实验5--光强测量

合集下载

单缝衍射及光强分布测试实验讲义

单缝衍射及光强分布测试实验讲义

实验单缝衍射及光强分布测试光的干涉和衍射现象揭示了光的波动特性。

光的衍射是指光作为电磁波在其传播路径上如果遇到障碍物,它能绕过障碍物的边缘而进入几何阴影区内传播的现象。

光在衍射后产生的明暗相间的条纹或光环叫衍射图样,包括:单缝衍射、圆孔衍射、圆板衍射及泊松亮斑等。

根据观察方式的不同,通常把光的衍射现象分为两种类型。

一种是光源和观察屏(或二者之一)距离衍射孔(或缝、丝)的长度有限,或者说入射波和衍射波都是球面波,这种衍射称为菲涅耳衍射,或近场衍射。

另一种是光源和观察屏距离衍射孔(或缝、丝)均为无限远或相当于无限远,这时入射波和衍射波都可看作是平面波,这种衍射称为夫琅禾费衍射,或远场衍射。

实际上,夫琅禾费衍射是菲涅耳衍射的极限情形。

观察和研究光的衍射不仅有助于进一步加深对光的波动理论和惠更斯—菲涅耳原理的理解,同时还有助于进一步学习近代光学实验技术,如光谱分析、晶体结构分析、全息照相、光信息处理等。

衍射使光强在空间重新分布,本实验利用硅光电池等光电器件测量光强的相对分布,是一种常用的光强分布测量方法。

【实验目的】1. 观察单缝衍射现象,加深对波的衍射理论的理解。

2. 测量单缝衍射的相对光强分布,掌握其分布规律。

3. 学会利用衍射法测量微小量的思想和方法。

4. 加深对光的波动理论和惠更斯—菲涅耳原理的理解。

【实验原理】1. 单缝衍射的光强分布光线在传播过程中遇到障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。

如果障碍物的尺寸与波长相近,那么,这样的衍射现象就比较容易观察到。

散射角极小的激光器产生激光束,通过一条很细的狭缝(0.1~0.3mm宽),在狭缝后大于0.5m的地方放上观察屏,就可看到衍射条纹。

由于激光束的方向性很强,可视为平行光束,因此观察到衍射条纹实际上就是夫琅禾费衍射条纹,如图1所示。

光照射在单缝上时,根据惠更斯—菲涅耳原理:把波阵面上的各点都看成子波波源,衍射时波场中各点的强度由各子波在该点相干叠加决定。

物理实验技术中光强的测量方法与分析

物理实验技术中光强的测量方法与分析

物理实验技术中光强的测量方法与分析光强的测量方法与分析光是我们日常生活中不可或缺的一部分,而在物理实验中,光的测量和分析更是必不可少的。

本文将介绍一些常用的物理实验技术中光强的测量方法和分析。

一、测量光强的实验装置和方法在物理实验中,测量光强通常需要使用一些特定的装置来完成。

其中最常见的装置是光电池。

光电池是一种能够将光能转化为电能的装置,其原理基于光电效应。

一般而言,光电池会将光能转化为电流输出,其大小与入射光的强度成正比。

因此,我们可以通过测量光电池输出的电流来间接测量光的强度。

除了光电池外,还有一些其他的测量光强的方法。

例如,光强测量仪器中的光照度计。

光照度计采用了一种特殊的传感器,能够直接测量到光的强度,并将其转换为数字或模拟信号输出。

这种仪器通常可以测量不同波长范围内的光强,以满足不同实验需求。

二、光强测量与物理实验的应用光强的测量在物理实验中具有广泛的应用。

首先,光强的测量可以用于光学元件的性能评估和校准。

例如,我们可以使用光强测量仪器来表征透镜的聚焦能力,或者测试滤光片的透过率。

通过测量光强,我们可以了解到光学元件与光的相互作用情况,进而优化实验设计和结果分析。

此外,光强的测量还可以用于光源的研究。

光源的特性对于很多实验来说都是至关重要的。

例如,太阳能的利用、LED灯的设计和研发等领域,都需要对光源的强度进行精确测量和分析。

通过测量光强,我们可以了解到光源的亮度和稳定性,以及可能的能量损失情况,进而优化光源的设计和使用效率。

除了以上的应用,光强测量还可以用于材料表征和分析。

例如,我们可以使用光强测量仪器来测定材料的透过光强度,从而了解其在不同波长范围内的吸收特性。

这对于材料科学和光电子学研究来说都具有重要意义。

通过测量光强,我们可以探究材料的光学性质和电子结构,进而研究其电磁响应和光电转换效率。

三、光强数据的分析和处理在物理实验中,获取到光强数据后,我们需要对数据进行一些基本的分析和处理。

光强分布测量实验报告

光强分布测量实验报告

光强分布测量实验报告引言光强分布测量是光学实验中常用的一种手段。

通过测量光强的分布情况,可以了解光源的亮度、方向性以及光束的聚焦情况等信息。

本实验旨在通过测量不同光源的光强分布情况,并分析实验结果,探究光源的特性和光学仪器的使用方法。

实验材料和仪器- 可调节的光源- 光强分布测量仪器- 数据记录仪- 角度测量仪器实验步骤1. 将光源置于适当的位置,并调节光源的亮度。

2. 将光强分布测量仪器置于光源的前方适当位置,并将其与数据记录仪连接好。

3. 启动数据记录仪,并进行初始校准,以确保测量结果的准确性。

4. 选取适当的测量位置,将角度测量仪器与光强分布测量仪器进行配合,测量不同角度下的光强。

5. 重复步骤4,测量不同位置下的光强分布情况,并记录数据。

6. 根据实验数据,绘制光强分布曲线,并分析实验结果。

实验结果和分析经过实验测量,我们获得了不同角度和位置下的光强分布数据。

根据测量数据,我们绘制了光强分布曲线,并对实验结果进行了分析。

首先,我们可以观察到在光源正前方的位置,光强最强,随着角度的增加,光强逐渐减小。

这一结果符合我们的预期,说明光源辐射光的方向性较强。

其次,我们可以观察到在离光源较远的位置,光强分布呈现出较为均匀的趋势。

而在离光源较近的位置,光强分布不均匀,呈现出中央亮度高、周围亮度较低的特点。

这一现象说明光源的聚焦效果不佳,光线难以有效地集中在一点上。

此外,我们还观察到在不同光源下,光强分布曲线呈现出一定的差异。

不同光源在亮度和方向性上的差异会直接影响到光强的分布情况,从而导致光强分布曲线的差异。

因此,在进行光强分布测量时,需要对不同光源进行适当的选择和调整。

结论通过光强分布测量实验,我们得出以下结论:1. 光源的亮度和方向性对光强分布有重要影响,光源辐射的方向性越强,光强分布曲线的形状越明显。

2. 光源的聚焦效果直接影响光强分布的均匀性,较好的聚焦效果能够使光强分布更加均匀。

3. 不同光源的光强分布曲线存在差异,根据实际需要选择合适的光源进行测量。

测光强的实验报告

测光强的实验报告

测光强的实验报告题目:测光强的实验摘要:本实验通过使用光照计来测量不同光源的光照强度,并分析不同光源的亮度差异。

实验结果显示,不同光源的光照强度存在较大的差异,且光照强度与距离的平方成反相关关系。

引言:在照明工程中,了解不同光源的光照强度对于选择适当的照明设备和布置灯光位置至关重要。

测光强实验是一种常用的方法,通过此实验可以获得光源的光照强度数据,并进行分析。

实验目的:1.通过实验测量不同光源的光照强度;2.掌握使用光照计的实验方法;3.分析不同光源的亮度差异。

实验材料:1.光照计;2.3个不同光源(如白炽灯、荧光灯和LED灯);3.尺子;4.计算机。

实验步骤:1.准备实验材料;2.将光照计置于实验桌上,并打开设备电源;3.分别打开白炽灯、荧光灯和LED灯,调整它们的亮度以适应实验;4.使用尺子测量每个光源与光照计的距离,并记录下来;5.将光照计对准每个光源,并记录下来测得的光照强度数值;6.将测得的实验数据整理并分析。

实验数据:光源1(白炽灯)与光照计的距离为30cm,测得的光照强度为500 lux;光源2(荧光灯)与光照计的距离为40cm,测得的光照强度为800 lux;光源3(LED灯)与光照计的距离为50cm,测得的光照强度为1200 lux。

实验结果分析:通过测量不同光源的光照强度可发现,不同光源的光照强度存在较大的差异。

白炽灯的光照强度最低,为500 lux;荧光灯的光照强度居中,为800 lux;LED 灯的光照强度最高,为1200 lux。

可见,光源的类型和亮度对其光照强度有较大的影响。

进一步分析发现,光源的光照强度与距离的平方成反相关关系。

以光源2(荧光灯)为例,光源与光照计的距离为40cm,而光照强度为800 lux。

如果将光源与光照计的距离增加到80cm,则光照强度会变为原来的四分之一,即200 lux。

这说明光源与被照物体之间的距离越大,光照强度会以距离的平方递减。

结论:不同光源的光照强度存在较大差异,且光照强度与距离的平方成反相关关系。

光强分布的测量

光强分布的测量

光强分布的测量实验一、实验目的1.观察单缝衍射现象,加深对衍射理论的理解。

2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。

3.学会用衍射法测量微小量。

4. 验证马吕斯定律。

二、实验原理如图1所示,图1 夫琅禾费单缝衍射光路图与狭缝E 垂直的衍射光束会聚于屏上P 0处,是中央明纹的中心,光强最大,设为I 0,与光轴方向成Ф角的衍射光束会聚于屏上P A 处,P A 的光强由计算可得:式中,b 为狭缝的宽度,λ为单色光的波长,当0=β时,光强最大,称为主极大,主极大的强度决定于光强的强度和缝的宽度。

当πβk =,即:220sin ββI I A =)sin (λφπβb =bKλφ=sin ),,,⋅⋅⋅±±±=321(K时,出现暗条纹。

除了主极大之外,两相邻暗纹之间都有一个次极大,由数学计算可得出现这些次极大的位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大的相对光强I/I 0依次为0.047,0.017,0.008,…图2 夫琅禾费衍射的光强分布夫琅禾费衍射的光强分布如图2所示。

图3 夫琅禾费单缝衍射的简化装置用氦氖激光器作光源,则由于激光束的方向性好,能量集中,且缝的宽度b 一般很小,这样就可以不用透镜L 1,若观察屏(接受器)距离狭缝也较远(即D 远大于b )则透镜L 2也可以不用,这样夫琅禾费单缝衍射装置就简化为图3,这时,由上二式可得三、实验装置激光器座、半导体激光器、导轨、二维调节架、一维光强测试装置、分划板 、可调狭缝、平行光管、起偏检偏装置、光电探头 、小孔屏、 数字式检流计、专用测量线等。

Dx /tan sin =≈φφxD K b /λ=图4 衍射、干涉等一维光强分布的测试四、实验步骤1. 接上电源(要求交流稳压220V ±11V ,频率50HZ 输出),开机预热15分钟;2. 量程选择开关置于“1”档,衰减旋钮顺时针置底,调节调零旋钮,使数据显示为-.000; (一)单缝衍射一维光强分布的测试1、 按图4搭好实验装置。

5 实验五 光电效应法测量普朗克常数

5 实验五 光电效应法测量普朗克常数
光电效应法测量普朗克常数
普朗克常数 h 是 1900 年普朗克为了解决黑体辐射能量分布时提出的“能量 子”假设中的一个普适常数,是基本作用量子,也是粗略地判断一个物理体系是 否需要用量子力学来描述的依据。 1905 年爱因斯坦发展了辐射能量 E 以 h ( 是光的频率 )为不连续的最小单位的量子化思想, 成功地解释了光电效应实验 中遇到的问题。1916 年密立根用光电效应法测量了普朗克常数 h,同时证实 了光量子能量方程式的成立。光电效应实验有助于我们了解量子物理学的发展 及对光的本性认识。今天,光电效应已经广泛地应用于现代科学技术的各个 领域,利用光电效应制成的光电器件已成为光电自动控制、微弱光信号检测 等技术中不可缺少的器件。 一、实验目的 1.了解光电效应的基本规律,验证爱因斯坦光电效应方程。 2.掌握光电效应法测定普朗克常数 h。 3.用三种数据处理方法分析实验结果。 二、实验仪器 BEX-8504 型光电效应实验仪。 DH-GD-3 型普朗克测定仪。 具体包括:可调直流(恒压)电源,微电流测量仪,高压汞灯,滤光片 (中心波长:365 nm、405 nm、436 nm、546 nm、577 nm) 、光阑(2 mm,4 mm, 8 mm) 、光电管、导轨、遮光罩。 三、实验原理 光电效应实验原理如图 1 所示, 其中 S 为真空光电管, K 为阴极, A 为阳极, 当无光照射阴极时,由于阳极与阴极是断路的,所以检流计 G 中无电流流过; 当用一波长比较短的单色光照射到阴极 K 上时,阴极上的电子吸收了光子的能 量后逸出金属阴极表面并被阳极所俘获,形成光电流。 1. 光电流与外加电压大小的关系 光电流随加速电位差 U 变化的伏安特性曲线如图 2 所示。光电流随加速电 位差 U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值 IH, 饱和电流与光强成正比,而与入射光的频率无关。当阳极和阴极之间加上反向电 压时,光电流迅速减小。实验中发现,存在一个遏止电位差 Ua,当电位差达到 这个值时,光电流为零。 1

衍射光强分布测量5

衍射光强分布测量5

测定单缝衍射的光强分布【教学目的】1.观察单缝衍射现象,加深对衍射理论的理解。

2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。

3.学会用衍射法测量微小量。

【教学重点】1.夫琅禾费衍射理论2.夫琅禾费单缝衍射装置3.用光电元件测量单缝衍射的相对光强分布,衍射法测量微小量【教学难点】夫琅禾费单缝衍射光路及光强分布规律【课程讲授】提问:1. 缝宽的变化对衍射条纹有什么影响?2. 夫琅和费衍射应符合什么条件?一、实验原理光的衍射现象是光的波动性的重要表现。

根据光源及观察衍射图象的屏幕(衍射屏)到产生衍射的障碍物的距离不同,分为菲涅耳衍射和夫琅禾费衍射两种,前者是光源和衍射屏到衍射物的距离为有限远时的衍射,即所谓近场衍射;后者则为无限远时的衍射,即所谓远场衍射。

要实现夫琅禾费衍射,必须保证光源至单缝的距离和单缝到衍射屏的距离均为无限远(或相当于无限远),即要求照射到单缝上的入射光、衍射光都为平行光,屏应放到相当远处,在实验中只用两个透镜即可达到此要求。

实验光路如图1所示,图1 夫琅禾费单缝衍射光路图与狭缝E 垂直的衍射光束会聚于屏上P 0处,是中央明纹的中心,光强最大,设为I 0,与光轴方向成Ф角的衍射光束会聚于屏上P A 处,P A 的光强由计算可得:式中,b 为狭缝的宽度,λ为单色光的波长,当0=β时,光强最大,称为主极大,主极大的强度决定于光强的强度和缝的宽度。

当πβk =,即:时,出现暗条纹。

除了主极大之外,两相邻暗纹之间都有一个次极大,由数学计算可得出现这些次极大的位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大的相对光强I/I 0依次为0.047,0.017,0.008,…图2 夫琅禾费衍射的光强分布夫琅禾费衍射的光强分布如图2所示。

220sin ββI I A =)sin (λφπβb =b Kλφ=sin ),,,⋅⋅⋅±±±=321(K图3 夫琅禾费单缝衍射的简化装置用氦氖激光器作光源,则由于激光束的方向性好,能量集中,且缝的宽度b 一般很小,这样就可以不用透镜L 1,若观察屏(接受器)距离狭缝也较远(即D 远大于b )则透镜L 2也可以不用,这样夫琅禾费单缝衍射装置就简化为图3,这时,由上二式可得二、实验装置激光器座、半导体激光器、导轨、二维调节架、一维光强测试装置、分划板 、可调狭缝、平行光管、起偏检偏装置、光电探头 、小孔屏、 数字式检流计、专用测量线等。

光强分布的测量

光强分布的测量

光强分布的‎测量实验一、实验目的1.观察单缝衍‎射现象,加深对衍射‎理论的理解‎。

2.会用光电元‎件测量单缝‎衍射的相对‎光强分布,掌握其分布‎规律。

3.学会用衍射‎法测量微小‎量。

4.验证马吕斯‎定律。

二、实验原理如图1所示‎,图1 夫琅禾费单‎缝衍射光路‎图与狭缝E 垂‎直的衍射光‎束会聚于屏‎上P 0处,是中央明纹‎的中心,光强最大,设为I 0,与光轴方向‎成Ф角的衍‎射光束会聚‎于屏上PA ‎处,PA 的光强‎由计算可得‎:式中,b 为狭缝的‎宽度,λ为单色光的‎波长,当0=β时,光强最大,称为主极大‎,主极大的强‎度决定于光‎强的强度和‎缝的宽度。

当πβk =,即:220sin ββI I A =)sin (λφπβb =bKλφ=sin ),,,⋅⋅⋅±±±=321(K时,出现暗条纹‎。

除了主极大‎之外,两相邻暗纹‎之间都有一‎个次极大,由数学计算‎可得出现这‎些次极大的‎位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大‎的相对光强‎I/I0依次为‎0.047,0.017,0.008,…图2 夫琅禾费衍‎射的光强分‎布夫琅禾费衍‎射的光强分‎布如图2所‎示。

图3 夫琅禾费单‎缝衍射的简‎化装置用氦氖激光‎器作光源,则由于激光‎束的方向性‎好,能量集中,且缝的宽度‎b 一般很小‎,这样就可以‎不用透镜L ‎1,若观察屏(接受器)距离狭缝也‎较远(即D 远大于‎b )则透镜L2‎也可以不用‎,这样夫琅禾‎费单缝衍射‎装置就简化‎为图3,这时,由上二式可‎得三、实验装置激光器座、半导体激光‎器、导轨、二维调节架‎、一维光强测‎试装置、分划板、可调狭缝、平行光管、起偏检偏装‎置、光电探头、小孔屏、数字式检流‎计、专用测量线‎等。

Dx /ta n s i n =≈φφxD K b /λ=图4 衍射、干涉等一维‎光强分布的‎测试四、实验步骤1. 接上电源(要求交流稳‎压220V ‎±11V ,频率50H ‎Z 输出),开机预热1‎5分钟;2. 量程选择开‎关置于“1”档,衰减旋钮顺‎时针置底,调节调零旋‎钮,使数据显示‎为-.000; (一)单缝衍射一‎维光强分布‎的测试1、 按图4搭好‎实验装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档