则OP ―→+OQ ―→=(x 1+x 2,y 1+y 2),故②正确;对于③,OP ―→=(x 1,y 1),OQ ―→=(x 2,y 2),所以OP ―→·OQ ―→=(x 1e 1+y 1e 2)·(x 2e 1+y 2e 2),因为e 1·e 2≠0,所以OP ―→·OQ ―→≠x 1x 2+y 1y 2,故③错误;对于④,设圆O 上任意一点为P (x ,y ),因为OP =1,所以(xe 1+ye 2)2=1,所以x 2+y 2+xy -1=0,故④正确.故填①②④.答案:①②④4.在△ABC 中,已知AB =2,AC 2-BC 2=6,则tan C 的最大值是________. 解析:法一:以AB 所在直线为x 轴,线段AB 的中点为原点,建立平面直角坐标系如图所示,则A (-1,0),B (1,0).设点C 坐标为(x ,y )(y >0),由AC 2-BC 2=6,得(x +1)2+y 2-[](x -1)2+y 2=6,即x =32,所以C ⎝⎛⎭⎫32,y .过C 作CD ⊥AB ,垂足为D ,所以tan ∠ACD =52y, tan ∠BCD =12y ,所以tan C =tan ∠ACB =tan(∠ACD -∠BCD )=52y -12y 1+54y 2=2y +54y ≤255,当且仅当“y =54y ,即y =52”时取等号,所以tan C 的最大值为255.法二:设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则c =2,b 2-a 2=6,所以2b 2-2a 2=3c 2,由余弦定理得,cos C =a 2+b 2-c22ab =a 2+b 2-23(b 2-a 2)2ab=5a 2+b 26ab ≥53,故tan C ≤255.且当a =62,b =302,c =2时,tan C =255. 所以tan C 的最大值为255. 答案:255题型三 直接证明与间接证明1.用反证法证明命题:若a +b +c 为偶数,则“自然数a ,b ,c 恰有一个偶数”时应反设为____________________________.解析:“自然数a ,b ,c 中恰有一个偶数”的否定是“自然数a ,b ,c 都是奇数或至少有两个偶数”.答案:自然数a ,b ,c 中都是奇数或至少有两个偶数2.若0<a <1,0<b <1,且a ≠b ,则在a +b,2ab ,a 2+b 2和2ab 中最大的是________.解析:因为0<a <1,0<b <1,且a ≠b ,所以a +b >2ab ,a 2+b 2>2ab ,a +b -(a 2+b 2)=a (1-a )+b (1-b )>0,所以a +b 最大.答案:a +b3.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab ≥2成立的条件的序号是________.解析:要使b a +a b ≥2,只需b a >0且ab >0成立,即a ,b 不为0且同号即可,故①③④都能使b a +ab≥2成立.答案:①③④4.凸函数的性质定理:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f⎝⎛⎭⎫x 1+x 2+…+x n n ,已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.解析:因为f (x )=sin x 在区间(0,π)上是凸函数,且A ,B ,C ∈(0,π).所以f (A )+f (B )+f (C )3≤f ⎝⎛⎭⎫A +B +C 3=f ⎝⎛⎭⎫π3,即sin A +sin B +sin C ≤3sin π3=332,所以sin A +sin B +sin C 的最大值为332.答案:332B 组——高考提速练1.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是______________. 解析:因为P 2=2a +7+2a ·a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,所以P 2<Q 2,所以P <Q .答案:P <Q2.设a ,b 是两个实数,给出下列条件:①a +b >2;②a 2+b 2>2.其中能推出:“a ,b 中至少有一个大于1”的条件的是________(填序号).解析:在①中,假设a ,b 都不大于1,即a ≤1,b ≤1,则a +b ≤2与题干a +b >2矛盾,故假设不成立,所以①能推出:“a ,b 中至少有一个大于1”.在②中,若a =-2,b =-3,则a 2+b 2>2成立,故②不能推出:“a ,b 中至少有一个大于1” .答案:①3.将正整数1,2,3,4,…按如图所示的方式排成三角形数组,则第10行左数第10个数是________.解析:由三角形数组可推断出,第n 行共有2n -1项,且最后一项为n 2,所以第10行共有19项,最后一项为100,故左数第10个数是91.答案:91 4.定义运算:xy =⎩⎪⎨⎪⎧x ,xy ≥0,y ,xy <0,例如:=3,(-=4,则函数f (x )=x 2x-x 2)的最大值为________解析:由题意可得f (x )=x2x -x 2)=⎩⎪⎨⎪⎧x 2,0≤x ≤2,2x -x 2,x >2或x <0,当0≤x ≤2时,f (x )∈[0,4];当x >2或x <0时,f (x )∈(-∞,0).综上可得函数f (x )的最大值为4. 答案:45.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为____________.解析:由题意知,a n =n 2+1,b n =n ,所以c n =n 2+1-n =1n 2+1+n.显然,c n 随着n 的增大而减小,所以c n >c n +1.答案:c n >c n +1 6.已知:f (x )=x1-x,设f 1(x )=f (x ),f n (x )=f n -1[f n -1(x )](n >1且n ∈N *),则通过计算分析,猜想f n (x )(n ∈N *)的表达式为________________.解析:由f 1(x )=f (x )和f n (x )=f n -1[f n -1(x )](n >1且n ∈N *),得f 2(x )=f 1[f 1(x )]=x 1-x1-x 1-x =x 1-2x ,f 3(x )=f 2[f 2(x )]=x 1-2x 1-2x 1-2x=x 1-22x ,…,由此猜想f n (x )=x 1-2n -1x(n ∈N *). 答案:f n (x )=x 1-2n -1x(n ∈N *) 7.定义:如果一个列从第二项起,每一项与它的前一项的差都等于同一个常,那么这个列叫作等差列,这个常叫作等差列的公差.已知向量列{a n }是以a 1=(1,3)为首项,公差为d =(1,0)的等差向量列,若向量a n 与非零向量b n =(x n ,x n +1)(n ∈N *)垂直,则x 10x 1=________. 解析:易知a n =(1,3)+(n -1,0)=(n,3),因为向量a n 与非零向量b n =(x n ,x n +1)(n ∈N *)垂直,所以x n +1x n =-n 3,所以x 10x 1=x 2x 1·x 3x 2·x 4x 3·x 5x 4·x 6x 5·x 7x 6·x 8x 7·x 9x 8·x 10x 9=⎝⎛⎭⎫-13×⎝⎛⎭⎫-23×⎝⎛⎭⎫-33×⎝⎛⎭⎫-43×⎝⎛⎭⎫-53×⎝⎛⎭⎫-63×⎝⎛⎭⎫-73×⎝⎛⎭⎫-83×⎝⎛⎭⎫-93=-4 480243. 答案:-4 4802438.二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=43πr3.应用合情推理,若四维空间中,“超球”的三维测度V=8πr3,则其四维测度W=________.解析:在二维空间中,圆的二维测度(面积)S=πr2,则其导数S′=2πr,即为圆的一维测度(周长)l=2πr;在三维空间中,球的三维测度(体积)V=43πr3,则其导数V′=4πr2,即为球的二维测度(表面积)S=4πr2;应用合情推理,若四维空间中,“超球”的三维测度V =8πr3,则其四维测度W=2πr4.答案:2πr49.大数学家拉普拉斯曾经这样说过“数学本身赖以获得真理的重要手段就是归纳和类比”.事实上,数学中的许多重要定理和猜想都是通过归纳总结出来的,如欧拉公式:观察三棱锥、四棱锥、三棱柱、五棱柱等多面体,发现其顶点数V与面数F的和与棱数E相差2,即V+F-E=2,于是猜想任意凸多面体都具有这样的性质,后经过严格证明确实如此.利用上述思想,观察下列等式:1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……则第7个等式左端的和式的最后一个数字、右端的结果分别是________、________.解析:由1,4,7,10知,第7个等式左端的和式的最后一个数字为1+6×3=19;由12,32,52,72知,第7个等式右端的结果为132=169.答案:1916910.设二次函数f(x)=ax2+bx+c(a,b,c为常数)的导函数为f′(x).对任意x∈R,不等式f(x)≥f′(x)恒成立,则b2a2+c2的最大值为________.解析:∵f(x)=ax2+bx+c,∴f′(x)=2ax+b,∵对任意x∈R,不等式f(x)≥f′(x)恒成立,∴ax2+bx+c≥2ax+b恒成立,即ax2+(b-2a)x+(c-b)≥0恒成立,故Δ=(b-2a)2-4a(c-b)=b2+4a2-4ac≤0,且a>0,即b2≤4ac-4a2,∴4ac-4a2≥0,∴c≥a>0,∴ca-1≥0,故b2a 2+c 2≤4ac -4a 2a 2+c 2=4×c a -41+⎝⎛⎭⎫c a 2=4⎝⎛⎭⎫c a -1⎝⎛⎭⎫c a -12+2⎝⎛⎭⎫c a -1+2=4⎝⎛⎭⎫c a -1+2⎝⎛⎭⎫c a -1+2≤422+2=22-2. 当且仅当⎝⎛⎭⎫c a -12=2时等号成立,故b 2a 2+c 2的最大值为22-2. 答案:22-211.若数列{a n }满足:对任意的n ∈N *,只有有限个正整数m 使得a m <n 成立,记这样的m 的个数为(a n )*,则得到一个新数列{(a n )*}.例如,若数列{a n }是1,2,3,…,n ,则数列{(a n )*}是0,1,2,…,n -1,已知对任意的n ∈N *,a n =n 2,则(a 5)*=________,((a n )*)*=______.解析:因为a m <5,而a n =n 2,所以m =1,2,所以(a 5)*=2. 因为(a 1)*=0,(a 2)*=1,(a 3)*=1,(a 4)*=1,(a 5)*=2,(a 6)*=2,(a 7)*=2,(a 8)*=2,(a 9)*=2,(a 10)*=3,(a 11)*=3,(a 12)*=3,(a 13)*=3,(a 14)*=3,(a 15)*=3,(a 16)*=3, 所以((a 1)*)*=1,((a 2)*)*=4,((a 3)*)*=9,((a 4)*)*=16, 猜想((a n )*)*=n 2. 答案:2 n 212.如下图所示的数阵中,第10行第2个数字是________.1 12 12 13 14 13 14 17 17 14 15 111 111 111 15……解析:根据题中所给数据,找出每行第2个数字的规律为:从第2行起,每一行第2个数字的分母加上所在行数为下一行的第2个数字的分母,所以按照规律,依次往下推得知,第6行为116,第7行为122,第8行为129,第9行为137,第10行为146,所以答案为146.答案:14613.已知对任意的x ∈R,3a (sin x +cos x )+2b sin 2x ≤3(a ,b ∈R)恒成立,则当a +b 取得最小值时,a 的值是________.解析:令sin x +cos x =-12,则sin 2x =-34,代入得-32(a +b )≤3,即a +b ≥-2. 而当a +b =-2时,令sin x +cos x =t ,t ∈[-2, 2 ],代入并整理得-2bt 2+3(2+b )t +3+2b ≥0,对∀t ∈[-2, 2 ]恒成立. 所以Δ=9(2+b )2+8b (3+2b )≤0, 即(5b +6)2≤0, 从而b =-65,a =-45.而当a =-45,b =-65时,3a (sin x +cos x )+2b sin 2x =-125⎝⎛⎭⎫t +122+3≤3. 所以a +b 取得最小值-2,此时a =-45.答案:-4514.观察下列等式: 1+2+3+…+n =12n (n +1);1+3+6+…+12n (n +1)=16n (n +1)(n +2);1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)(n +3).可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=________. 解析:根据式子中的规律可知,等式右侧为15×4×3×2×1n (n +1)(n +2)(n +3)(n +4)=1120n (n +1)(n +2)(n +3)(n +4). 答案:1120n (n +1)(n +2)(n +3)(n +4)。
2018年高考数学江苏专版三维二轮专题复习教学案:专题一 三角 Word版含答案-数学备课大师【全免费】

江苏 新高考新高考中,对三角计算题的考查始终围绕着求角、求值问题,以和、差角公式的运用为主,可见三角式的恒等变换比三角函数的图象与性质更为重要.三角变换的基本解题规律是:寻找联系、消除差异.常有角变换、函数名称变换、次数变换等(简称为:变角、变名、变次).备考中要注意积累各种变换的方法与技巧,不断提高分析与解决问题的能力.三角考题的花样翻新在于条件变化,大致有三类:第一类是给出三角式值(见2014年三角解答题),第二类是给出在三角形中(见2011年、2015年、2016年三角解答题),第三类是给出向量(见2013年、2017年三角解答题).而2012年三角解答题则是二、三类的混合.第1课时三角函数(基础课)[常考题型突破]三角恒等变换[必备知识]1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)tan 2α=2tan α1-tan 2α.[题组练透]1.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α= ________.解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:752.已知f (x )=sin ⎝⎛⎭⎫x +π6,若sin α=35⎝⎛⎭⎫π2<α<π,则f ⎝⎛⎭⎫α+π12=________. 解析:∵sin α=35⎝⎛⎭⎫π2<α<π, ∴cos α=-45,∴f ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4=22(sin α+cos α)=22×⎝⎛⎭⎫35-45=-210. 答案:-2103.(2016·全国卷Ⅰ)已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________. 解析:由题意知sin ⎝⎛⎭⎫θ+π4=35,θ是第四象限角, 所以cos ⎝⎛⎭⎫θ+π4= 1-sin 2⎝⎛⎭⎫θ+π4=45. tan ⎝⎛⎭⎫θ-π4=tan ⎝⎛⎭⎫θ+π4-π2=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π4cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π4 =-cos ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫θ+π4=-45×53=-43.答案:-434.在△ABC 中,sin(C -A )=1,sin B =13,则sin A =________.解析:∵sin(C -A )=1,∴C -A =90°,即C =90°+A ,∵sin B =13,∴sin B =sin(A +C )=sin(90°+2A )=cos 2A =13,即1-2sin 2A =13,∴sin A =33.答案:33[方法归纳]三角恒等变换的“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等;(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等; (3)升次与降次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.三角函数的图象与解析式[必备知识]函数y =A sin(ωx +φ)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图象变换:y =sin x ――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). [题组练透]1.(2016·全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.解析:因为y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,所以把y =2sin ⎝⎛⎭⎫x +π3的图象至少向右平移2π3个单位长度可得y =2sin ⎝⎛⎭⎫x -π3的图象. 答案:2π32.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG (点G 是图象的最高点)是边长为2的等边三角形,则f (1)=________.解析:由题意得,A =3,T =4=2πω,ω=π2.又∵f (x )=A cos(ωx +φ)为奇函数,∴φ=π2+k π,k ∈Z ,取k =0,则φ=π2,∴f (x )=-3sin π2x ,∴f (1)=- 3.答案:- 33.(2017·天津高考改编)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,则ω=________,φ=________. 解析:∵f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0, ∴11π8-5π8=T4(2m +1),m ∈N , ∴T =3π2m +1,m ∈N ,∵f (x )的最小正周期大于2π,∴T =3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝⎛⎭⎫2x 3+φ. 由2sin ⎝⎛⎭⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z. 又|φ|<π,∴取k =0,得φ=π12. 答案:23 π124.设函数f (x )=2sin ⎝⎛⎭⎫π2x +π5,若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为______.解析:由f (x 1)≤f (x )≤f (x 2)对任意x ∈R 成立,知f (x 1),f (x 2)分别是函数f (x )的最小值和最大值.又要使|x 1-x 2|最小,∴|x 1-x 2|的最小值为f (x )的半个周期,即为2.答案:2 [方法归纳](1)已知函数y =A sin (ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点求A ,由函数的周期确定ω,由图象上的关键点确定φ.(2)对于函数图象的平移问题,一定要弄清楚是由哪个函数图象平移到哪个函数图象,这是判断移动方向的关键点,否则易混淆平移的方向,导致结果出错.三角函数的性质[必备知识]1.三角函数的单调区间y =sin x 的单调递增区间是⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z),单调递减区间是⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∈Z);y =cos x 的单调递增区间是[]2k π-π,2k π(k ∈Z),单调递减区间是[2k π,2k π+π](k ∈Z); y =tan x 的递增区间是⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z). 2.三角函数的奇偶性与对称性y =A sin(ωx +φ),当φ=k π(k ∈Z)时为奇函数;当φ=k π+π2(k ∈Z)时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z)求得.y =A cos(ωx +φ),当φ=k π+π2(k ∈Z)时为奇函数;当φ=k π(k ∈Z)时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z)求得.y =A tan(ωx +φ),当φ=k π(k ∈Z)时为奇函数. [题组练透]1.已知f (x )=2sin ⎝⎛⎭⎫2x +π3,则函数f (x )的最小正周期为________,f ⎝⎛⎭⎫π6=________. 解析:周期T =2π2=π,f ⎝⎛⎭⎫π6=2sin 2π3= 3. 答案:π32.(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 解析:依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1], 因此当cos x =32时,f (x )max =1. 答案:13.若函数f (x )=sin ⎝⎛⎭⎫ωx -π6(ω>0)的图象相邻两个对称中心之间的距离为π2,则f (x )在⎝⎛⎭⎫-π2,π2上的单调递增区间为________.解析:依题意知,f (x )=sin ⎝⎛⎭⎫ωx -π6的图象相邻两个对称中心之间的距离为π2,于是有T =2πω=2×π2=π,ω=2,所以f (x )=sin ⎝⎛⎭⎫2x -π6.当2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,即k π-π6≤x ≤k π+π3,k ∈Z 时,f (x )=sin ⎝⎛⎭⎫2x -π6单调递增.因此,f (x )=sin ⎝⎛⎭⎫2x -π6在⎝⎛⎭⎫-π2,π2上的单调递增区间为⎣⎡⎦⎤-π6,π3. 答案:⎣⎡⎦⎤-π6,π3 [方法归纳]三角函数的单调性、周期性及最值的求法 (1)三角函数单调性的求法求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间的一般思路:令ωx +φ=z ,则y =A sin z (或y =A cos z ),然后由复合函数的单调性求得. (2)三角函数周期性的求法函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.(3)三角函数最值(值域)的求法在求最值(值域)时,一般要先确定函数的定义域,然后结合三角函数性质可得函数f (x )的最值.正弦定理和余弦定理[必备知识]1.正弦定理及其变形在△ABC 中,a sin A =b sin B =csin C =2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,sin A=a2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等. 2.余弦定理及其变形在△ABC 中,a 2=b 2+c 2-2bc cos A . 变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc. 3.三角形面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B .[题组练透]1.(2017·盐城期中)在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则此三角形的最大内角的大小为________.解析:由正弦定理及sin A ∶sin B ∶sin C =3∶5∶7知,a ∶b ∶c =3∶5∶7,可设a =3k ,b =5k ,c =7k ,且角C 是最大内角,由余弦定理知cos C =a 2+b 2-c 22ab =9k 2+25k 2-49k 22×3k ×5k =-12,因为0°<C <180°,所以C =120°. 答案:120°2.在△ABC 中,B =π3,AB =2,D 为AB 的中点,△BCD 的面积为334,则AC =________.解析:因为S △BCD =12BD ·BC sin B =12×1×BC ×sin π3=334,所以BC =3.由余弦定理得AC 2=4+9-2×2×3×cos π3=7,所以AC =7.答案:73.(2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.解析:在△ABC 中,∵cos A =45,cos C =513,∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365. 又∵a sin A =b sin B ,∴b =a sin Bsin A =1×636535=2113.答案:2113[方法归纳]关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口. [课时达标训练][A 组——抓牢中档小题]1.(2017·苏北四市期末)若函数f (x )=sin ⎝⎛⎭⎫ωπx -π6(ω>0)的最小正周期为15,则f ⎝⎛⎭⎫13的值为________.解析:因为f (x )的最小正周期为2πωπ=15,所以ω=10,所以f (x )=sin ⎝⎛⎭⎫10πx -π6,所以f ⎝⎛⎭⎫13=sin ⎝⎛⎭⎫10π3-π6=sin 19π6=-sin π6=-12. 答案:-122.在平面直角坐标系xOy 中,角θ的终边经过点P (-2,t ),且sin θ+cos θ=55,则实数t 的值为________.解析:∵角θ的终边经过点P (-2,t ), ∴sin θ=t 4+t 2,cos θ=-24+t 2,又∵sin θ+cos θ=55,∴t 4+t 2+-24+t 2=55,即t -24+t 2=55, 则t >2,平方得t 2-4t +44+t 2=15, 即1-4t 4+t 2=15,即4t 4+t 2=45,则t 2-5t +4=0,则t =1(舍去)或t =4. 答案:43.(2017·南京、盐城一模)将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后,所得函数为偶函数,则φ=____________.解析:将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后,所得函数为f (x )=3sin ⎣⎡⎦⎤2(x -φ)+π3,即f (x )=3sin ⎣⎡⎦⎤2x +⎝⎛⎭⎫π3-2φ.因为f (x )为偶函数,所以π3-2φ=π2+k π,k ∈Z ,所以φ=-π12-k π2,k ∈Z ,因为0<φ<π2,所以φ=5π12.答案:5π124.设函数y =sin ⎝⎛⎭⎫ωx +π3(0<x <π),当且仅当x =π12时,y 取得最大值,则正数ω的值为________.解析:由条件得sin ⎝⎛⎭⎫π12ω+π3=1,又0<x <π,ω>0,故π12ω+π3=π2,ω=2. 答案:25.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且2b =a +c ,若sin B =45,cos B=9ac,则b 的值为________. 解析:∵2b =a +c ,sin B =45,cos B =9ac ,sin 2B +cos 2B =1,∴ac =15,∴b 2=a 2+c 2-2ac cosB =a 2+c 2-18=(a +c )2-48=4b 2-48,得b =4. 答案:46.(2017·扬州期末)已知cos ⎝⎛⎭⎫π3+α=130<α<π2,则sin(π+α)=________. 解析:因为cos ⎝⎛⎭⎫π3+α=13⎝⎛⎭⎫0<α<π2, 所以π3<π3+α<5π6,有sin ⎝⎛⎭⎫π3+α= 1-cos 2⎝⎛⎭⎫π3+α=223,所以sin(π+α)=sin ⎣⎡⎦⎤⎝⎛⎭⎫π3+α+2π3=sin ⎝⎛⎭⎫π3+αcos 2π3+cos ⎝⎛⎭⎫π3+αsin 2π3 =223×⎝⎛⎭⎫-12+13×32=3-226.答案:3-2267.(2017·北京高考)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.解析:因为角α与角β的终边关于y 轴对称, 所以α+β=2k π+π,k ∈Z ,所以cos(α-β)=cos(2α-2k π-π)=-cos 2α=-(1-2sin 2α)=-⎣⎡⎦⎤1-2×⎝⎛⎭⎫132=-79. 答案:-798.在△ABC 中,A =2π3,a =3c ,则bc =________.解析:∵在△ABC 中,A =2π3,∴a 2=b 2+c 2-2bc cos 2π3,即a 2=b 2+c 2+bc .∵a =3c ,∴3c 2=b 2+c 2+bc ,∴b 2+bc -2c 2=0, ∴(b +2c )(b -c )=0,∴b -c =0,∴b =c ,bc =1.答案:19.若f (x )=3sin(x +θ)-cos(x +θ)⎝⎛⎭⎫-π2≤θ≤π2是定义在R 上的偶函数,则θ=________. 解析:因为f (x )=3sin(x +θ)-cos(x +θ)=2sin ⎝⎛⎭⎫x +θ-π6为偶函数,所以θ-π6=k π+π2,k ∈Z.即θ=k π+2π3.因为-π2≤θ≤π2,所以θ=-π3.答案:-π310.在△ABC 中,设a ,b ,c 分别为角A ,B ,C 的对边,若a =5,A =π4,cos B =35,则c=________.解析:根据题意得,sin B =45,所以sin C =sin(A +B )=sin ⎝⎛⎭⎫π4+B =22(sin B +cos B )=22×75=7210,由a sin A =c sin C ,得5sinπ4=c7210,解得c =7. 答案:711.(2017·无锡期末)设f (x )=sin 2x -3cos x ·cos ⎝⎛⎭⎫x +π2,则f (x )在⎣⎡⎦⎤0,π2上的单调递增区间为________.解析:f (x )=sin 2x +3sin x cos x =12(1-cos 2x )+32sin 2x =sin ⎝⎛⎭⎫2x -π6+12,当2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,即k π-π6≤x ≤k π+π3,k ∈Z 时,函数f (x )单调递增,令k =0,得-π6≤x ≤π3,所以函数f (x )在⎣⎡⎦⎤0,π2上的单调递增区间为⎣⎡⎦⎤0,π3. 答案:⎣⎡⎦⎤0,π3 12.函数y =a sin(ax +θ)(a >0,θ≠0)图象上的一个最高点和其相邻最低点的距离的最小值为________.解析:易知函数y =a sin(ax +θ)(a >0,θ≠0)的最大值为a ,最小值为-a ,最小正周期T =2πa ,所以相邻的最高点与最低点的距离为 ⎝⎛⎭⎫πa 2+4a 2≥ 2×πa ×2a =2π,当且仅当πa=2a ,即a =2π2时等号成立. 答案:2π13.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,sin ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-4514.(2017·苏锡常镇一模)已知sin α=3sin ⎝⎛⎭⎫α+π6,则tan ⎝⎛⎭⎫α+π12=________.解析:∵sin α=3sin ⎝⎛⎭⎫α+π6=3sin αcos π6+3cos α·sin π6=332sin α+32cos α,∴tan α=32-33. 又tan π12=tan ⎝⎛⎭⎫π3-π4=tan π3-tan π41+tan π3tanπ4=3-13+1=2-3, ∴tan ⎝⎛⎭⎫α+π12=tan α+tanπ121-tan αtanπ12 =32-33+2-31-32-33×()2-3=23-4.答案:23-4[B 组——力争难度小题]1.如图,已知A ,B 分别是函数f (x )=3sin ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =π2,则该函数的最小正周期是________.解析:设函数f (x )的最小正周期为T ,由图象可得A ⎝⎛⎭⎫T4,3,B ⎝⎛⎭⎫3T 4,-3,则OA ―→·OB ―→=3T216-3=0,解得T =4. 答案:42.(2017·南京考前模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π6-cos ωx (ω>0).若函数f (x )的图象关于直线x =2π对称,且在区间⎣⎡⎦⎤-π4,π4上是单调函数,则ω的取值集合为____________. 解析:f (x )=32sin ωx +12cos ωx -cos ωx =32sin ωx -12cos ωx =sin ⎝⎛⎭⎫ωx -π6, 因为f (x )的图象关于直线x =2π对称, 所以f (2π)=±1,则2πω-π6=k π+π2,k ∈Z ,所以ω=k 2+13,k ∈Z.因为函数f (x )在区间⎣⎡⎦⎤-π4,π4上是单调函数,所以最小正周期T ≥2⎣⎡⎦⎤π4-⎝⎛⎭⎫-π4, 即2πω≥π,解得0<ω≤2, 所以ω=13或ω=56或ω=43或ω=116.当ω=13时,f (x )=sin ⎝⎛⎭⎫13x -π6, x ∈⎣⎡⎦⎤-π4,π4时,13x -π6∈⎣⎡⎦⎤-π4,-π12, 此时f (x )在区间⎣⎡⎦⎤-π4,π4上为增函数; 当ω=56时,f (x )=sin ⎝⎛⎭⎫56x -π6, x ∈⎣⎡⎦⎤-π4,π4时,56x -π6∈⎣⎡⎦⎤-3π8,π24, 此时f (x )在区间⎣⎡⎦⎤-π4,π4上为增函数; 当ω=43时,f (x )=sin ⎝⎛⎭⎫43x -π6, x ∈⎣⎡⎦⎤-π4,π4时,43x -π6∈⎣⎡⎦⎤-π2,π6, 此时f (x )在区间⎣⎡⎦⎤-π4,π4上为增函数; 当ω=116时,f (x )=sin ⎝⎛⎭⎫116x -π6, x ∈⎣⎡⎦⎤-π4,π4时,116x -π6∈⎣⎡⎦⎤-5π8,7π24, 此时f (x )在区间⎣⎡⎦⎤-π4,π4上不是单调函数; 综上,ω∈⎩⎨⎧⎭⎬⎫13,56,43.答案:⎩⎨⎧⎭⎬⎫13,56,433.△ABC 的三个内角为A ,B ,C ,若3cos A +sin A 3sin A -cos A=tan ⎝⎛⎭⎫-7π12,则tan A =________. 解析:3cos A +sin A 3sin A -cos A =2sin ⎝⎛⎭⎫A +π32sin ⎝⎛⎭⎫A -π6=-sin ⎝⎛⎭⎫A +π3cos ⎝⎛⎭⎫A +π3=-tan ⎝⎛⎭⎫A +π3=tan ⎝⎛⎭⎫-A -π3=tan ⎝⎛⎭⎫-7π12, 所以-A -π3=-7π12,所以A =7π12-π3=π4,所以tan A =tan π4=1.答案:14.已知函数f (x )=A sin(x +θ)-cos x2cos ⎝⎛⎭⎫π6-x 2(其中A 为常数,θ∈(-π,0)),若实数x 1,x 2,x 3满足:①x 1<x 2<x 3,②x 3-x 1<2π,③f (x 1)=f (x 2)=f (x 3),则θ的值为________. 解析:函数f (x )=A (sin x cos θ+cos x sin θ)-cos x 2·⎝⎛⎭⎫32cos x 2+12sin x 2=A (sin x cos θ+cos x sin θ)-32×1+cos x 2-14sin x =⎝⎛⎭⎫A cos θ-14sin x +⎝⎛⎭⎫A sin θ-34cos x -34,故函数f (x )为常数函数或为周期T =2π的周期函数.又x 1,x 2,x 3满足条件①②③,故f (x )只能为常数函数,所以⎩⎨⎧A cos θ-14=0,A sin θ-34=0,则tan θ=3,又θ∈(-π,0),故θ=-2π3.答案:-2π3第2课时平面向量(基础课)[常考题型突破]平面向量的概念及线性运算[必备知识](1)在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向,不能盲目转化.(2)在用三角形加法法则时要保证“首尾相接”,和向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,减向量的方向是指向被减向量.(3)A ,B ,C 三点共线的充要条件是存在实数λ,μ,有OA ―→=λOB ―→+μOC ―→,且λ+μ=1. (4)C 是线段AB 中点的充要条件是OC ―→=12(OA ―→+OB ―→).G 是△ABC 的重心的充要条件为GA―→+GB ―→+GC ―→=0.[题组练透] 1.(2017·盐城期中)设向量a =(2,-6),b =(-1,m ),若a ∥b ,则实数m =________. 解析:因为a ∥b ,所以2m -(-1)×(-6)=0,所以m =3. 答案:32.(2017·镇江模拟)已知△ABC 和点M 满足MA ―→+MB ―→+MC ―→=0.若存在实数m 使得AB ―→+AC―→=m AM ―→成立,则m =________.解析:由MA ―→+MB ―→+MC ―→=0知,点M 为△ABC 的重心,设点D 为底边BC 的中点,则AM ―→=23AD ―→=23×12(AB ―→+AC ―→)=13(AB ―→+AC ―→),∴AB ―→+AC ―→=3AM ―→,故m =3. 答案:3 3.(2017·南京考前模拟)在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AB =2CD ,M 为CD 的中点,N 为线段BC 上一点(不包括端点),若AC ―→=λAM ―→+μAN ―→,则1λ+3μ的最小值为________.解析:以AB 为x 轴,A 为坐标原点建立直角坐标系如图所示, 设B (2,0),C (1,t ),M ⎝⎛⎭⎫12,t ,N (x 0,y 0), 因为N 在线段BC 上,所以y 0=t 1-2(x 0-2),即y 0=t (2-x 0), 因为AC ―→=λAM ―→+μAN ―→, 所以⎩⎪⎨⎪⎧1=12λ+μx 0,t =λt +μy 0,即t =λt +μy 0=λt +μt (2-x 0),因为t ≠0,所以1=λ+μ(2-x 0)=λ+2μ-μx 0=λ+2μ-⎝⎛⎭⎫1-12λ, 所以3λ+4μ=4,这里λ,μ均为正数,所以4⎝⎛⎭⎫1λ+3μ=(3λ+4μ)⎝⎛⎭⎫1λ+3μ=3+12+4μλ+9λμ≥15+236=27, 所以1λ+3μ≥274当且仅当4μλ=9λμ,即λ=49,μ=23时取等号.所以1λ+3μ的最小值为274.答案:274[方法归纳](1)对于平面向量的线性运算,要先选择一组基底;同时注意共线向量定理的灵活运用. (2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式呈现的,常利用共线向量定理(当b ≠0时,a ∥b ⇔存在唯一实数λ,使得a =λb )平面向量的数量积[必备知识]1.数量积的定义:a ·b =|a ||b |cos θ. 2.三个结论:(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB ―→|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22 . [题组练透]1.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2,故3-λ21+λ2=12,解得λ=33. 答案:332.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 解析:易知|a +2b |=|a |2+4a ·b +4|b |2=4+4×2×1×12+4=2 3.答案:2 33.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13,若n ⊥(tm +n ),则实数t 的值为________.解析:∵n ⊥(tm +n ),∴n ·(tm +n )=0, 即tm ·n +|n |2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0. 又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4. 答案:-44.(2017·南京、盐城二模)已知平面向量AC ―→=(1,2),BD ―→=(-2,2),则AB ―→·CD ―→的最小值为解析:设A (a ,b ),B (c ,d ), ∵AC ―→=(1,2),BD ―→=(-2,2), ∴C (a +1,b +2),D (c -2,d +2),则AB ―→=(c -a ,d -b ),CD ―→=(c -a -3,d -b ),∴AB ―→·CD ―→=(c -a )(c -a -3)+(b -d )2=(c -a )2-3(c -a )+(b -d )2=⎝⎛⎭⎫c -a -322-94+(b -d )2≥-94.∴AB ―→·CD ―→的最小值为-94.答案:-945.已知边长为6的正三角形ABC ,BD ―→=12BC ―→,AE ―→=13AC ―→,AD 与BE 交于点P ,则PB ―→·PD―→的值为________.解析:由题意可得点D 为BC 的中点,以点D 为坐标原点,BC ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则D (0,0),A (0,33),B (-3,0),C (3,0),E (1,23),直线BE 的方程为y =32(x +3)与AD (y 轴)的交点为P ⎝⎛⎭⎫0,332,所以PB ―→·PD ―→=⎝⎛⎭⎫-3,-332·⎝⎛⎭⎫0,-332=274.答案:274[方法归纳](1)涉及数量积和模的计算问题,通常有两种求解思路:①直接利用数量积的定义,围绕基底展开的运算,需要熟悉向量间的相互转化; ②建立坐标系,通过坐标运算求解,需要熟悉数量积的坐标公式及平行、垂直的运算公式等,其中,涉及平面向量的模时,常把模的平方转化为向量的平方.(2)在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知的向量进行计算.平面向量的应用[题组练透]1.(2017·南京三模)在四边形ABCD 中,BD =2,且AC ―→·BD ―→=0,(AB ―→+DC ―→)·(BC ―→+AD ―→)=5,则四边形ABCD 的面积为________.解析:因为AC ―→·BD ―→=0,所以AC ―→⊥BD ―→,所以以BD 所在直线为x 轴,AC 所在直线为y 轴,建立直角坐标系,因为BD =2,所以可设B (b,0),D (2+b,0),A (0,a ),C (0,c ),所以AB ―→=(b ,-a ),DC ―→=(-2-b ,c ),BC ―→=(-b ,c ),AD ―→=(2+b ,-a ),所以AB ―→+DC ―→=(-2,c -a ),BC ―→+AD ―→=(2,c -a ),因为(AB ―→+DC ―→)·(BC ―→+AD ―→)=5,所以-4+(c -a )2=5,即(c -a )2=9,所以|AC ―→|=| c -a |=3,所以四边形ABCD 的面积为12×AC ×BD =12×3×2=3.答案:32.已知圆O 的半径为2,AB 是圆O 的一条直径,C ,D 两点都在圆O 上,且|CD ―→|=2,则|AC ―→+BD ―→|=________. 解析:如图,连结OC ,OD ,则AC ―→=AO ―→+OC ―→,BD ―→=BO ―→+OD ―→, 因为O 是AB 的中点, 所以AO ―→+BO ―→=0, 所以AC ―→+BD ―→=OC ―→+OD ―→, 设CD 的中点为M ,连结OM , 则AC ―→+BD ―→=OC ―→+OD ―→=2OM ―→, 显然△COD 是边长为2的等边三角形, 所以|OM ―→|=3,故|AC ―→+BD ―→|=|2OM ―→|=2 3.答案:2 3 3.(2017·南通三模)如图,在直角梯形ABCD 中,AB ∥DC ,∠ABC =90°,AB =3,BC =DC =2.若E ,F 分别是线段DC 和BC 上的动点,则AC ―→·EF ―→的取值范围是________.解析:法一:因为AC ―→=AB ―→+BC ―→,EF ―→=EC ―→+CF ―→,所以AC ―→·EF ―→=(AB ―→+BC ―→)·(EC ―→+CF ―→)=AB ―→·EC ―→+BC ―→·CF ―→=3|EC ―→|-2|CF ―→|,因为E ,F 分别是线段DC 和BC 上的动点,且BC =DC =2,所以|EC ―→|∈[0,2],|CF ―→|∈[0,2],所以由不等式的性质知AC ―→·EF ―→的取值范围是[-4,6].法二:以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系(图略),则C (3,2),因为E ,F 分别是线段DC 和BC 上的动点,且BC =DC =2,所以可设E (x ,2),F (3,y ),所以AC ―→=(3,2),EF ―→=(3-x ,y -2),且x ∈[1,3],y ∈[0,2],所以AC ―→·EF ―→=3(3-x )+2(y -2)=5-3x +2y ∈[-4,6],即AC ―→·EF ―→的取值范围是[-4,6]. 答案:[-4,6] [方法归纳]1.利用平面向量解决几何问题的两种方法2.求解向量数量积最值问题的两种方法[课时达标训练][A 组——抓牢中档小题] 1.(2017·南京学情调研)设向量a =(1,-4),b =(-1,x ),c =a +3b .若a ∥c ,则实数x =________.解析:因为a =(1,-4),b =(-1,x ),c =a +3b =(-2,-4+3x ).又a ∥c ,所以-4+3x -8=0,解得x =4.答案:4 2.(2017·无锡期末)已知向量a =(2,1),b =(1,-1),若a -b 与ma +b 垂直,则m 的值为________.解析:因为a =(2,1),b =(1,-1),所以a -b =(1,2),ma +b =(2m +1,m -1),因为a -b 与ma +b 垂直,所以(a -b )·(ma +b )=0,即2m +1+2(m -1)=0,解得m =14.答案:143.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 解析:由题意知a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎨⎧k =13,λ=-13.答案:-134.已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为________. 解析:∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =1-2cos 〈a ,b 〉=0,∴cos 〈a ,b 〉=22,∴〈a ,b 〉=π4.答案:π45.若单位向量e 1,e 2的夹角为π3,向量a =e 1+λe 2(λ∈R),且|a |=32,则λ=________.解析:由题意可得e 1·e 2=12,|a |2=(e 1+λe 2)2=1+2λ×12+λ2=34,化简得λ2+λ+14=0,解得λ=-12.答案:-126.已知平面向量a =(1,2),b =(4,2),c =ma +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.解析:由题意得c ·a |c ||a |=c ·b |c ||b |⇒c ·a |a |=c ·b |b |⇒5m +85=8m +2025⇒m =2.答案:27.(2017·常州模拟)已知点G 是△ABC 的重心,过G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则xy x +y的值为________.解析:由已知得M ,G ,N 三点共线,即AG ―→=λAM ―→+(1-λ)AN ―→=λx AB ―→+(1-λ)y AC ―→, ∵点G 是△ABC 的重心,∴AG ―→=23×12(AB ―→+AC ―→)=13(AB ―→+AC ―→),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x,1-λ=13y,得13x +13y=1, 即1x +1y =3,通分变形得,x +y xy =3,∴xy x +y =13. 答案:138.已知A ,B ,C 三点不共线,且AD ―→=-13AB ―→+2AC ―→,则S △ABDS △ACD =________.解析:如图,取AM ―→=-13AB ―→,AN ―→=2AC ―→,以AM ,AN 为邻边作平行四边形AMDN ,此时AD ―→=-13AB ―→+2AC ―→.由图可知S △ABD =3S △AMD ,S △ACD =12S △AND ,而S △AMD =S △AND ,所以S △ABDS △ACD =6.答案:69.(2017·苏锡常镇一模)在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP ―→=AB ―→+λAC ―→,且BP ―→·CP ―→=1,则实数λ的值为________.解析:法一:由题意可得AP ―→-AB ―→=BP ―→=λAC ―→.又CP ―→ =AP ―→-AC ―→=AB ―→+(λ-1)AC ―→,所以BP ―→·CP ―→=λAB ―→·AC ―→+λ(λ-1)|AC ―→|2=1,即λ+(λ2-λ)×4=1,所以有4λ2-3λ-1=0,解得λ=1或λ=-14.法二:建立如图所示的平面直角坐标系,所以A (0,0),B ⎝⎛⎭⎫12,32,C (2,0),设P (x ,y ).所以AP ―→=(x ,y ),AB ―→=⎝⎛⎭⎫12,32,AC ―→=(2,0).又因为AP ―→=AB ―→+λAC ―→,所以有⎩⎨⎧x =2λ+12,y =32,所以BP ―→=(2λ,0),CP ―→=⎝⎛⎭⎫2λ-32,32.由BP ―→·CP ―→=1可得4λ2-3λ-1=0,解得λ=1或λ=-14.答案:1或-1410.已知向量a =(1,3),b =(0,t 2+1),则当t ∈[-3,2]时,⎪⎪⎪⎪a -t b |b |的取值范围是________. 解析:由题意,b |b |=(0,1),根据向量的差的几何意义,⎪⎪⎪⎪a -t b |b |表示同起点的向量t b|b |的终点到a 的终点的距离,当t =3时,该距离取得最小值1,当t =-3时,该距离取得最大值13,即⎪⎪⎪⎪a -t b|b |的取值范围是[1,13 ]. 答案:[1,13 ] 11.(2017·南通二调)如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5.若AB ―→·AD ―→=-7,则BC ―→·DC ―→的值是________.解析:法一:由AB ―→·AD ―→=-7得,(OB ―→-OA ―→)·(OD ―→-OA ―→)=-7,即(OB ―→-OA ―→)·(OB ―→+OA ―→)=7,所以OB ―→2=7+OA ―→2=7+9=16,所以|OB ―→|=|OD ―→|=4.所以BC ―→·DC ―→=(OC ―→-OB ―→)·(OC ―→-OD ―→)=(OC ―→-OB ―→)·(OC ―→+OB ―→)=OC ―→2-OB ―→2=25-16=9.法二:以O 为原点,OC 为x 轴,建立平面直角坐标系(图略),则C (5,0),设B (x 1,y 1),A (x 2,y 2),则D (-x 1,-y 1),x 22+y 22=9,由AB ―→·AD ―→=-7,得(x 1-x 2,y 1-y 2)·(-x 1-x 2,-y 1-y 2)=-7,得x 21+y 21=16,而BC ―→·DC ―→=(5-x 1,-y 1)·(5+x 1,y 1)=25-x 21-y 21=25-16=9. 答案:912.已知菱形ABCD 的边长为a ,∠DAB =60°,EC ―→=2DE ―→,则AE ―→·DB ―→的值为________. 解析:如图所示,∵EC ―→=2DE ―→,∴DE ―→=13DC ―→.∵菱形ABCD 的边长为a , ∠DAB =60°, ∴|DA ―→|=|DC ―→|=a ,DA ―→·DC ―→=|DA ―→||DC ―→|cos 120°=-12a 2,∵DB ―→=DA ―→+DC ―→,∴AE ―→·DB ―→=(AD ―→+DE ―→)(DA ―→+DC ―→) =⎝⎛⎭⎫AD ―→+13 DC ―→(DA ―→+DC ―→)=-DA ―→2+13DC ―→2-23DA ―→·DC ―→=-a 2+13a 2+13a 2=-a 23. 答案:-a 2313.在矩形ABCD 中,边AB ,AD 的长分别为2和1,若E ,F 分别是边BC ,CD 上的点,且满足|BE ―→||BC ―→|=|CF ―→||CD ―→|,则AE ―→·AF ―→的取值范围是________.解析:法一:取A 为原点,AB 所在直线为x 轴,建立如图所示直角坐标系,则A (0,0),B (2,0),C (2,1).∵|BE ―→||BC ―→|=|CF ―→||CD ―→|,得2|BE ―→|=|CF ―→|,设E (2,y )(0≤y ≤1),则F (2-2y,1). ∴AE ―→·AF ―→=(2,y )·(2-2y,1)=2(2-2y )+y =4-3y ∈[1,4]. 法二:∵|BE ―→||BC ―→|=|CF ―→||CD ―→|,则|CF ―→|=2|BE ―→|.∵0≤|BE ―→|≤1,∴AE ―→·AF ―→=(AB ―→+BE ―→)·(AD ―→+DF ―→) =AB ―→·DF ―→+BE ―→·AD ―→=2|DF ―→|+|BE ―→| =2(2-|CF ―→|)+|BE ―→|=4-3|BE ―→|∈[1,4].答案:[1,4] 14.(2017·全国卷Ⅱ改编)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A ―→·(PB ―→+PC ―→)的最小值是________.解析:如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则P A ―→=(-x, 3-y ),PB ―→=(-1-x ,-y ),PC ―→=(1-x ,-y ),所以P A ―→·(PB ―→+PC ―→)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,P A ―→·(PB ―→+PC ―→)取得最小值,为-32.答案:-32[B 组——力争难度小题]1.如图,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,AM ―→=2MD ―→.若AC ―→·BM ―→=-3,则AB ―→·AD ―→=________. 解析:由题意可得AC ―→=AD ―→+DC ―→=AD ―→+12AB ―→,BM ―→=AM ―→-AB ―→=23AD ―→-AB ―→,则AC ―→·BM ―→=⎝⎛⎭⎫AD ―→+12 AB ―→ ·⎝⎛⎭⎫23AD ―→-AB ―→=-3, 则23|AD ―→|2-12|AB ―→|2-23AB ―→·AD ―→=-3, 即6-8-23AB ―→·AD ―→=-3,解得AB ―→·AD ―→=32.答案:322.已知a ,b ,c 是同一平面内的三个向量,其中a ,b 是互相垂直的单位向量,且(a -c )·(3b -c )=1,则|c |的最大值为________.解析:法一:由题意可得(a -c )·(3b -c )=-a ·c -3b ·c +|c |2=1,则|c |2-(a +3b )·c -1=0.又|a +3b |=2,设a +3b 与c 的夹角为θ,θ∈[0,π], 则|c |2-2|c |cos θ-1=0,-2≤2cos θ=|c |-1|c |≤2,即⎩⎪⎨⎪⎧|c |2-2|c |-1≤0,|c |2+2|c |-1≥0,解得2-1≤|c |≤2+1,则|c |max =2+1.法二:不妨设a =(1,0),b =(0,1),c =(x ,y ),则(a -c )·(3b -c )=(1-x ,-y )·(-x ,3-y )=1,化简得⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -322=2,圆心⎝⎛⎭⎫12,32到坐标原点的距离为1,则|c |max =2+1.答案:2+13.(2017·苏州考前模拟)已知点A (1,-1),B (4,0),C (2,2).平面区域D 由所有满足AP ―→=λAB ―→+μAC ―→(1<λ≤a,1<μ≤b )的点P (x ,y )组成的区域.若区域D 的面积为16,则a +b 的最小值为________.解析:如图,延长AB 至点N ,延长AC 至点M ,使得AN =aAB ,AM =bAC .四边形ABEC 、四边形ANGM 、四边形EHGF 均为平行四边形.由条件知,点P (x ,y )组成的区域D 为图中的阴影部分,即四边形EHGF (不含边界EH ,EF ). ∵AB ―→=(3,1),AC ―→=(1,3),BC ―→=(-2,2).∴|AB |=10,|AC |=10,|BC |=22,cos ∠CAB =10+10-82×10×10=35,sin ∠CAB =45.∴四边形EHGF 的面积为(a -1)10×(b -1)10×45=16.∴(a -1)(b -1)=2,a +b =a +⎝ ⎛⎭⎪⎫2a -1+1=(a -1)+2a -1+2.由a >1,b >1知,当且仅当a -1=2,即a =b =2+1时,a +b 取得最小值22+2. 答案:22+24.(2017·江苏高考)如图,在同一个平面内,向量OA ―→,OB ―→,OC ―→的模分别为1,1,2,OA ―→与OC ―→的夹角为α,且tan α=7,OB ―→与OC ―→的夹角为45°.若OC ―→=m OA ―→+n OB ―→(m ,n ∈R),则m +n =________.解析:法一:如图,以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0), 由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ), 则x C =|OC ―→|cos α=2×152=15,y C =|OC ―→|sin α=2×752=75,即C ⎝⎛⎭⎫15,75. 又cos(α+45°)=152×12-752×12=-35,sin(α+45°)=752×12+152×12=45,则x B =|OB ―→|cos(α+45°)=-35,y B =|OB ―→|sin(α+45°)=45,即B ⎝⎛⎭⎫-35,45. 由OC ―→=m OA ―→+n OB ―→,可得⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.法二:由tan α=7,α∈⎝⎛⎭⎫0,π2, 得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,所以OB ―→·OC ―→=1×2×22=1,OA ―→·OC ―→=1×2×152=15,OA ―→·OB ―→=1×1×⎝⎛⎭⎫-35=-35, 由OC ―→=m OA ―→+n OB ―→,得OC ―→·OA ―→=m OA ―→2+n OB ―→·OA ―→,即15=m -35n .①同理可得OC ―→·OB ―→=m OA ―→·OB ―→+n OB ―→2, 即1=-35m +n .②①+②得25m +25n =65,即m +n =3.答案:3第3课时解三角形(能力课)[常考题型突破三角变换与解三角形的综合问题[例1] (2016·江苏高考)在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求cos ⎝⎛⎭⎫A -π6的值. [解] (1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-⎝⎛⎭⎫452=35.由正弦定理知AC sin B =ABsin C ,所以AB =AC ·sin Csin B=6×2235=5 2.(2)在△ABC 中,A +B +C =π, 所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos ⎝⎛⎭⎫B +π4 =-cos B cos π4+sin B sin π4.又cos B =45,sin B =35,故cos A =-45×22+35×22=-210.因为0<A <π,所以sin A =1-cos 2A =7210.因此,cos ⎝⎛⎭⎫A -π6=cos A cos π6+sin A sin π6=-210×32+7210×12=72-620.[方法归纳](1)解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果(2)三角变换与解三角形的综合问题要关注三角形中的隐藏条件,如A +B +C =π,sin(A +B )=sin C ,cos(A +B )=-cos C, 以及在△ABC 中,A >B ⇔sin A >sin B 等.[变式训练] 1.(2017·南京、盐城一模)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b sin 2C =c sin B . (1)求角C ;(2)若sin ⎝⎛⎭⎫B -π3=35,求sin A 的值. 解:(1)由正弦定理及b sin 2C =c sin B , 得2sin B sin C cos C =sin C sin B , 因为sin B >0,sin C >0,所以cos C =12,又C ∈(0,π),所以C =π3.(2)因为C =π3,所以B ∈⎝⎛⎭⎫0,2π3, 所以B -π3∈⎝⎛⎭⎫-π3,π3, 又sin ⎝⎛⎭⎫B -π3=35, 所以cos ⎝⎛⎭⎫B -π3= 1-sin 2⎝⎛⎭⎫B -π3=45. 又A +B =2π3,即A =2π3-B ,所以sin A =sin ⎝⎛⎭⎫2π3-B =sin ⎣⎡⎦⎤π3-⎝⎛⎭⎫B -π3=sin π3cos ⎝⎛⎭⎫B -π3-cos π3sin ⎝⎛⎭⎫B -π3=32×45-12×35=43-310. 2.(2017·苏北四市一模)在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,且tan B =2,tan C =3. (1)求角A 的大小;(2)若c =3,求b 的长.解:(1)因为tan B =2,tan C =3,A +B +C =π,所以tan A =tan [π-(B +C )]=-tan(B +C )=-tan B +tan C 1-tan B tan C =-2+31-2×3=1.又A ∈(0,π),所以A =π4.(2)因为tan B =sin Bcos B =2,且sin 2B +cos 2B =1,又B ∈(0,π),所以sin B =255. 同理可得sin C =31010.由正弦定理,得b =c sin Bsin C =3×25531010=2 2.解三角形与平面向量结合[例2] (2017·ABC 面积的大小为S ,3AB ―→·AC ―→=2S . (1)求sin A 的值;(2)若C =π4,AB ―→·AC ―→=16,求b .[解] (1)由3AB ―→·AC ―→=2S ,得3bc cos A =2×12bc sin A ,即sin A =3cos A .整理化简得sin 2A =9cos 2A =9(1-sin 2A ), 所以sin 2A =910.又A ∈(0,π),所以sin A >0,故sin A =31010.(2)由sin A =3cos A 和sin A =31010, 得cos A =1010, 又AB ―→·AC ―→=16,所以bc cos A =16, 得bc =1610. ① 又C =π4,所以sin B =sin(A +C )=sin A cos C +cos A sin C =31010×22+1010×22=255.在△ABC 中,由正弦定理b sin B =csin C,得b 255=c 22, 即c =104b . ② 联立①②得b =8.[方法归纳]求解三角函数与平面向量综合问题的一般思路(1)求三角函数值,一般利用向量的相关运算把向量关系转化为三角函数关系式.利用同角三角函数关系式及三角函数中常用公式求解.(2)求角时通常由向量转化为三角函数问题,先求值再求角.(3)解决与向量有关的三角函数问题的思想方法是转化与化归的数学思想,即通过向量的相关运算把问题转化为三角函数问题. [变式训练]1.(2017·南通三调)已知△ABC 是锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),且m ⊥n .(1)求A -B 的值;(2)若cos B =35,AC =8,求BC 的长.解:(1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B =cos ⎝⎛⎭⎫A +π3-B =0, 又A ,B ∈⎝⎛⎭⎫0,π2,所以A +π3-B ∈⎝⎛⎭⎫-π6,5π6, 所以A +π3-B =π2,即A -B =π6.(2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45. 所以sin A =sin ⎝⎛⎭⎫B +π6 =sin B cos π6+cos B sin π6=45×32+35×12=43+310.由正弦定理,得BC =sin A sin B ×AC =43+31045×8=43+3. 2.(2017·镇江调研)在△ABC 中,角A ,B ,C 所对应的边分别是a ,b ,c ,向量m =(a -c ,b +c ),n =(b -c ,a ),且m ∥n .(1)求B ;(2)若b =13,cos ⎝⎛⎭⎫A +π6=33926,求a .解:(1)因为m ∥n ,所以a (a -c )-(b +c )(b -c )=0,即a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12, 又B ∈(0,π),故B =π3. (2)由(1)得A ∈⎝⎛⎭⎫0,2π3,所以A +π6∈⎝⎛⎭⎫π6,5π6, 又cos ⎝⎛⎭⎫A +π6=33926,所以sin ⎝⎛⎭⎫A +π6=51326,所以sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π6-π6 =sin ⎝⎛⎭⎫A +π6cos π6-cos ⎝⎛⎭⎫A +π6sin π6=51326×32-33926×12=3926. 在△ABC 中,由正弦定理a sin A =b sin B , 可得a =b ·sin A sin B =13×392632=1.以平面图形为背景的解三角形问题[例3] (2017·南通调研)如图,在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =b (sin C +cos C ).(1)求∠ABC ;(2)若∠A =π2,D 为△ABC 外一点,DB =2,DC =1,求四边形ABDC 面积。
2018年高考数学江苏专版训练:6个解答题综合仿真练(一)含解析

6个解答题综合仿真练(一)1.在三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知b =3,c =2.(1)若2a ·cos C =3,求a 的值;(2)若c b =cos C 1+cos B,求cos C 的值. 解:(1)由余弦定理得,2a ·a 2+b 2-c 22ab=3, 将b =3,c =2代入,解得a =2.(2)由正弦定理,得sin C sin B =cos C 1+cos B, 即sin C +sin Ccos B =sin Bcos C ,则sin C =sin Bcos C -cos Bsin C =sin(B -C).因为0<C<B<π,所以0<B -C<π,所以C =B -C ,则B =2C.由正弦定理可得b sin B =c sin C =b 2sin Ccos C, 将b =3,c =2代入,解得cos C =34.2.如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA⊥PD.求证:(1)PA ∥平面BDE;(2)平面BDE ⊥平面PCD.证明:(1)连结OE ,因为O 为平行四边形ABCD 对角线的交点,所以O 为AC 的中点.又因为E 为PC 的中点,所以OE ∥PA.又因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以PA ∥平面BDE.(2)因为OE ∥PA ,PA ⊥PD ,所以OE ⊥PD.因为OP =OC ,E 为PC 的中点,所以OE ⊥PC.又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PC ∩PD =P ,所以OE ⊥平面PCD. 又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD.3.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为23,C 为椭圆上位于第一象限内的一点. (1)若点C 的坐标为⎝⎛⎭⎪⎪⎫2,53,求a ,b 的值; (2)设A 为椭圆的左顶点,B 为椭圆上一点,且AB ―→=12OC ―→,求直线AB 的斜率.解:(1)因为椭圆的离心率为23, 所以a 2-b 2a =23,即b 2a 2=59. ①又因为点C ⎝⎛⎭⎪⎪⎫2,53在椭圆上,所以4a 2+259b 2=1. ② 由①②解得a 2=9,b 2=5.因为a>b>0,所以a =3,b = 5.(2)法一:由(1)知,b 2a 2=59,所以椭圆方程为x 2a 2+9y 25a 2=1,即5x 2+9y 2=5a 2. 设直线OC 的方程为x =my(m>0),B(x 1,y 1),C(x 2,y 2). 由{ x =my ,5x 2+9y 2=5a 2消去x ,得5m 2y 2+9y 2=5a 2,所以y 2=5a 25m 2+9.因为y 2>0,所以y 2=5a 5m 2+9.因为AB ―→=12OC ―→,所以AB ∥OC.可设直线AB 的方程为x =my -a. 由{ x =my -a ,5x 2+9y 2=5a 2消去x ,得(5m 2+9)y 2-10amy =0,所以y =0或y =10am5m 2+9,得y 1=10am 5m 2+9.因为AB ―→=12OC ―→,所以(x 1+a ,y 1)=⎝ ⎛⎭⎪⎪⎫12x 2,12y 2,于是y 2=2y 1, 即5a 5m 2+9=20am 5m 2+9(m>0),所以m =35. 所以直线AB 的斜率为1m =533. 法二:由(1)可知,椭圆方程为5x 2+9y 2=5a 2,则A(-a ,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14个填空题综合仿真练(一)
1.已知集合A={0,3,4},B={-1,0,2,3},则A∩B=________.
解析:因为集合A={0,3,4},B={-1,0,2,3},所以A∩B={0,3}.
答案:{0,3}
2.已知x>0,若(x-i)2是纯虚数(其中i为虚数单位),则x=________.
解析:因为x>0,(x-i)2=x2-1-2xi是纯虚数(其中i为虚数单位),
所以x2-1=0且-2x≠0,解得x=1.
答案:1
3.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为________.
解析:设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3,
所以函数f(x)的定义域为(-∞,-1]∪[3,+∞),因为函数t=x2-2x-3的
图象的对称轴为x=1,所以函数t=x2-2x-3在(-∞,-1]上单调递减,在
[3,+∞)上单调递增,所以函数f(x)的单调递增区间为[3,+∞).
答案:[3,+∞)
4.从2个白球,2个红球,1个黄球中随机取出2个球,则取出的2球中
恰有1个红球的概率是________.
解析:将2个白球记为A,B,2个红球记为C,D,1个黄球记为E,则从中任
取两个球的所有可能结果为(A,B),(A,C),(A,D),(A,E),(B,C),(B,
D),(B,E),(C,D),(C,E),(D,E
),共10个,恰有1个红球的可能结果为
(A,C),(A,D),(B,C),(B,D),(E,C),(E,D)共6个,故所求概率为
P
=610=35.
答案:35
5.执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是
________.
Read
x
If x≤2 Then
y←6x
Else
y←x
+5
End If
Print
y
解析:若6x=13,则x=136>2,不符合题意;若x+5=13,则x=8>2,符
合题意,故x=8.
答案:8
6.一种水稻品种连续5年的平均单位面积产量(单位:t/hm2)分别为:
9.4,9.7,9.8,10.3,10.8,则这组样本数据的方差为________.
解析:这组数据的平均数为15(9.4+9.7+9.8+10.3+10.8)=10,方差为
1
5
[(10-9.4)2+(10-9.7)2+(10-9.8)2+(10-10.3)2+(10-10.8)2]=0.244.
答案:0.244
7.已知函数f(x)=sin(ωx+φ)(0<ω<2,0<φ<π).若x=-π4为函数f(x)
的一个零点,x=π3为函数f(x)图象的一条对称轴,则ω的值为________.
解析:函数f(x)的周期T=4×π3+π4=7π3,又T=2πω,所以ω=2π×
3
7π
=67.
答案:67
8.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cosA2=255,
AB―→·AC―→=3,b+c=6,则a
=________.
解析:∵cosA2=255,∴cos A=2cos2A2-1=35,又由AB―→·AC―→=3,得bccos
A=3,∴bc=5,由余弦定理得a2=b2+c2-2bccos A=(b+c)2-2bc(1+cos A
)
=36-10×85=20,解得a=25.
答案:25
9.已知α,β∈(0,π),且tan(α-β)=12,tan β=-15,则tan
α
的值为________.
解析:tan α=tan[(α-β)+β]=tanα-β+tan β1-tanα-βtan β=
12-1
5
1-12×
-
15=311
.
答案:311
10.已知关于x的一元二次不等式ax2+bx+c>0的解集为(-1,5),其中a,
b,c为常数.则不等式cx2+bx+a
≤0的解集为________.
解析:因为不等式ax2+bx+c>0的解集为(-1,5),所以a(x+1)(x-5)>0,
且a<0,即ax2-4ax-5a>0,则b=-4a,c=-5a,则cx2+bx+a≤0即为-5
ax
2
-4ax+a≤0,从而5x2+4x-1≤0,解得-1≤x≤15.
答案:-1,15
11.已知正数x,y满足1x+2y=1,则log2x+log2y的最小值为________.
解析:由1x+2y=1,得x=yy-2>0,则log2x+log2y=log2xy=log2y2y-2=
log2y-2+22y-2=log2y-2+4y-2+4≥log28=3,当且仅当(y-2)2=4,
即y=4时等号成立,故log2x+log2y的最小值为3.
答案:3
12.在平面直角坐标系xOy中,已知圆C:x2+y2+2x-8=0,直线l:y=
k(x-1)(k∈R)过定点A,且交圆C于点B,D,过点A作BC的平行线交CD
于点
E,则△AEC
的周长为________.
解析:易得圆C的标准方程为(x-1)2+y2=9,即半径r=3,定点A(-1,0),
因为AE∥BC,所以EA=ED,则EC+EA=EC+ED=3,从而△AEC的周长为5.
答案:5
13.设集合A={x|x=2n,n∈N*},集合B={x|x=bn,n∈N*},满足A∩
B
=∅,且A∪B=N*.若对任意的n∈N*,bn
整数中有10个是集合A中的元素,所以由集合B的定义可知b2 017=2 017+10
=2 027.
答案:2 027
14.已知函数f(x)=kx,g(x)=2ln x+2e1e≤x≤e2,若f(x)与g(x)的图
象上分别存在点M,N,使得M,N关于直线y=e对称,则实数k的取值范围是
________________.
解析:设直线y=kx上的点M(x,kx),点M关于直线
y
=e的对称点N(x,2e-kx),因为点N在g(x)=2ln x+
2e1e≤x≤e2的图象上,所以2e-kx=2ln x+2e,所以
kx
=-2ln x.构造函数y=kx,y=-2ln x1e≤x≤e2,画出
函数y=-2ln x1e≤x≤e2的图象如图所示,设曲线y=-2ln x1e≤x≤e2上的
点P(x0,-2ln x0),则kOP≤k≤kOB(其中B为端点,P为切点).因为y′=-2x,
所以过点P的切线方程为y+2ln x0=-2x0(x-x0),又该切线经过原点,所以0
+2ln x0=-2x0(0-x0),x0=e,所以kOP=-2e.又点B1e,2,所以kOB=2e,所
以k∈-2e,2e.
答案:-2e,2e