纹波和噪声

合集下载

纹波和噪声的测试方法

纹波和噪声的测试方法

纹波和噪声的测试方法一、引言纹波和噪声是在电子设备和电路中常见的问题,它们会对系统的性能和稳定性产生不良影响。

因此,为了确保电子设备和电路的正常工作,需要对纹波和噪声进行测试和分析。

本文将介绍纹波和噪声的测试方法。

二、纹波的测试方法纹波是指电源输出中的交流成分,通常是由于电源的不稳定或电路的设计问题引起的。

纹波的测试方法主要包括以下几个方面:1. 输出纹波的测量:使用示波器将电源的输出信号进行测量,然后通过傅里叶变换等方法将信号分解成不同频率的成分,从而得到纹波的幅度和频率。

2. 纹波的评估标准:根据电子设备和电路的要求,确定纹波的允许范围。

通常使用峰峰值、均方根值等指标来评估纹波的大小。

3. 纹波的抑制方法:在设计电源和电路时,可以采取一些措施来抑制纹波的产生。

常见的方法包括使用滤波电容、稳压器等。

三、噪声的测试方法噪声是指电子设备和电路中的随机信号成分,通常是由于电子元件的热噪声、电源的电磁干扰等引起的。

噪声的测试方法主要包括以下几个方面:1. 噪声功率谱的测量:使用频谱分析仪等设备对电子设备和电路的输出信号进行测量,得到噪声功率谱的频率和幅度信息。

2. 噪声的评估标准:根据电子设备和电路的要求,确定噪声的允许范围。

常见的评估指标包括等效输入噪声、噪声系数等。

3. 噪声的抑制方法:在设计电子设备和电路时,可以采取一些措施来抑制噪声的产生和传播。

常见的方法包括屏蔽、隔离、降噪电路等。

四、纹波和噪声的测试仪器为了进行纹波和噪声的测试,需要使用一些专门的测试仪器。

常见的测试仪器包括示波器、频谱分析仪、信号发生器等。

这些仪器能够准确地测量和分析纹波和噪声的特性。

五、测试过程和注意事项在进行纹波和噪声的测试时,需要注意以下几个方面:1. 测试环境的准备:测试仪器和被测试设备应处于稳定的环境中,避免外部干扰对测试结果的影响。

2. 测试信号的选择:根据被测试设备的要求,选择合适的测试信号进行测试。

通常使用正弦波、方波等信号进行测试。

纹波和噪声的测试方法

纹波和噪声的测试方法

纹波和噪声的测试方法纹波和噪声是测试中常见的两种问题,它们会对系统性能产生负面影响。

因此,了解纹波和噪声的测试方法是非常重要的。

本文将介绍纹波和噪声的定义、产生原因以及常见的测试方法。

一、纹波的定义和产生原因纹波是指信号或电压在周期性变化中的波动。

在电子电路中,纹波通常是由于电源或信号源的不稳定性引起的。

纹波会导致系统性能下降,影响信号的准确性和稳定性。

纹波的产生原因主要有以下几点:1. 电源质量不佳:电源的输出不稳定,会导致电压的波动,进而引起纹波。

2. 电源滤波不足:电源滤波电容不足或滤波电路设计不当,无法有效降低纹波。

3. 电源线路干扰:电源线路附近的干扰源,例如开关电源、电机等,会对电源线产生干扰,引起纹波。

4. 地线干扰:地线干扰是指由于地线阻抗不均匀或地线回路中存在干扰源,导致信号线受到干扰而产生纹波。

二、纹波的测试方法为了保证系统的稳定性和可靠性,需要对纹波进行测试和评估。

下面介绍几种常见的纹波测试方法。

1. 示波器测量法:示波器是最常用的测试工具之一。

通过将示波器探头连接到待测信号上,可以观察到信号的波形。

通过观察波形的峰峰值或有效值,可以评估纹波的大小。

2. 频谱分析法:频谱分析是一种通过将信号转换为频域来分析信号的方法。

通过频谱分析仪,可以将信号转换为频谱图,从而观察到信号中各个频率成分的强度。

通过观察频谱图中的纹波分量,可以评估纹波的大小。

3. 电压测量法:通过将待测信号连接到电压表上,直接测量信号的电压大小。

通过对比测量结果和标准值,可以评估纹波的大小。

三、噪声的定义和产生原因噪声是指在信号中存在的随机干扰。

在电子系统中,噪声是不可避免的,它会降低信号的质量和可靠性。

噪声分为各种类型,包括热噪声、量子噪声、互调失真噪声等。

噪声的产生原因主要有以下几点:1. 环境干扰:电子系统通常工作在复杂的环境中,周围的电磁场干扰、温度变化等都会对系统产生噪声的影响。

2. 元器件噪声:电子元器件本身存在噪声,例如晶体管、电阻、电容等都会对信号产生噪声。

纹波和噪声测试方法

纹波和噪声测试方法

纹波和噪声测试方法纹波和噪声测试方法,在电子设备的设计和测试过程中是非常重要的一环。

纹波是指电流或电压的周期性变化,而噪声则是指非周期性的电流或电压的随机变化。

纹波和噪声的存在可能会影响设备的性能和可靠性,因此需要进行相应的测试来评估和控制。

纹波和噪声测试方法主要分为以下几个方面:1.信号发生器测试:利用信号发生器产生特定频率和幅度的信号,然后通过示波器或频谱仪等仪器来观察电流或电压的波形和频谱。

通过分析波形和频谱,可以评估纹波和噪声的水平。

2.示波器测试:示波器是一种可以显示电流或电压波形的仪器,可以用来直接观察信号的纹波和噪声。

通过连接示波器到被测试的电路或设备上,可以实时观察纹波和噪声的水平和变化情况。

3.频谱分析仪测试:频谱分析仪可以将信号分解为不同频率的成分,并显示出它们的幅度。

可以通过连接频谱分析仪到被测试的电路或设备上,来分析纹波和噪声的频谱分布。

频谱分析可以帮助确定纹波和噪声的频率范围和幅度。

4.噪声测量仪器测试:噪声测量仪器是专门用于测量非周期性电流或电压的噪声水平的仪器。

常用的噪声测量仪器包括噪声分析仪和噪声源等。

通过连接噪声测量仪器到被测试的电路或设备上,可以测量并分析噪声的水平和特性。

5.模拟电压源测试:模拟电压源是用于产生稳定的参考电压的仪器,可以测试纹波的幅度。

通过连接模拟电压源到被测试的电路或设备上,并将输出接到示波器或频谱分析仪等仪器上,可以测量电压的纹波幅度,以评估设备的稳定性。

6.滤波器测试:滤波器可以用于降低纹波和噪声的水平。

通过连接滤波器到被测试的电路或设备上,并观察输出信号的纹波和噪声水平,可以评估滤波器的性能,并确定适合的滤波器参数。

总结起来,纹波和噪声测试方法主要包括信号发生器测试、示波器测试、频谱分析仪测试、噪声测量仪器测试、模拟电压源测试和滤波器测试等。

通过这些测试方法,可以评估和控制设备的纹波和噪声水平,以确保设备的性能和可靠性。

直流可调稳压电源的噪声与纹波抑制技术

直流可调稳压电源的噪声与纹波抑制技术

直流可调稳压电源的噪声与纹波抑制技术直流可调稳压电源在电子设备中起到了至关重要的作用。

然而,由于电源输出的噪声和纹波存在,会给电子设备的正常运行和性能产生不利影响。

因此,噪声和纹波抑制技术成为了直流可调稳压电源设计中的重要一环。

一、噪声来源及其产生机制噪声是电子设备中不可避免的问题,电源作为电子设备的基础设备,其输出的噪声主要来自于以下几个方面:1.原始电源原始电源本身存在电网上的高频噪声和谐波,这些噪声会通过输入端进入到直流可调稳压电源中。

2.开关电路直流可调稳压电源常采用开关电路来进行电压的转换与调节,开关电路在转换的过程中会产生噪声。

3.输出滤波电容为了减小输出端的纹波,通常会在输出端增加滤波电容,然而,滤波电容的不理想效果会导致输出端产生噪声。

噪声的产生机制主要有两个方面,即共模噪声和差模噪声。

共模噪声是指在输入和输出之间,两个信号共同指向地,由于电源和地之间的电阻和电感的存在,导致共模噪声的传播。

差模噪声则是指输入和输出之间的两个信号相对地的差分信号,由于传输路径上的纹波噪声和杂散噪声引起。

二、噪声与纹波的影响噪声对电子设备的影响主要有两个方面。

首先,噪声会导致电子设备的工作不稳定,甚至失效。

在某些需要高精度的测量或信号处理系统中,噪声的存在会导致系统的误差增大,从而影响到整个系统的正常运行。

其次,噪声也会影响到电子设备的性能。

对于一些高要求的电路系统,如音频放大器、射频通信系统等,噪声会被放大并带入到信号中,从而影响到信号的质量和清晰度。

纹波则主要影响到电子设备的工作稳定性。

纹波会使得直流可调稳压电源输出的电压不稳定,并产生波动,进而引发电子设备工作不正常。

三、噪声与纹波抑制技术针对上述噪声与纹波问题,设计师们提出了一系列的技术手段来进行抑制。

1.滤波电路滤波电路是直流可调稳压电源中最常见的噪声和纹波抑制技术。

通过在电源输出端增加合适的滤波电容,可以滤除大部分的高频噪声和纹波。

2.反馈控制反馈控制是一种常用的噪声抑制技术。

降低电源纹波噪声的方法

降低电源纹波噪声的方法

降低电源纹波噪声的方法
降低电源纹波噪声的方法有多种,以下是一些常见的方法:
1. 采用高品质的电源滤波器:电源滤波器可以有效地降低电源中的高频纹波和噪声,从而提高电源的稳定性和可靠性。

高品质的电源滤波器通常具有更高的滤波效果和更低的损耗。

2. 使用低通滤波器:低通滤波器可以有效地滤除高频纹波和噪声,从而提高电源的稳定性和可靠性。

低通滤波器可以使用电容或电感等元器件组成,但要注意滤波器的通带和阻带特性。

3. 优化电源电路设计:合理的电源电路设计可以降低电源中的高频纹波和噪声。

要注意电源电路中的元件选择、电路布局和信号隔离等方面。

4. 采用直流滤波器:直流滤波器可以有效地降低电源中的低频纹波和噪声,从而提高电源的稳定性和可靠性。

直流滤波器可以使用电解电容或电感等元器件组成。

5. 调整电源供电电压和频率:适当的调整电源供电电压和频率可以降低电源中的高频纹波和噪声。

但要注意调整电压和频率的变化不能过大,否则会对电源的稳定性产生不利影响。

以上是一些常见的降低电源纹波噪声的方法,实际应用中需要根据具体情况选择合适的方法。

同时,为了减少电源纹波噪声,还需要注重电源电路的设计和制造质量,从根本上提高电源的稳定性和可靠性。

rf芯片允许的纹波和噪声-概述说明以及解释

rf芯片允许的纹波和噪声-概述说明以及解释

rf芯片允许的纹波和噪声-概述说明以及解释1.引言1.1 概述在文章的1.1概述部分,我们将对RF芯片允许的纹波和噪声进行概述。

RF(射频)芯片是一种集成电路,主要用于处理射频信号,广泛应用于通信、无线电和雷达等领域。

纹波和噪声则是在RF芯片运行过程中不可避免的产生的。

在RF系统中,纹波用于描述信号的变动波动情况,而噪声则是指与信号无关的干扰成分。

纹波和噪声的存在对RF芯片的性能产生着重要影响。

纹波和噪声较大会导致信号失真、传输失真和干扰增加,从而降低RF 芯片的工作效率和性能。

然而,考虑到实际应用和工艺等因素,RF芯片并不要求完全没有纹波和噪声。

相反,RF芯片允许一定范围的纹波和噪声存在。

在设计和生产过程中,我们需要确定出适合RF芯片的纹波和噪声范围,以确保其正常工作和性能指标的达到。

本文将深入探讨RF芯片的定义和作用,纹波和噪声的定义和影响,以及RF芯片允许的纹波和噪声范围。

同时,我们还将探讨纹波和噪声对RF芯片性能的重要性,以及RF芯片允许的纹波和噪声的意义。

最后,我们将展望未来的发展方向和挑战。

通过本文的阅读,读者将能够更好地理解RF芯片允许的纹波和噪声,并了解其对RF芯片性能的影响和意义。

此外,本文也将为读者提供对于未来RF芯片发展的展望和思考。

1.2文章结构1.2 文章结构本文将围绕rf芯片允许的纹波和噪声展开讨论。

文章主要包括以下几个部分:第一部分是引言部分,介绍了本文的研究背景和目的。

首先概述了rf 芯片在现代通信系统中的重要作用,以及纹波和噪声对其性能的影响。

然后明确了本文的目的,即探讨rf芯片允许的纹波和噪声范围,以及这对rf 芯片的意义和未来的发展方向。

第二部分是正文部分,分为三个小节。

首先,对rf芯片的定义和作用进行了详细介绍,包括其在无线通信、雷达和卫星通信等领域的应用。

接着,对纹波和噪声的定义进行了阐述,并对其对rf芯片性能的影响进行了分析。

最后,重点讨论了rf芯片允许的纹波和噪声范围,包括各种指标和标准,以及其在不同应用中的具体要求。

开关电源产生纹波和噪声的原因和测量方法

开关电源产生纹波和噪声的原因和测量方法

开关电源产生纹波和噪声的原因和测量方法关键字:噪声纹波开关电源本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。

纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。

纹波是输出直流电压的波动,与开关电源的开关动作有关。

每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。

纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。

噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。

开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。

噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。

噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。

利用示波器可以看到纹波和噪声的波形,如图1所示。

纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。

纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。

图1 纹波和噪声的波形纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。

目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。

由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。

用示波器测量纹波和噪声的装置的框图如图2所示。

它由被测开关电源、负载、示波器及测量连线组成。

有的测量装置中还焊上电感或电容、电阻等元件。

图2 示波器测量框图从图2来看,似乎与其他测波形电路没有什么区别,但实际上要求不同。

直流稳压电源实验中的纹波与噪声分析与消除方法

直流稳压电源实验中的纹波与噪声分析与消除方法

直流稳压电源实验中的纹波与噪声分析与消除方法直流稳压电源在各种电子实验和设备中起着至关重要的作用。

在使用直流稳压电源时,我们常常会遇到纹波和噪声问题,这些问题可能会对电子元件和电路产生不利影响。

因此,对纹波和噪声进行准确的分析和消除是非常重要的。

本文将探讨直流稳压电源实验中纹波与噪声的产生原因、分析方法以及消除方法。

一、纹波与噪声的产生原因直流稳压电源实验中纹波与噪声的产生主要有以下几个方面的原因:1. 电源本身的问题:直流稳压电源可能存在电源波动或者电源的设计不合理,使得输出直流电压出现纹波。

2. 电源滤波电容:电源滤波电容的质量和容值对纹波有直接影响。

当电容的质量较差或容值较小时,就容易出现较大的纹波。

3. 复杂电路连接:在实验中,当直流稳压电源与其他电路连接时,电源输出的纹波与噪声可能通过其他电路产生耦合作用,从而出现在实验电路中。

二、纹波与噪声的分析方法在直流稳压电源实验中,我们可以采用以下几种方法进行纹波与噪声的分析:1. 示波器显示法:将直流稳压电源输出的电压信号接入示波器并设置合适的量程,观察示波器上的波形变化,从波形上可以分析纹波和噪声的幅度和频率。

2. 多用表测量法:通过将直流稳压电源输出的电压信号接入多用表,选择合适的测量范围和测量方式,测量电压的均值和波动值,从而获取纹波和噪声的相关信息。

3. 频谱分析法:通过频谱仪等设备对直流稳压电源输出的电压信号进行频谱分析,找出纹波和噪声所在的频率区域,并获取相应的幅度信息。

三、纹波与噪声的消除方法在直流稳压电源实验中,为了消除输出电压中的纹波与噪声,我们可以采用以下几种方法:1. 优化电源设计:选择质量较好的电源模块或器件,并合理设计稳压电路,使得电源本身的纹波和噪声尽量降低。

2. 选择合适的滤波元件:在直流稳压电源的输出端添加合适的滤波元件,如大容值电解电容、磁珠或者低通滤波器等,以实现对纹波和噪声的滤波处理。

3. 电源电容升级:对电源滤波电容进行升级,选择较大容值的优质电容来替换原有电容,以减小纹波和噪声的幅度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源的纹波和噪声(图) 日期:2009-08-26 来源:本网作者:北京航空航天大学方佩敏开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。

但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。

本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。

纹波和噪声产生的原因开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。

纹波是输出直流电压的波动,与开关电源的开关动作有关。

每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。

纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。

噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。

开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。

噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。

噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。

利用示波器可以看到纹波和噪声的波形,如图1所示。

纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。

纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。

图1 纹波和噪声的波形纹波和噪声的测量方法纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。

目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。

由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。

用示波器测量纹波和噪声的装置的框图如图2所示。

它由被测开关电源、负载、示波器及测量连线组成。

有的测量装置中还焊上电感或电容、电阻等元件。

图2 示波器测量框图从图2来看,似乎与其他测波形电路没有什么区别,但实际上要求不同。

测纹波和噪声电压的要求如下:●要防止环境的电磁场干扰(EMI)侵入,使输出的噪声电压不受EMI的影响;●要防止负载电路中可能产生的EMI干扰;●对小型开关型模块电源,由于内部无输出电容或输出电容较小,所以在测量时要加上适当的输出电容。

为满足第1条要求,测量连线应尽量短,并采用双绞线(消除共模噪声干扰)或同轴电缆;一般的示波器探头不能用,需用专用示波器探头;并且测量点应在电源输出端上,若测量点在负载上则会造成极大的测量误差。

为满足第2点,负载应采用阻性假负载。

经常有这样的情况发生,用户买回的开关电源或模块电源,在测量纹波和噪声这一性能指标时,发现与产品技术规格上的指标不符,大大地超过技术规格上的性能指标要求,这往往是用户的测量装置不合适,测量的方法(测量点的选择)不合适或采用通用的测量探头所致。

几种测量装置1双绞线测量装置双绞线测量装置如图3所示。

采用300mm(12英寸)长、#16AWG线规组成的双绞线与被测开关电源的+OUT 及-OUT连接,在+OUT与-OUT之间接上阻性假负载。

在双绞线末端接一个4TμF电解电容(钽电容)后输入带宽为50MHz(有的企业标准为20MHz)的示波器。

在测量点连接时,一端要接在+OUT上,另一端接到地平面端。

图3 双绞线测量装置这里要注意的是,双绞线接地线的末端要尽量的短,夹在探头的地线环上。

2 平行线测量装置平行线测量装置如图4所示。

图4中,C1是多层陶瓷电容(MLCC),容量为1μF,C2是钽电解电容,容量是10μF。

两条平行铜箔带的电压降之和小于输出电压值的2%。

该测量方法的优点是与实际工作环境比较接近,缺点是较容易捡拾EMI干扰。

图4 平行线测量装置3 专用示波器探头图5所示为一种专用示波器探头直接与波测电源靠接。

专用示波器探头上有个地线环,其探头的尖端接触电源输出正极,地线环接触电源的负极(GND),接触要可靠。

图5 示波器探头的接法这里顺便提出,不能采用示波器的通用探头,因为通用示波器探头的地线不屏蔽且较长,容易捡拾外界电磁场的干扰,造成较大的噪声输出,虚线面积越大,受干扰的影响越大,如图6所示。

图6 通用探头易造成干扰4 同轴电缆测量装置这里介绍两种同轴电缆测量装置。

图7是在被测电源的输出端接R、C电路后经输入同轴电缆(50Ω)后接示波器的AC输入端;图8是同轴电缆直接接电源输出端,在同轴电缆的两端串接1个0.68μF陶瓷电容及1个47Ω/1w碳膜电阻后接入示波器。

T形BNC连接器和电容电阻的连接如图9所示。

图7 同轴电缆测量装置1图8 同轴电缆测量装置2图9 T形BNC连接器和电容电阻的连接纹波和噪声的测量标准以上介绍了多种测量装置,同一个被测电源若采用不同的测量装置,其测量的结果是不相同的,若能采用一样的标准测量装置来测,则测量的结果才有可比性。

近年来出台了几个测量纹波和噪声的标准,本文将介绍一种基于JEITA-RC9131A测量标准的测量装置,如图10所示。

图10 基于JEITA-RC9131A测量标准的测量装置该标准规定在被测电源输出正、负端小于150mm处并联两个电容C2及C3,C2为22μF电解电容,C3为0.47μF薄膜电容。

在这两个电容的连接端接负载及不超过1.5m长的50Ω同轴电缆,同轴电缆的另一端连接一个50Ω的电阻R和串接一个4700pF的电容C1后接入示波器,示波器的带宽为100MHz。

同轴电缆的两端连接线应尽可能地短,以防止捡拾辐射的噪声。

另外,连接负载的线若越长,则测出的纹波和噪声电压越大,在这情况下有必要连接C2及C3。

若示波器探头的地线太长,则纹波和噪声的测量不可能精确。

另外,测试应在温室条件下,被测电源应输入正常的电压,输出额定电压及额定负载电流。

不正确与正确测量的比较1探头的选择图11是用AAT1121芯片组成的降压式DC/DC转换器电路及测量正确和不正确的波形图。

若采用普通的示波器探头来测量(如图12所示),由于地线与探头组成的回路面积太大(由剖面线组成的面积),它相当于一根“天线”,极易受到EMI的干扰,其输出的纹波和噪声电压相当大(见图11中右面的示波器波形图中绿色的纹波和噪声波形)。

若采用专用的测量探头(如图13所示),它的地线极短,探头与地线组成回路面积较小,受到EMI干扰极小,其输出纹波和噪声波形如图11右面的红色线所示。

这例子说明一般通用示波器的探头是不能用的。

图11 AAT1121电路测量波形图12 用普通示波器探头测得的波形图13 用专用测量探头测得的波2 探头与测试点的接触是否良好以金升阳公司的1W DC/DC电源模块IF0505RN-1W为例,采用专用探头靠测法,排除外界EMI噪声干扰,探头接触良好时,测出的纹波和噪声电压为4.8mVp-p,如图14所示。

若触头接触不良时,则测出的纹波和噪声电压为8.4mVp-p,如图15所示。

图14 电源模块IF0505RN-1W测试波形(接触良好)图15 电源模块IF0505RN-1W测试波形(接触不良)这里顺便再用普通示波器探头测试一下,其测试结果是纹波和噪声电压为48mVp-p,如图16所示。

图16 电源模块IF0505RN-1W测试波形(普通探头)减小纹波和噪声电压的措施开关电源除开关噪声外,在AC/DC转换器中输入的市电经全波整流及电容滤波,电流波形为脉冲,如图17所示(图a是全波整流、滤波电路,b是电压及电流波形)。

电流波形中有高次谐波,它会增加噪声输出。

良好的开关电源(AC/DC转换器)在电路增加了功率因数校正(PFC)电路,使输出电流近似正弦波,降低高次谐波,功率因数提高到0.95左右,减小了对电网的污染。

电路图如图18所示。

图17 开关电源整流波形图18 开关电源PFC电路开关电源或模块的输出纹波和噪声电压的大小与其电源的拓扑,各部分电路的设计及PCB设计有关。

例如,采用多相输出结构,可有效地降低纹波输出。

现在的开关电源的开关频率越来越高;低的是几十kHz,一般是几百kHz,而高的可达1MHz以上。

因此产生的纹波电压及噪声电压的频率都很高,要减小纹波和噪声最简单的办法是在电源电路中加无源低通滤波器。

1减少EMI的措施可以采用金属外壳做屏蔽减小外界电磁场辐射干扰。

为减少从电源线输入的电磁干扰,在电源输入端加EMI 滤波器,如图19所示(EMI滤波器也称为电源滤波器)。

图19 开关电源加EMI滤波2 在输出端采用高频性能好、ESR低的电容采用高分子聚合物固态电解质的铝或钽电解电容作输出电容是最佳的,其特点是尺寸小而电容量大,高频下ESR阻抗低,允许纹波电流大。

它最适用于高效率、低电压、大电流降压式DC/DC转换器及DC/DC模块电源作输出电容。

例如,一种高分子聚合物钽固态电解电容为68μF,其在20℃、100kHz时的等效串联电阻(ESR)最大值为25mΩ,最大的允许纹波电流(在100kHz时)为2400mArms,其尺寸为:7.3mm(长)×4.3mm(宽)×1.8mm(高),其型号为10TPE68M(贴片或封装)。

纹波电压ΔVOUT为:ΔVOUT=ΔIOUT×ESR (1)若ΔIOUT=0.5A,ESR=25mΩ,则ΔVOUT=12.5mV。

若采用普通的铝电解电容作输出电容,额定电压10V、额定电容量100μF,在20℃、120Hz时的等效串联电阻为5.0Ω,最大纹波电流为70mA。

它只能工作于10kHz左右,无法在高频(100kHz以上的频率)下工作,再增加电容量也无效,因为超过10kHz时,它已成电感特性了。

某些开关频率在100kHz到几百kHz之间的电源,采用多层陶电容(MLCC)或钽电解电容作输出电容的效果也不错,其价位要比高分子聚合物固态电解质电容要低得多。

3 采用与产品系统的频率同步为减小输出噪声,电源的开关频率应与系统中的频率同步,即开关电源采用外同步输入系统的频率,使开关的频率与系统的频率相同。

4 避免多个模块电源之间相互干扰在同一块PCB上可能有多个模块电源一起工作。

相关文档
最新文档