《三年高考两年模拟》数学(文科)汇编专题:3.2导数的应用(含答案解析)

合集下载

【5年高考3年模拟】(新课标版)高考数学真题分类汇编 3.2 导数的应用 理

【5年高考3年模拟】(新课标版)高考数学真题分类汇编 3.2 导数的应用 理

§3.2 导数的应用考点一函数的单调性1.(2014课标Ⅰ,11,5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a 的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)答案 C2.(2014课标Ⅱ,21,12分)已知函数f(x)=e x-e-x-2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值;(3)已知1.414 2<<1.414 3,估计ln 2的近似值(精确到0.001).解析(1)f '(x)=e x+e-x-2≥0,等号仅当x=0时成立.所以f(x)在(-∞,+∞)上单调递增.(2)g(x)=f(2x)-4bf(x)=e2x-e-2x-4b(e x-e-x)+(8b-4)x,g'(x)=2[e2x+e-2x-2b(e x+e-x)+(4b-2)]=2(e x+e-x-2)(e x+e-x-2b+2).(i)当b≤2时,g'(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0.(ii)当b>2时,若x满足2<e x+e-x<2b-2,即0<x<ln(b-1+)时,g'(x)<0.而g(0)=0,因此当0<x≤ln(b-1+)时,g(x)<0.综上,b的最大值为2.(3)由(2)知,g(ln)=-2b+2(2b-1)ln 2.当b=2时,g(ln)=-4+6ln 2>0,ln 2>>0.692 8;当b=+1时,ln(b-1+)=ln,g(ln)=--2+(3+2)ln 2<0,ln 2<<0.693 4.所以ln 2的近似值为0.693.3.(2014广东,21,14分)设函数f(x)=,其中k<-2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<-6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).解析(1)由题意得(x2+2x+k)2+2(x2+2x+k)-3>0,∴[(x2+2x+k)+3]·[(x2+2x+k)-1]>0,∴x2+2x+k<-3或x2+2x+k>1,∴(x+1)2<-2-k(-2-k>0)或(x+1)2>2-k(2-k>0),∴|x+1|<或|x+1|>,∴-1-<x<-1+或x<-1-或x>-1+,∴函数f(x)的定义域D为(-∞,-1-)∪(-1-,-1+)∪(-1+,+∞).(2)f '(x)=-=-,由f '(x)>0得(x2+2x+k+1)(2x+2)<0,即(x+1+)(x+1-)(x+1)<0,∴x<-1-或-1<x<-1+,结合定义域知x<-1-或-1<x<-1+,所以函数f(x)的单调递增区间为(-∞,-1-),(-1,-1+),同理,递减区间为(-1-,-1),(-1+,+∞).(3)由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)-3=(3+k)2+2(3+k)-3,∴[(x2+2x+k)2-(3+k)2]+2[(x2+2x+k)-(3+k)]=0,∴(x2+2x+2k+5)·(x2+2x-3)=0,∴(x+1+)(x+1-)·(x+3)(x-1)=0,∴x=-1-或x=-1+或x=-3或x=1,∵k<-6,∴1∈(-1,-1+),-3∈(-1-,-1),-1-<-1-,-1+>-1+,结合函数f(x)的单调性知f(x)>f(1)的解集为(-1-,-1-)∪(-1-,-3)∪(1,-1+)∪(-1+,-1+).考点二函数的极值与最值4.(2014课标Ⅱ,12,5分)设函数f(x)=sin.若存在f(x)的极值点x0满足+[f(x0)]2<m2,则m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)答案 C5.(2014安徽,18,12分)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.解析(1)f(x)的定义域为(-∞,+∞), f '(x)=1+a-2x-3x2.令f '(x)=0,得x1=,x2=,x1<x2,所以f '(x)=-3(x-x1)(x-x2).当x<x1或x>x2时, f '(x)<0;当x1<x<x2时, f '(x)>0.故f(x)在(-∞,x1)和(x2,+∞)内单调递减,在(x1,x2)内单调递增.(2)因为a>0,所以x1<0,x2>0.①当a≥4时,x2≥1.由(1)知, f(x)在[0,1]上单调递增.所以f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1.由(1)知, f(x)在[0,x2]上单调递增,在[x2,1]上单调递减.所以f(x)在x=x2=处取得最大值.又f(0)=1, f(1)=a,所以当0<a<1时, f(x)在x=1处取得最小值;当a=1时, f(x)在x=0处和x=1处同时取得最小值;当1<a<4时, f(x)在x=0处取得最小值.6.(2014山东,20,13分)设函数f(x)=-k(k为常数,e=2.718 28…是自然对数的底数).(1)当k≤0时,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.解析(1)函数y=f(x)的定义域为(0,+∞).f '(x)=-k=-=.由k≤0可得e x-kx>0,所以当x∈(0,2)时, f '(x)<0,函数y=f(x)单调递减,当x∈(2,+∞)时, f '(x)>0,函数y=f(x)单调递增.所以f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=e x-kx,x∈[0,+∞).因为g'(x)=e x-k=e x-e ln k,当0<k≤1时,当x∈(0,2)时,g'(x)=e x-k>0,y=g(x)单调递增,故f(x)在(0,2)内不存在两个极值点;当k>1时,得x∈(0,ln k)时,g'(x)<0,函数y=g(x)单调递减,x∈(ln k,+∞)时,g'(x)>0,函数y=g(x)单调递增.所以函数y=g(x)的最小值为g(ln k)=k(1-ln k).函数f(x)在(0,2)内存在两个极值点,当且仅当解得e<k<.综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为.7.(2014福建,20,14分)已知函数f(x)=e x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<ce x.解析解法一:(1)由f(x)=e x-ax,得f '(x)=e x-a.又f '(0)=1-a=-1,得a=2.所以f(x)=e x-2x,f '(x)=e x-2.令f '(x)=0,得x=ln 2.当x<ln 2时, f '(x)<0,f(x)单调递减;当x>ln 2时, f '(x)>0,f(x)单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值.(2)令g(x)=e x-x2,则g'(x)=e x-2x.由(1)得g'(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增,又g(0)=1>0,因此,当x>0时,g(x)>g(0)>0,即x2<e x.(3)①若c≥1,则e x≤ce x.又由(2)知,当x>0时,x2<e x.所以当x>0时,x2<ce x.取x0=0,当x∈(x0,+∞)时,恒有x2<ce x.②若0<c<1,令k=>1,要使不等式x2<ce x成立,只要e x>kx2成立.而要使e x>kx2成立,则只要x>ln(kx2),只要x>2ln x+ln k成立.令h(x)=x-2ln x-ln k,则h'(x)=1-=,所以当x>2时,h'(x)>0,h(x)在(2,+∞)内单调递增.取x0=16k>16,所以h(x)在(x0,+∞)内单调递增,又h(x0)=16k-2ln(16k)-ln k=8(k-ln 2)+3(k-ln k)+5k,易知k>ln k,k>ln 2,5k>0,所以h(x0)>0.即存在x0=,当x∈(x0,+∞)时,恒有x2<ce x.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<ce x.解法二:(1)同解法一.(2)同解法一.(3)对任意给定的正数c,取x0=,由(2)知,当x>0时,e x>x2,所以e x=·>,当x>x0时,e x>>=x2,因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<ce x.解法三:(1)同解法一.(2)同解法一.(3)首先证明当x∈(0,+∞)时,恒有x3<e x.证明如下:令h(x)=x3-e x,则h'(x)=x2-e x.由(2)知,当x>0时,x2<e x,从而h'(x)<0,h(x)在(0,+∞)内单调递减,所以h(x)<h(0)=-1<0,即x3<e x.取x0=,当x>x0时,有x2<x3<e x.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<ce x.注:对c的分类可有不同的方式,只要解法正确,均相应给分.考点三导数的综合应用8.(2014陕西,10,5分)如图,某飞行器在4千米高空水平飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A.y=x3-xB.y=x3-xC.y=x3-xD.y=-x3+x答案 A9.(2014辽宁,11,5分)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( )A.[-5,-3]B.C.[-6,-2]D.[-4,-3]答案 C10.(2014课标Ⅰ,21,12分)设函数f(x)=ae x ln x+,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2.(1)求a,b;(2)证明:f(x)>1.解析(1)函数f(x)的定义域为(0,+∞), f '(x)=ae x ln x+e x-e x-1+e x-1.由题意可得f(1)=2, f '(1)=e.故a=1,b=2.(2)由(1)知, f(x)=e x ln x+e x-1,从而f(x)>1等价于xln x>xe-x-.设函数g(x)=xln x,则g'(x)=1+ln x.所以当x∈时,g'(x)<0;当x∈时,g'(x)>0.故g(x)在上单调递减,在上单调递增,从而g(x)在(0,+∞)上的最小值为g=-.设函数h(x)=xe-x-,则h'(x)=e-x(1-x).所以当x∈(0,1)时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0.故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-.综上,当x>0时,g(x)>h(x),即f(x)>1.11.(2014北京,18,13分)已知函数f(x)=xcos x-sin x,x∈.(1)求证:f(x)≤0;(2)若a<<b对x∈恒成立,求a的最大值与b的最小值.解析(1)由f(x)=xcos x-sin x得f '(x)=cos x-xsin x-cos x=-xsin x.因为在区间上f '(x)=-xsin x<0,所以f(x)在区间上单调递减.从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sin x-ax>0”;“<b”等价于“sin x-bx<0”.令g(x)=sin x-cx,则g'(x)=cos x-c.当c≤0时,g(x)>0对任意x∈恒成立.当c≥1时,因为对任意x∈,g'(x)=cos x-c<0,所以g(x)在区间上单调递减.从而g(x)<g(0)=0对任意x∈恒成立.当0<c<1时,存在唯一的x0∈使得g'(x0)=cos x0-c=0.g(x)与g'(x)在区间上的情况如下:因为g(x)在区间[0,x0]上是增函数,所以g(x0)>g(0)=0.进一步,“g(x)>0对任意x∈恒成立”当且仅当g=1-c≥0,即0<c≤.综上所述,当且仅当c≤时,g(x)>0对任意x∈恒成立;当且仅当c≥1时,g(x)<0对任意x∈恒成立.所以,若a<<b对任意x∈恒成立,则a的最大值为,b的最小值为1.12.(2014江西,18,12分)已知函数f(x)=(x2+bx+b)(b∈R).(1)当b=4时,求f(x)的极值;(2)若f(x)在区间上单调递增,求b的取值范围.解析(1)当b=4时, f '(x)=,由f '(x)=0得x=-2或x=0.当x∈(-∞,-2)时, f '(x)<0, f(x)单调递减;当x∈(-2,0)时, f '(x)>0, f(x)单调递增;当x∈时, f '(x)<0, f(x)单调递减,故f(x)在x=-2处取极小值f(-2)=0,在x=0处取极大值f(0)=4.(2)f '(x)=,因为当x∈时,<0,依题意,当x∈时,有5x+(3b-2)≤0,从而+(3b-2)≤0.所以b的取值范围为.13.(2014天津,20,14分)设f(x)=x-ae x(a∈R),x∈R.已知函数y=f(x)有两个零点x1,x2,且x1<x2.(1)求a的取值范围;(2)证明随着a的减小而增大;(3)证明x1+x2随着a的减小而增大.解析(1)由f(x)=x-ae x,可得f '(x)=1-ae x,下面分两种情况讨论:①a≤0时,f '(x)>0在R上恒成立,可得f(x)在R上单调递增,不合题意.②a>0时,由f '(x)=0,得x=-ln a.当x变化时, f '(x), f(x)的变化情况如下表:这时, f(x)的单调递增区间是(-∞,-ln a);单调递减区间是(-ln a,+∞).于是,“函数y=f(x)有两个零点”等价于如下条件同时成立:(i)f(-ln a)>0;(ii)存在s1∈(-∞,-ln a),满足f(s1)<0;(iii)存在s2∈(-ln a,+∞),满足f(s2)<0.由f(-ln a)>0,即-ln a-1>0,解得0<a<e-1.而此时,取s1=0,满足s1∈(-∞,-ln a),且f(s1)=-a<0;取s2=+ln,满足s2∈(-ln a,+∞),且f(s2)=+<0.所以a的取值范围是(0,e-1).(2)证明:由f(x)=x-ae x=0,有a=.设g(x)=,由g'(x)=,知g(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减.并且,当x∈(-∞,0]时,g(x)≤0;当x∈(0,+∞)时,g(x)>0.由已知,x1,x2满足a=g(x1),a=g(x2).由a∈(0,e-1),及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞).对于任意的a1,a2∈(0,e-1),设a1>a2,g(ξ1)=g(ξ2)=a1,其中0<ξ1<1<ξ2;g(η1)=g(η2)=a2,其中0<η1<1<η2.因为g(x)在(0,1)上单调递增,故由a1>a2,即g(ξ1)>g(η1),可得ξ1>η1;类似可得ξ2<η2.又由ξ1,η1>0,得<<.所以随着a的减小而增大.(3)证明:由x1=a,x2=a,可得ln x1=ln a+x1,ln x2=ln a+x2.故x2-x1=ln x2-ln x1=ln.设=t,则t>1,且解得x1=,x2=.所以x1+x2=.(*)令h(x)=,x∈(1,+∞),则h'(x)=.令u(x)=-2ln x+x-,得u'(x)=.当x∈(1,+∞)时,u'(x)>0.因此,u(x)在(1,+∞)上单调递增,故对于任意的x∈(1,+∞),u(x)>u(1)=0,由此可得h'(x)>0,故h(x)在(1,+∞)上单调递增. 因此,由(*)可得x1+x2随着t的增大而增大.而由(2),知t随着a的减小而增大,所以x1+x2随着a的减小而增大.14.(2014辽宁,21,12分)已知函数f(x)=(cos x-x)(π+2x)-(sin x+1),g(x)=3(x-π)cos x-4(1+sin x)ln.证明:(1)存在唯一x0∈,使f(x0)=0;(2)存在唯一x1∈,使g(x1)=0,且对(1)中的x0,有x0+x1<π.证明(1)当x∈时, f '(x)=-(1+sin x)(π+2x)-2x-cos x<0,函数f(x)在上为减函数,又f(0)=π->0, f=-π2-<0,所以存在唯一x0∈,使f(x0)=0.(2)考虑函数h(x)=-4ln,x∈.令t=π-x,则x∈时,t∈.记u(t)=h(π-t)=-4ln,则u'(t)=.由(1)得,当t∈(0,x0)时,u'(t)>0,当t∈时,u'(t)<0.在(0,x0)上u(t)是增函数,又u(0)=0,从而当t∈(0,x0]时,u(t)>0,所以u(t)在(0,x0]上无零点.在上u(t)为减函数,由u(x0)>0,u=-4ln 2<0,知存在唯一t1∈,使u(t1)=0.所以存在唯一的t1∈,使u(t1)=0.因此存在唯一的x1=π-t1∈,使h(x1)=h(π-t1)=u(t1)=0.因为当x∈时,1+sin x>0,故g(x)=(1+sin x)h(x)与h(x)有相同的零点,所以存在唯一的x1∈,使g(x1)=0.因x1=π-t1,t1>x0,所以x0+x1<π.15.(2014湖南,22,13分)已知常数a>0,函数f(x)=ln(1+ax)-.(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.解析(1)f '(x)=-=.(*)当a≥1时, f '(x)>0,此时, f(x)在区间(0,+∞)上单调递增.当0<a<1时,由f '(x)=0得x1=2x2=-2舍去.当x∈(0,x1)时, f '(x)<0;当x∈(x1,+∞)时, f '(x)>0,故f(x)在区间(0,x1)上单调递减,在区间(x1,+∞)上单调递增.综上所述,当a≥1时, f(x)在区间(0,+∞)上单调递增;当0<a<1时, f(x)在区间上单调递减,在区间上单调递增.(2)由(*)式知,当a≥1时, f '(x)≥0,此时f(x)不存在极值点.因而要使得f(x)有两个极值点,必有0<a<1,又f(x)的极值点只可能是x1=2和x2=-2,且由f(x)的定义可知,x>-且x≠-2,所以-2>-,-2≠-2,解得a≠.此时,由(*)式易知,x1,x2分别是f(x)的极小值点和极大值点. 而f(x1)+f(x2)=ln(1+ax1)-+ln(1+ax2)-=ln[1+a(x1+x2)+a2x1x2]-=ln(2a-1)2-=ln(2a-1)2+-2,令2a-1=x,由0<a<1且a≠知,当0<a<时,-1<x<0;当<a<1时,0<x<1,记g(x)=ln x2+-2.(i)当-1<x<0时,g(x)=2ln(-x)+-2,所以g'(x)=-=<0,因此,g(x)在区间(-1,0)上单调递减,从而g(x)<g(-1)=-4<0,故当0<a<时, f(x1)+f(x2)<0. (ii)当0<x<1时,g(x)=2ln x+-2,所以g'(x)=-=<0,因此,g(x)在区间(0,1)上单调递减,从而g(x)>g(1)=0,故当<a<1时, f(x1)+f(x2)>0.综上所述,满足条件的a的取值范围为.16.(2014湖北,22,14分)π为圆周率,e=2.718 28…为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数;(3)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.解析(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f '(x)=.当f '(x)>0,即0<x<e时,函数f(x)单调递增;当f '(x)<0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e<ln πe,ln eπ<ln 3π.于是根据函数y=ln x,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π.故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(1)的结论,得f(π)<f(3)<f(e),即<<.由<,得ln π3<ln 3π,所以3π>π3;由<,得ln 3e<ln e3,所以3e<e3.综上,6个数中的最大数是3π,最小数是3e.(3)由(2)知,3e<πe<π3<3π,3e<e3.又由(2)知,<,得πe<eπ.故只需比较e3与πe和eπ与π3的大小.由(1)知,当0<x<e时, f(x)<f(e)=,即<.在上式中,令x=,又<e,则ln<,从而2-ln π<,即得ln π>2-.①由①得,eln π>e>2.7×>2.7×(2-0.88)=3.024>3,即eln π>3,亦即ln πe>ln e3,所以e3<πe.又由①得,3ln π>6->6-e>π,即3ln π>π,所以eπ<π3.综上可得,3e<e3<πe<eπ<π3<3π,即6个数从小到大的顺序为3e,e3,πe,eπ,π3,3π.17.(2014重庆,20,12分)已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f '(x)为偶函数,且曲线y=f(x)在点(0, f(0))处的切线的斜率为4-c.(1)确定a,b的值;(2)若c=3,判断f(x)的单调性;(3)若f(x)有极值,求c的取值范围.解析(1)对f(x)求导得f '(x)=2ae2x+2be-2x-c,由f '(x)为偶函数,知f '(-x)=f '(x),即2(a-b)(e2x+e-2x)=0,因为e2x+e-2x>0,所以a=b.又f '(0)=2a+2b-c=4-c,故a=1,b=1.(2)当c=3时, f(x)=e2x-e-2x-3x,那么f '(x)=2e2x+2e-2x-3≥2-3=1>0,故f(x)在R上为增函数.(3)由(1)知f '(x)=2e2x+2e-2x-c,而2e2x+2e-2x≥2=4,当x=0时等号成立.下面分三种情况进行讨论.当c<4时,对任意x∈R, f '(x)=2e2x+2e-2x-c>0,此时f(x)无极值;当c=4时,对任意x≠0, f '(x)=2e2x+2e-2x-4>0,此时f(x)无极值;当c>4时,令e2x=t,注意到方程2t+-c=0有两根t1,2=>0,即f '(x)=0有两个根x1=ln t1,x2=ln t2.当x1<x<x2时, f '(x)<0;又当x>x2时, f '(x)>0,从而f(x)在x=x2处取得极小值.综上,若f(x)有极值,则c的取值范围为(4,+∞).18.(2014浙江,22,14分)已知函数f(x)=x3+3|x-a|(a∈R).(1)若f(x)在[-1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)-m(a);(2)设b∈R.若[f(x)+b]2≤4对x∈[-1,1]恒成立,求3a+b的取值范围.解析(1)因为f(x)=所以f '(x)=由于-1≤x≤1,(i)当a≤-1时,有x≥a,故f(x)=x3+3x-3a.此时f(x)在(-1,1)上是增函数,因此,M(a)=f(1)=4-3a,m(a)=f(-1)=-4-3a,故M(a)-m(a)=(4-3a)-(-4-3a)=8.(ii)当-1<a<1时,若x∈(a,1),则f(x)=x3+3x-3a,在(a,1)上是增函数;若x∈(-1,a),则f(x)=x3-3x+3a,在(-1,a)上是减函数,所以,M(a)=max{f(1),f(-1)},m(a)=f(a)=a3,由于f(1)-f(-1)=-6a+2,因此,当-1<a≤时,M(a)-m(a)=-a3-3a+4;当<a<1时,M(a)-m(a)=-a3+3a+2.(iii)当a≥1时,有x≤a,故f(x)=x3-3x+3a,此时f(x)在(-1,1)上是减函数,因此,M(a)=f(-1)=2+3a,m(a)=f(1)=-2+3a,故M(a)-m(a)=(2+3a)-(-2+3a)=4.综上,M(a)-m(a)=(2)令h(x)=f(x)+b,则h(x)=h'(x)=因为[f(x)+b]2≤4对x∈[-1,1]恒成立,即-2≤h(x)≤2对x∈[-1,1]恒成立,所以由(1)知, (i)当a≤-1时,h(x)在(-1,1)上是增函数,h(x)在[-1,1]上的最大值是h(1)=4-3a+b,最小值是h(-1)=-4-3a+b,则-4-3a+b≥-2且4-3a+b≤2,矛盾.(ii)当-1<a≤时,h(x)在[-1,1]上的最小值是h(a)=a3+b,最大值是h(1)=4-3a+b,所以a3+b≥-2且4-3a+b≤2,从而-2-a3+3a≤3a+b≤6a-2且0≤a≤.令t(a)=-2-a3+3a,则t'(a)=3-3a2>0,t(a)在上是增函数,故t(a)≥t(0)=-2,因此-2≤3a+b≤0.(iii)当<a<1时,h(x)在[-1,1]上的最小值是h(a)=a3+b,最大值是h(-1)=3a+b+2,所以a3+b≥-2且3a+b+2≤2,解得-<3a+b≤0.(iv)当a≥1时,h(x)在[-1,1]上的最大值是h(-1)=2+3a+b,最小值是h(1)=-2+3a+b,所以3a+b+2≤2且3a+b-2≥-2,解得3a+b=0.综上,得3a+b的取值范围是-2≤3a+b≤0.19.(2014四川,21,14分)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.解析(1)由f(x)=e x-ax2-bx-1,有g(x)=f '(x)=e x-2ax-b.所以g'(x)=e x-2a.因此,当x∈[0,1]时,g'(x)∈[1-2a,e-2a].当a≤时,g'(x)≥0,所以g(x)在[0,1]上单调递增.因此g(x)在[0,1]上的最小值是g(0)=1-b;当a≥时,g'(x)≤0,所以g(x)在[0,1]上单调递减,因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;当<a<时,令g'(x)=0,得x=ln(2a)∈(0,1).所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.综上所述,当a≤时,g(x)在[0,1]上的最小值是g(0)=1-b;当<a<时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;当a≥时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知, f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1.同理g(x)在区间(x0,1)内存在零点x2.所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点.当a≥时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点.所以<a<.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0有a+b=e-1<2,有g(0)=1-b=a-e+2>0,g(1)=e-2a-b=1-a>0.解得e-2<a<1.当e-2<a<1时,g(x)在区间[0,1]内有最小值g(ln(2a)).若g(ln(2a))≥0,则g(x)≥0(x∈[0,1]),从而f(x)在区间[0,1]上单调递增,这与f(0)=f(1)=0矛盾,所以g(ln(2a))<0.又g(0)=a-e+2>0,g(1)=1-a>0,故此时g(x)在(0,ln(2a))和(ln(2a),1)内各只有一个零点x1和x2.由此可知f(x)在[0,x1]上单调递增,在(x1,x2)上单调递减,在[x2,1]上单调递增.所以f(x1)>f(0)=0, f(x2)<f(1)=0,故f(x)在(x1,x2)内有零点.综上可知,a的取值范围是(e-2,1).。

2017版《三年高考两年模拟》数学(理科)汇编专题:3.2导数的应用

2017版《三年高考两年模拟》数学(理科)汇编专题:3.2导数的应用

第二节 导数的应用A 组 三年高考真题(2016~2014年)1.(2015·福建,10)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A.f ⎝⎛⎭⎫1k <1kB.f ⎝⎛⎭⎫1k >1k -1C.f ⎝⎛⎭⎫1k -1<1k -1D.f ⎝⎛⎭⎫1k -1>k k -12.(2015·陕西,12)对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A.-1是f (x )的零点B.1是f (x )的极值点C.3是f (x )的极值D.点(2,8)在曲线y =f (x )上 3.(2015·新课标全国Ⅱ,12)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)4.(2015·新课标全国Ⅰ,12)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1B.⎣⎡⎭⎫-32e ,34C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1 5.(2014·新课标全国Ⅱ,12)设函数f (x )=3sin πx m .若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)6.(2014·辽宁,11)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.⎣⎡⎦⎤-6,-98 C.[-6,-2] D.[-4,-3] 7.(2016·全国Ⅱ,21)(1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x +x +2>0;(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.8.(2016·全国Ⅲ,21)设函数f (x )=a cos 2x +(a -1)·(cos x +1),其中a >0,记|f (x )|的最大值为4. (1)求f ′(x ); (2)求A ; (3)证明|f ′(x )|≤2A .9.(2016·全国Ⅰ,21)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.10.(2016·北京,18)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4. (1)求a ,b 的值; (2)求f (x )的单调区间.11.(2016·四川,21)设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).12.(2016·山东,20)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.13.(2015·新课标全国Ⅱ,21)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.14.(2015·北京,18)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求证:当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x 33; (3)设实数k 使得f (x )>k ⎝⎛⎭⎫x +x33对x ∈(0,1)恒成立,求k 的最大值.15.(2015·四川,21)已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.16.(2015·天津,20)已知函数f (x )=nx -x n ,x ∈R ,其中n ∈N *,n ≥2. (1)讨论f (x )的单调性;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的正实数x ,都有f (x )≤g (x );(3)若关于x 的方程f (x )=a (a 为实数)有两个正实根x 1,x 2,求证:|x 2-x 1|<a1-n+2.17.(2015·江苏,19)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞,求c 的值.18.(2015·重庆,20)设函数f (x )=3x 2+axe x(a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程; (2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.19.(2015·新课标全国Ⅰ,21)已知函数f (x )=x 3+ax +14,g (x )=-ln x .(1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.20.(2015·安徽,21)设函数f (x )=x 2-ax +b .(1)讨论函数f (sin x )在⎝⎛⎭⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值; (2)记f 0(x )=x 2-a 0x +b 0,求函数|f (sin x )-f 0(sin x )|在⎣⎡⎦⎤-π2,π2上的最大值D ; (3)在(2)中,取a 0=b 0=0,求z =b -a 24满足D ≤1时的最大值.21.(2015·广东,19)设a >1,函数f (x )=(1+x 2)e x -a . (1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤3a -2e-1.22.(2015·山东,21)设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R . (1)讨论函数f (x )极值点的个数,并说明理由; (2)若∀x >0,f (x )≥0成立,求a 的取值范围.23.(2015·湖南,21)已知a >0,函数f (x )=e ax sin x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点,证明: (1)数列{f (x n )}是等比数列; (2)若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.24.(2015·福建,20)已知函数f (x )=ln(1+x ),g (x )=kx (k ∈R ). (1)证明:当x >0时,f (x )<x ;(2)证明:当k <1时,存在x 0>0,使得对任意的x ∈(0,x 0),恒有f (x )>g (x ); (3)确定k 的所有可能取值,使得存在t >0,对任意的x ∈(0,t ),恒有|f (x )-g (x )|<x 2.25.(2014·广东,21)设函数f (x )=1(x 2+2x +k )2+2(x 2+2x +k )-3,其中k <-2.(1)求函数f (x )的定义域D (用区间表示); (2)讨论函数f (x )在D 上的单调性;(3)若k <-6,求D 上满足条件f (x )>f (1)的x 的集合(用区间表示).26.(2014·山东,20)设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.27.(2014·新课标全国Ⅰ,21)设函数f (x )=a e xln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2. (1)求a ,b ; (2)证明:f (x )>1.28.(2014·北京,18)已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin xx <b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.29.(2014·江西,18)已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间(0,13)上单调递增,求b 的取值范围.30.(2014·辽宁,21)已知函数f (x )=(cos x -x )(π+2x )-83(sin x +1),g (x )=3(x -π)cos x -4(1+sinx )ln ⎝⎛⎭⎫3-2x π. 证明:(1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0; (2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1<π.B 组 两年模拟精选(2016~2015年)1.(2016·河北邯郸模拟)做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为( ) A.3B.4C.5D.62.(2016·北京重点中学模拟)已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是( ) A.⎝⎛⎭⎫0,34 B.⎝⎛⎭⎫12,34C.⎣⎡⎭⎫34,+∞D.⎝⎛⎭⎫0,12 3.(2016·江苏南京模拟)函数f (x )的导函数为f ′(x ),对∀x ∈R ,都有2f ′(x )>f (x )成立,若f (ln 4)=2,则不等式f (x )>e x2的解集是( )A.(ln 4,+∞)B.(0,ln 4)C.(1,+∞)D.(0,1)4.(2015·江西新余模拟)如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝⎛⎭⎫14,12B.(1,2)C.⎝⎛⎭⎫12,1 D.(2,3) 5.(2015·北京海淀4月模拟题)设某商品的需求函数为Q =100-5P ,其中Q ,P 分别表示需求量和价格,如果商品需求弹性EQEP 大于1⎝⎛⎭⎫其中EQ EP =-Q ′Q P ,Q ′是Q 的导数,则商品价格P 的取值范围是________.6.(2015·湛江质检)已知函数f (x )=sin x (x ≥0),g (x )=ax (x ≥0). (1)若f (x )≤g (x )恒成立,求实数a 的取值范围; (2)当a 取(1)中的最小值时,求证:g (x )-f (x )≤16x 3.7.(2015·浙江余杭模拟)已知函数f (x )=4x 2-72-x ,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1],若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.答案精析A 组 三年高考真题(2016~2014年)1.C [∵导函数f ′(x )满足f ′(x )>k >1,∴f ′(x )-k >0,k -1>0,1k -1>0,可构造函数g (x )=f (x )-kx ,可得g ′(x )>0,故g (x )在R 上为增函数, ∵f (0)=-1,∴g (0)=-1,∴g ⎝⎛⎭⎫1k -1>g (0),∴f ⎝⎛⎭⎫1k -1-k k -1>-1,∴f ⎝⎛⎭⎫1k -1>1k -1,∴选项C 错误,故选C.] 2.A [A 正确等价于a -b +c =0,① B 正确等价于b =-2a ,② C 正确等价于4ac -b 24a =3,③D 正确等价于4a +2b +c =8.④ 下面分情况验证,若A 错,由②、③、④组成的方程组的解为⎩⎪⎨⎪⎧a =5,b =-10,c =8.符合题意;若B 错,由①、③、④组成的方程组消元转化为关于a 的方程后无实数解; 若C 错,由①、②、④组成方程组,经验证a 无整数解; 若D 错,由①、②、③组成的方程组a 的解为-34也不是整数.综上,故选A.]3.A [因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=⎝⎛⎭⎫f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x>0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x <0⇔f (x )>0.综上,得使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),选A.]4.D [设g (x )=e x (2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x (2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,[g (x )]min=-2e -12,当x =0时,g (0)=-1,g (1)=3e>0,直线y =a (x -1)恒过(1,0)且斜率为a ,故-a >g (0)=-1, 且g (-1)=-3e -1≥-a -a ,解得32e≤a <1,故选D.]5.C [由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m =π2+k π(k ∈Z ),从而得x 0=(k +12)m (k ∈Z ).所以不等式x 20+[f (x 0)]2<m 2即为(k +12)2m 2+3<m 2,变形得m 2⎣⎡⎦⎤1-⎝⎛⎭⎫k +122>3,其中k ∈Z .由题意,存在整数k 使得不等式m 2⎣⎡⎦⎤1-⎝⎛⎭⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝⎛⎭⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.]6.C [当x ∈(0,1]时,得a ≥-3⎝⎛⎭⎫1x 3-4⎝⎛⎭⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6;同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立.故实数a 的取值范围为[-6,-2].]7.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0,且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增.因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0. (2)证明 g ′(x )=(x -2)e x +a (x +2)x 3=x +2x3(f (x )+a ).由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e x a -a (x a +1)x 2a =e x a +f (x a )(x +1)x 2a =e x ax a +2. 于是h (a )=e x a x a +2,由⎝⎛⎭⎫e x x +2′=(x +1)e x (x +2)2>0,e x x +2单调递增. 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24.因为e x x +2单调递增,对任意λ∈⎝⎛⎦⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝⎛⎦⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝⎛⎦⎤12,e 24. 8.(1)解 f ′(x )=-2a sin 2x -(a -1)sin x .(2)解 当a ≥1时,|f (x )|=|a cos 2x +(a -1)(cos x +1)|≤a +2(a -1)=3a -2.因此A =3a -2. 当0<a <1时,将f (x )变形为f (x )=2a cos 2x +(a -1)·cos x -1,令g (t )=2at 2+(a -1)t -1, 则A 是|g (t )|在[-1,1]上的最大值,g (-1)=a ,g (1)=3a -2,且当t =1-a 4a 时,g (t )取得极小值,极小值为g ⎝⎛⎭⎫1-a 4a =-(a -1)28a -1=-a 2+6a +18a .令-1<1-a 4a <1,解得a <-13(舍去),a >15. (ⅰ)当0<a ≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=a ,|g (1)|=2-3a ,|g (-1)|<|g (1)|,所以A =2-3a .(ⅱ)当15<a <1时,由g (-1)-g (1)=2(1-a )>0,知g (-1)>g (1)>g ⎝⎛⎭⎫1-a 4a . 又⎪⎪⎪⎪g ⎝⎛⎭⎫1-a 4a -|g (-1)|=(1-a )(1+7a )8a >0,所以A =⎪⎪⎪⎪g ⎝⎛⎭⎫1-a 4a =a 2+6a +18a .综上,A =⎩⎨⎧2-3a ,0<a ≤15,a 2+6a +18a ,15<a <1,3a -2,a ≥1.(3)证明 由(1)得|f ′(x )|=|-2a sin 2x -(a -1)sin x |≤2a +|a -1|. 当0<a ≤15时,|f ′(x )|≤1+a ≤2-4a <2(2-3a )=2A .当15<a <1时,A =a 8+18a +34≥1,所以|f ′(x )|≤1+a <2A . 当a ≥1时,|f ′(x )|≤3a -1≤6a -4=2A .所以|f ′(x )|≤2A . 9.解 (1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e 2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0,所以f (2-x 2)=-x 2e 2-x2-(x 2-2)e x2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ),所以当x >1时,g ′(x )<0,而g (1)=0, 故当x >1时,g (x )<0,从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2. 10.解 (1)f (x )的定义域为R . ∵f ′(x )=e a -x -x e a -x +b =(1-x )e a -x +b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞), 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞). 11.解 (1)f ′(x )=2ax -1x =2ax 2-1x (x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a .此时,当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎫12a <f (1)=0,而g ⎝⎛⎭⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈⎣⎡⎭⎫12,+∞.12.(1)解 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . ①0<a <2时,2a>1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. ②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ③a >2时,0<2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在 ⎝⎛⎭⎫2a ,+∞内单调递增; 当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增.(2)证明 由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-⎝⎛⎭⎫1-1x -2x 2+2x 3=x -ln x +3x +1x 2-2x3-1,x ∈[1,2]. 设g (x )=x -ln x ,h (x )=3x +1x 2-2x 3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x ≥0,可得g (x )≥g (1)=1,当且仅当x =1时取得等号.又h ′(x )=-3x 2-2x +6x 4.设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32.即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.13.(1)证明 f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0. 若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0. 所以,f (x )在(-∞,0)单调递减, 在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m -m ≤e -1,e -m +m ≤e -1.①设函数g (t )=e t -t -e +1,则g ′(t )=e t -1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1; 当m <-1时,g (-m )>0,即e -m +m >e -1. 综上,m 的取值范围是[-1,1].14.(1)解 因为f (x )=ln(1+x )-ln(1-x ),所以f ′(x )=11+x +11-x,f ′(0)=2. 又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)证明 令g (x )=f (x )-2⎝⎛⎭⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x 33. (3)解 由(2)知,当k ≤2时,f (x )>k ⎝⎛⎭⎫x +x33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝⎛⎭⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x 2. 所以当0<x <4k -2k 时,h ′(x )<0,因此h (x )在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减.当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝⎛⎭⎫x +x 33. 所以当k >2时,f (x )>k ⎝⎛⎭⎫x +x33并非对x ∈(0,1)恒成立. 综上可知,k 的最大值为2.15.(1)解 由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x -a )-2ln x -2⎝⎛⎭⎫1+ax , 所以g ′(x )=2-2x +2ax2=2⎝⎛⎭⎫x -122+2⎝⎛⎭⎫a -14x 2,当0<a <14时,g (x )在区间⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增,在区间⎝⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减;当a ≥14时,g (x )在区间(0,+∞)上单调递增.(2)证明 由f ′(x )=2(x -a )-2ln x -2⎝⎛⎭⎫1+a x =0,解得a =x -1-ln x 1+x -1, 令φ(x )=-2⎝ ⎛⎭⎪⎫x +x -1-ln x 1+x -1ln x +x 2-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -1x -2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -12+x -1-ln x 1+x -1,则φ(1)=1>0,φ(e)=-e (e -2)1+e -1-2⎝ ⎛⎭⎪⎫e -21+e -12<0, 故存在x 0∈(1,e),使得φ(x 0)=0,令a 0=x 0-1-ln x 01+x -10,u (x )=x -1-ln x (x ≥1), 由u ′(x )=1-1x ≥0知,函数u (x )在区间(1,+∞)上单调递增,所以0=u (1)1+1<u (x 0)1+x -10=a 0<u (e )1+e -1=e -21+e -1<1,即a 0∈(0,1),当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0,由(1)知,f ′(x )在区间(1,+∞)上单调递增, 故当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0,所以,当x ∈(1,+∞)时,f (x )≥0,综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.16.(1)解 由f (x )=nx -x n ,可得f ′(x )=n -nx n -1=n (1-x n -1). 其中n ∈N *,且n ≥2,下面分两种情况讨论: ①当n 为奇数时.令f ′(x )=0,解得x =1,或x =-1. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )在(②当n 为偶数时.当f ′(x )>0,即x <1时,函数f (x )单调递增; 当f ′(x )<0,即x >1时,函数f (x )单调递减;所以,f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. (2)证明 设点P 的坐标为(x 0,0),则x 0=n 1n -1,f ′(x 0)=n -n 2.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0). 令F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)(x -x 0),则F ′(x )=f ′(x )-f ′(x 0). 由于f ′(x )=-nx n -1+n 在(0,+∞)上单调递减,故F ′(x )在(0,+∞)上单调递减,又因为F ′(x 0)=0,所以当x ∈(0,x 0)时,F ′(x )>0, 当x ∈(x 0,+∞)时,F ′(x )<0,所以F (x )在(0,x 0)内单调递增, 在(x 0,+∞)上单调递减,所以对于任意的正实数x ,都有F (x )≤F (x 0)=0,即对于任意的正实数x ,都有f (x )≤g (x ). (3)证明 不妨设x 1≤x 2.由(2)知g (x )=(n -n 2)(x -x 0), 设方程g (x )=a 的根为x 2′,可得x 2′=an -n 2+x 0. 当n ≥2时,g (x )在(-∞,+∞)上单调递减, 又由(2)知g (x 2)≥f (x 2)=a =g (x 2′),可得x 2≤x 2′.类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ),可得h (x )=nx . 当x ∈(0,+∞),f (x )-h (x )=-x n <0,即对于任意的x ∈(0,+∞),f (x )<h (x ). 设方程h (x )=a 的根为x 1′,可得x 1′=an.因为h (x )=nx 在(-∞,+∞)上单调递增,且h (x 1′)=a =f (x 1)<h (x 1),因此x 1′<x 1. 由此可得x 2-x 1<x 2′-x 1′=a1-n +x 0.因为n ≥2,所以2n -1=(1+1)n -1≥1+C 1n -1=1+n -1=n , 故2≥n 1n -1=x 0.所以,|x 2-x 1|<a 1-n+2.17.解 (1)f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a3.当a =0时,因为f ′(x )=3x 2>0(x ≠0),所以函数f (x )在(-∞,+∞)上单调递增;当a >0时,x ∈⎝⎛⎭⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝⎛⎭⎫-2a3,0时,f ′(x )<0,所以函数f (x )在⎝⎛⎭⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝⎛⎭⎫-2a 3,0上单调递减;当a <0时,x ∈(-∞,0)∪⎝⎛⎭⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝⎛⎭⎫0,-2a3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝⎛⎭⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎫0,-2a3上单调递减. (2)由(1)知,函数f (x )的两个极值为f (0)=b ,f ⎝⎛⎭⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝⎛⎭⎫-2a 3=b ⎝⎛⎭⎫427a 3+b <0,从而⎩⎪⎨⎪⎧a >0,-427a 3<b <0或⎩⎪⎨⎪⎧a <0,0<b <-427a 3.又b =c -a ,所以当a > 0时,427a 3-a +c >0或当a <0时,427a 3-a +c <0.设g (a )=427a 3-a +c ,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞, 则在(-∞,-3)上g (a )<0,且在⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞上g (a )>0均恒成立. 从而g (-3)=c -1≤0,且g ⎝⎛⎭⎫32=c -1≥0,因此c =1. 此时,f (x )=x 3+ax 2+1-a =(x +1)[x 2+(a -1)x +1-a ],因函数有三个零点,则x 2+(a -1)x +1-a =0有两个异于-1的不等实根, 所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0, 且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞.综上c =1. 18.解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +ae x ,因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x .令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0, 故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎡⎭⎫-92,+∞. 19.解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0.即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0,解得x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0, 故h (x )在(1,+∞)无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0.所以只需考虑f (x )在(0,1)的零点个数.(ⅰ)若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)无零点,故f (x )在(0,1)单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)没有零点. (ⅱ)若-3<a <0,则f (x )在⎝⎛⎭⎫0,-a 3单调递减,在⎝⎛⎭⎫-a 3,1单调递增,故在(0,1)中,当x =-a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎫-a 3=2a3-a 3+14. ①若f ⎝⎛⎭⎫-a 3>0,即-34<a <0,f (x )在(0,1)无零点; ②若f ⎝⎛⎭⎫-a 3=0,即a =-34,则f (x )在(0,1)有唯一零点;③若f ⎝⎛⎭⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)有两个零点;当-3<a ≤-54时,f (x )在(0,1)有一个零点.综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点. 20.解 (1)f (sin x )=sin 2 x -a sin x +b =sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a <2,在⎝⎛⎭⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a . -π2<x ≤x 0时,函数f (sin x )单调递减; x 0≤x <π2时,函数f (sin x )单调递增;因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值 f (sin x 0)=f ⎝⎛⎭⎫a 2=b -a24. (2)-π2≤x ≤π2时,|f (sin x )-f 0(sin x )|=|(a 0-a )sin x +b -b 0|≤|a -a 0|+|b -b 0|.当(a 0-a )(b -b 0)≥0时,取x =π2,等号成立.当(a 0-a )(b -b 0)<0时,取x =-π2,等号成立.由此可知,|f (sin x )-f 0(sin x )|在⎣⎡⎦⎤-π2,π2上的最大值为D =|a -a 0|+|b -b 0|. (3)D ≤1即为|a |+|b |≤1,此时0≤a 2≤1,-1≤b ≤1, 从而z =b -a 24≤1.取a =0,b =1,则|a |+|b |≤1,并且z =b -a 24=1.由此可知,z =b -a 24满足条件D ≤1的最大值为1.21.(1)解 f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x ∀x ∈R ,f ′(x )≥0恒成立.∴f (x )的单调增区间为(-∞,+∞). (2)证明 ∵f (0)=1-a ,f (a )=(1+a 2)e a -a ,∵a >1,∴f (0)<0,f (a )>2a e a -a >2a -a =a >0,∴f (0)·f (a )<0, ∴f (x )在(0,a )上有一零点,又∵f (x )在(-∞,+∞)上递增,∴f (x )在(0,a )上仅有一个零点,∴f (x )在(-∞,+∞)上仅有一个零点. (3)证明 f ′(x )=(x +1)2e x ,设P (x 0,y 0),则f ′(x 0)=e x 0(x 0+1)2=0,∴x 0=-1, 把x 0=-1,代入y =f (x )得y 0=2e -a ,∴k OP =a -2e .f ′(m )=e m (m +1)2=a -2e,令g (m )=e m -(m +1),g ′(m )=e m -1. 令g ′(x )>0,则m >0,∴g (m )在(0,+∞)上增.令g ′(x )<0,则m <0,∴g (m )在(-∞,0)上减.∴g (m )min =g (0)=0.∴e m -(m +1)≥0,即e m ≥m +1.∴e m (m +1)2≥(m +1)3,即a -2e ≥(m +1)3.∴m +1≤3a -2e ,即m ≤3a -2e-1.22.解 (1)由题意知,函数f (x )的定义域为(-1,+∞), f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1.令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,此时f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点; ②当a >0时,Δ=a 2-8a (1-a )=a (9a -8).(ⅰ)当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点;(ⅱ)当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2),因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 因此函数有两个极值点.(ⅲ)当a <0时,Δ>0,由g (-1)=1>0,可得x 1<-1.当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减;所以函数有一个极值点. 综上所述,当a <0时,函数f (x )有一个极值点; 当0≤a ≤89时,函数f (x )无极值点;当a >89时,函数f (x )有两个极值点.(2)由(1)知,①当0≤a ≤89时,函数f (x )在(0,+∞)上单调递增,因为f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意; ②当89<a ≤1时,由g (0)≥0,得x 2≤0,所以函数f (x )在(0,+∞)上单调递增,又f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意;③当a >1时,由g (x )<0,可得x 2>0.所以x ∈(0,x 2)时,函数f (x )单调递减; 因为f (0)=0,所以x ∈(0,x 2)时,f (x )<0,不合题意; ④当a <0时,设h (x )=x -ln(x +1). 因为x ∈(0,+∞)时,h ′(x )=1-1x +1=x x +1>0 ,所以h (x )在(0,+∞)上单调递增, 因此当x ∈(0,+∞)时,h (x )>h (0)=0,即ln(x +1)<x . 可得f (x )<x +a (x 2-x )=ax 2+(1-a )x ,当x >1-1a 时,ax 2+(1-a )x <0,此时f (x )<0,不合题意.综上所述,a 的取值范围是[0,1].23.证明 (1)f ′(x )=a e ax sin x +e ax cos x =e ax (a sin x +cos x )=a 2+1e ax sin(x +φ), 其中tan φ=1a ,0<φ<π2.令f ′(x )=0,由x ≥0得x +φ=m π,即x =m π-φ,m ∈N *, 对k ∈N ,若2k π<x +φ<(2k +1)π, 即2k π-φ<x <(2k +1)π-φ,则f ′(x )>0;若(2k +1)π<x +φ<(2k +2)π,即(2k +1)π-φ<x <(2k +2)π-φ,则f ′(x )<0. 因此,在区间((m -1)π,m π-φ)与(m π-φ,m π)上,f ′(x )的符号总相反. 于是当x =m π-φ(m ∈N *)时,f (x )取得极值,所以x n =n π-φ(n ∈N *). 此时,f (x n )=e a (n π-φ)sin(n π-φ)=(-1)n +1e a (n π-φ)sin φ.易知f (x n )≠0,而f (x n +1)f (x n )=(-1)n +2e a [(n +1)π-φ]sin φ(-1)n +1e a (n π-φ)sin φ=-e a π是常数,故数列{f (x n )}是首项为f (x 1)=e a (π-φ)sin φ,公比为-e a π的等比数列.(2)由(1)知,sin φ=1a 2+1,于是对一切n ∈N *; x n <|f (x n )|恒成立,即n π-φ<1a 2+1e a (n π-φ)恒成立,等价于a 2+1a <e a (n π-φ)a (n π-φ)(*)恒成立,因为(a >0).设g (t )=e tt (t >0),则g ′(t )=e t (t -1)t 2.令g ′(t )=0得t =1.当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减; 当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增. 从而当t =1时,函数g (t )取得最小值g (1)=e.因此,要使(*)式恒成立,只需a 2+1a <g (1)=e,即只需a >1e 2-1.而当a =1e 2-1时,由tan φ=1a =e 2-1>3且0<φ<π2知,π3<φ<π2. 于是π-φ<2π3<e 2-1,且当n ≥2时,n π-φ≥2π-φ>3π2>e 2-1.因此对一切n ∈N *,ax n =n π-φe 2-1≠1,所以g (ax n )>g (1)=e =a 2+1a .故(*)式亦恒成立.综上所述,若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立. 24.(1)证明 令F (x )=f (x )-x =ln(1+x )-x ,x ∈(0,+∞),则有F ′(x )=11+x -1=-x x +1. 当x ∈(0,+∞)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递减, 故当x >0时,F (x )<F (0)=0,即当x >0时,f (x )<x . (2)证明 令G (x )=f (x )-g (x )=ln(1+x )-kx ,x ∈(0,+∞), 则有G ′(x )=1x +1-k =-kx +(1-k )x +1. 当k ≤0时,G ′(x )>0,故G (x )在(0,+∞)单调递增,G (x )>G (0)=0, 故任意正实数x 0均满足题意.当0<k <1时,令G ′(x )=0,得x =1-k k =1k-1>0,取x 0=1k -1,对任意x ∈(0,x 0),有G ′(x )>0,从而G (x )在(0,x 0)单调递增,所以G (x )>G (0)=0,即f (x )>g (x ).综上,当k <1时,总存在x 0>0,使得对任意x ∈(0,x 0),恒有f (x )>g (x ). (3)解 当k >1时,由(1)知,对于∀x ∈(0,+∞),g (x )>x >f (x ),故g (x )>f (x ),|f (x )-g (x )|=g (x )-f (x )=kx -ln(1+x ).M (x )=kx -ln(1+x )-x 2,x ∈[0,+∞). 则有M ′(x )=k -11+x -2x =-2x 2+(k -2)x +k -1x +1.故当x ∈⎝ ⎛⎭⎪⎫0,k -2+(k -2)2+8(k -1)4时,M ′(x )>0,M (x )在⎣⎢⎡⎭⎪⎫0,k -2+(k -2)2+8(k -1)4上单调递增,故M (x )>M (0)=0,即|f (x )-g (x )|>x 2,所以满足题意的t 不存在. 当k <1时,由(2)知,存在x 0>0,使得当x ∈(0,x 0)时,f (x )>g (x ), 此时|f (x )-g (x )|=f (x )-g (x )=ln(1+x )-kx . 令N (x )=ln(1+x )-kx -x 2,x ∈[0,+∞).则有N ′(x )=1x +1-k -2x =-2x 2-(k +2)x +1-k x +1.当x ∈⎝ ⎛⎭⎪⎫0,-(k +2)+(k +2)2+8(1-k )4时,N ′(x )>0,N (x )在⎣⎢⎡⎭⎪⎫0,-(k +2)+(k +2)2+8(1-k )4上单调递增,故N (x )>N (0)=0,即f (x )-g (x )>x 2.记x 0与-(k +2)+(k +2)2+8(1-k )4中的较小者为x 1,则当x ∈(0,x 1)时,恒有|f (x )-g (x )|>x 2. 故满足题意的t 不存在.当k =1时,由(1)知,当x >0时,|f (x )-g (x )|=g (x )-f (x )=x -ln(1+x ), 令H (x )=x -ln(1+x )-x 2,x ∈[0,+∞),则有H ′(x )=1-11+x -2x =-2x 2-x x +1.当x >0时,H ′(x )<0,所以H (x )在[0,+∞)上单调递减,故H (x )<H (0)=0. 故当x >0时,恒有|f (x )-g (x )|<x 2.此时,任意正实数t 均满足题意. 综上,k =1.法二 (1)(2)证明 同法一.(3)解 当k >1时,由(1)知,对于∀x ∈(0,+∞),g (x )>x >f (x ), 故|f (x )-g (x )|=g (x )-f (x )=kx -ln(1+x )>kx -x =(k -1)x . 令(k -1)x >x 2,解得0<x <k -1.从而得到,当k >1时,对于x ∈(0,k -1),恒有|f (x )-g (x )|>x 2, 故满足题意的t 不存在.当k <1时,取k 1=k +12,从而k <k 1<1,由(2)知,存在x 0>0,使得x ∈(0,x 0),f (x )>k 1x >kx =g (x ),此时|f (x )-g (x )|=f (x )-g (x )>(k 1-k )x =1-k2x ,令1-k 2x >x 2,解得0<x <1-k2,此时f (x )-g (x )>x 2. 记x 0与1-k 2的较小者为x 1,当x ∈(0,x 1)时,恒有|f (x )-g (x )|>x 2.故满足题意的t 不存在.当k =1时,由(1)知,x >0,|f (x )-g (x )|=f (x )-g (x )=x -ln(1+x ), 令M (x )=x -ln(1+x )-x 2,x ∈[0,+∞),则有M ′(x )=1-11+x -2x =-2x 2-x x +1.当x >0时,M ′(x )<0,所以M (x )在[0,+∞)上单调递减, 故M (x )<M (0)=0.故当x >0时,恒有|f (x )-g (x )|<x 2, 此时,任意正实数t 均满足题意. 综上,k =1.25.解 (1)由题意知(x 2+2x +k +3)(x 2+2x +k -1)>0,因此⎩⎪⎨⎪⎧x 2+2x +k +3>0x 2+2x +k -1>0或⎩⎪⎨⎪⎧x 2+2x +k +3<0x 2+2x +k -1<0,设y 1=x 2+2x +k +3,y 2=x 2+2x +k -1,则这两个二次函数的对称轴均为x =-1, 且方程x 2+2x +k +3=0的判别式Δ1=4-4(k +3)=-4k -8, 方程x 2+2x +k -1=0的判别式Δ2=4-4(k -1)=8-4k , 因为k <-2,所以Δ2>Δ1>0, 因此对应的两根分别为x 1,2=-2±Δ12=-1±-k -2, x 3,4=-2±Δ22=-1±2-k , 且有-1-2-k <-1--k -2<-1+-k -2<-1+2-k ,因此函数f (x )的定义域D 为(-∞,-1-2-k )∪(-1--k -2,-1+-k -2)∪(-1+2-k ,+∞). (2)由(1)中两个二次函数的单调性,且对称轴都为x =-1,易知函数f (x )在(-∞,-1-2-k )上单调递增,在(-1--k -2,-1)上单调递减,在(-1,-1+-k -2)上单调递增,在(-1+2-k ,+∞)上单调递减.(3)由于k <-6,故-1-2-k <-1--k -2<-3<-1<1<-1+-k -2<-1+2-k . 利用函数图象的对称性可知f (1)=f (-3),再利用函数f (x )的单调性可知在(-1--k -2,-1)上f (x )>f (1)=f (-3)的解集为(-1--k -2,-3),在(-1,-1+-k -2)上f (x )>f (1)的解集为(1,-1+-k -2).再在其余两个区间(-∞,-1-2-k )和(-1+2-k ,+∞)上讨论. 令x =1,则(x 2+2x +k )2+2(x 2+2x +k )-3=k 2+8k +12,。

2年模拟(新课标)版高考数学一轮复习3.2导数的应用

2年模拟(新课标)版高考数学一轮复习3.2导数的应用

§ 3.2导数的应用A组2014—2015年模拟·基础题组限时:40分钟1.(2014山东日照5月,12)如果函数y=f(x)的导函数的图象如图所示,给出下列判断:①函数y=f(x)在区间内单调递增;②函数y=f(x)在区间内单调递减;③函数y=f(x)在区间(4,5)内单调递增;④当x=2时,函数y=f(x)有极小值;⑤当x=-时,函数y=f(x)有极大值.则上述判断中正确的是( )A.①②B.②③C.③④⑤D.③2.(2014四川泸州一模,6)做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为( )A.3B.4C.6D.53.(2015宁夏大学附中期中,20)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.4.(2014湖南郴州二模,21)设函数f(x)=x2+aln(x+1)有两个极值点x1,x2,且x1<x2.(1)求实数a的取值范围;(2)讨论函数f(x)的单调性;(3)若对任意的x∈(x1,+∞),都有f(x)>m成立,求实数m的取值范围.5.(2014辽宁大连二模,21)设函数f(x)=ln x-cx(c∈R).(1)讨论函数f(x)的单调性;(2)若f(x)≤x2恒成立,求c的取值范围;(3)设函数f(x)有两个相异零点x1、x2,求证:x1·x2>e2.B组2014—2015年模拟·提升题组限时:50分钟1.(2015湖北黄冈中学期中,21)已知f(x)=aln(x-1),g(x)=x2+bx,F(x)=f(x+1)-g(x),其中a,b∈R.(1)若y=f(x)与y=g(x)的图象在交点(2,k)处的切线互相垂直,求a,b的值;(2)若x=2是函数F(x)的一个极值点,x0和1是F(x)的两个零点,且x0∈(n,n+1),n∈N*,求n 的值;(3)当b=a-2时,设x1,x2是F(x)的两个极值点,若|x1-x2|>1,求证:|F(x1)-F(x2)|>3-4ln 2.2.(2014山西晋中5月,21)已知函数f(x)=ax2-(2a+1)x+2ln x(a∈R).(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;(2)求f(x)的单调区间;(3)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.3.(2014北京东城一模)已知函数f(x)=ax2-4ln(x-1),a∈R.(1)当a=1时,求f(x)的单调区间;(2)已知点P(1,1)和函数f(x)图象上动点M(m, f(m)),对任意m∈[2,e+1],直线PM倾斜角都是钝角,求a的取值范围.4.(2014重庆六校下学期第三次诊断,22)已知函数f(x)=e x-ax-1(e为自然对数的底数).(1)求函数f(x)的单调区间;(2)当a>0时,若f(x)≥0对任意的x∈R恒成立,求实数a的值;(3)求证:ln+ln+…+ln<2.A组2014—2015年模拟·基础题组1.D 当x∈(-3,-2)时, f '(x)<0, f(x)单调递减,①错;当x∈时, f '(x)>0, f(x)单调递增,当x∈(2,3)时, f '(x)<0, f(x)单调递减,②错;当x=2时,函数y=f(x)有极大值,④错;当x=-时,函数y=f(x)无极值,⑤错.故选D.2.A 设圆柱的底面半径为R,母线长为l,则V=πR2l=27π,所以l=,要使用料最省,只需使圆柱形水桶的表面积最小.S表面积=πR2+2πRl=πR2+2π·,所以S'表面积=2πR-.令S'表面积=0,得R=3,则当R=3时,S表面积最小.故选A.3.解析(1)因为x=5时,y=11,所以+10=11,a=2.(2)由(1)可知,该商品每日的销售量y=+10(x-6)2.所以商场每日销售该商品所获得的利润f(x)=(x-3)=2+10(x-3)(x-6)2,其中3<x<6.从而, f '(x)=10[(x-6)2+2(x-3)(x-6)]=30(x-4)(x-6).于是,当x变化时, f '(x), f(x)的变化情况如下表:由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.所以,当x=4时,函数f(x)取得最大值.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.4.解析(1)由f(x)=x2+aln(x+1)得f '(x)=2x+=(x>-1).令g(x)=2x2+2x+a,则其图象的对称轴为x=-,故由题意可知x1,x2是方程g(x)=0的两个均大于-1的不相等的实数根,其充要条件为解得0<a<.(5分)(2)由(1)可知f '(x)==,其中-1<x1<x2,故①当x∈(-1,x1)时, f '(x)>0,即f(x)在区间(-1,x1)上单调递增;②当x∈(x1,x2)时, f '(x)<0,即f(x)在区间(x1,x2)上单调递减;③当x∈(x2,+∞)时, f '(x)>0,即f(x)在区间(x2,+∞)上单调递增.(9分)(3)由(2)可知f(x)在区间(x1,+∞)上的最小值为f(x2).由于g(0)=a>0,因此由g(x)的图象知-<x2<0.由g(x2)=2+2x2+a=0可得a=-(2+2x2),从而f(x2)=+aln(x2+1)=-(2+2x2)ln(x2+1).设h(x)=x2-(2x2+2x)ln(x+1),其中-<x<0,则h'(x)=2x-2(2x+1)ln(x+1)-2x=-2(2x+1)ln(x+1).由-<x<0知2x+1>0,ln(x+1)<0,故h'(x)>0,故h(x)在上单调递增,所以f(x2)=h(x2)>h=. 故实数m的取值范围为m≤.(14分)5.解析(1)∵f(x)=ln x-cx,∴x∈(0,+∞),f '(x)=-c=.当c≤0时, f(x)的单调增区间为(0,+∞).当c>0时, f(x)的单调增区间为, f(x)的单调减区间为.(3分)(2)∵f(x)≤x2,∴ln x-cx≤x2,∴c≥-x.设g(x)=-x,∴g'(x)=,易知g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴g(x)max=g(1)=-1,∴c≥-1.(7分)(3)证明:∵f(x)有两个相异零点x1,x2,则①∴ln x1-ln x2=c(x1-x2),∴=c(x1≠x2),②而x1·x2>e2等价于ln x1+ln x2>2,③故由①②③得x1·x2>e2等价于·(x1+x2)>2,④不妨设x>x>0,则>1.设t=,则④式可转化为ln t>(其中t>1),(9分)设H(t)=ln t-(t>1),则H'(t)=>0,故函数H(t)是(1,+∞)上的增函数,所以H(t)>H(1)=0, 即不等式ln t>(t>1)成立,故所证不等式x1·x2>e2成立.(12分)B组2014—2015年模拟·提升题组1.解析(1)f '(x)=,g'(x)=2x+b.由题知即解得(2)F(x)=f(x+1)-g(x)=aln x-(x2+bx)(x>0),F'(x)=-2x-b(x>0).由题知即解得a=6,b=-1.∴F(x)=6ln x-(x2-x)(x>0),F'(x)=-2x+1=(x>0).由F'(x)>0(x>0),解得0<x<2;由F'(x)<0(x>0),解得x>2,∴F(x)在(0,2)上单调递增,在(2,+∞)上单调递减,故由题意知x0∈(2,+∞).又F(2)>F(1)=0,F(3)=6(ln 3-1)>0,F(4)=6(ln 4-2)<0,∴x0∈(3,4),故n=3.(3)证明:当b=a-2时,F(x)=aln x-[x2+(a-2)x],F'(x)=-2x-(a-2)=.由题知F'(x)=0在(0,+∞)上有两个不同根x1,x2,则a<0且a≠-2,此时F'(x)=0的两根为-,1, 故由题知>1,则+a+1>1,a2+4a>0.又∵a<0,∴a<-4,此时->1,则F'(x)与F(x)随x的变化情况如下表:∴|F(x1)-F(x2)|=F(x)极大值-F(x)极小值=F-F(1)=aln+a2-1(a<-4),设φ(a)=aln+a2-1(a<-4),则φ'(a)=ln+a+1,则φ″(a)=+,∵a<-4,∴>-,∴φ″(a)=+>0,∴φ'(a)在(-∞,-4)上是增函数,∴φ'(a)<φ'(-4)=ln 2-1<0(a<-4),从而φ(a)在(-∞,-4)上是减函数,∴φ(a)>φ(-4)=3-4ln 2(a<-4),所以|F(x)-F(x)|>3-4ln 2.2.解析 f '(x)=ax-(2a+1)+(x>0).(2分)(1)由题意知f '(1)=f '(3),即a-(2a+1)+2=3a-(2a+1)+,解得a=.(3分)(2)f '(x)=(x>0).(5分)①当a≤0时,∵x>0,∴ax-1<0,在区间(0,2)上, f '(x)>0;在区间(2,+∞)上, f '(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).(6分)②当0<a<时,>2,在区间(0,2)和上, f '(x)>0;在区间上, f '(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是.(7分)③当a=时, f '(x)=≥0,故f(x)的单调递增区间是(0,+∞).(8分)④当a>时,0<<2,在区间和(2,+∞)上,f '(x)>0;在区间上, f '(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.(9分)(3)由题意知,在(0,2]上有f(x)max<g(x)max.(10分)由已知得g(x)max=0,由(2)可知,①当a≤时, f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a-2(2a+1)+2ln 2=-2a-2+2ln 2,令-2a-2+2ln 2<0,解得a>ln 2-1,故当ln 2-1<a≤时,符合题意.(11分)②当a>时, f(x)在上单调递增,在上单调递减,故f(x)max=f=-2--2ln a.由a>可知ln a>ln>ln=-1,所以2ln a>-2,即-2ln a<2,所以-2-2ln a<0,所以f(x)max<0,故当a>时,符合题意.(12分)综上所述,a>ln 2-1.(14分)3.解析(1)当a=1时, f(x)=x2-4ln(x-1),定义域为(1,+∞),f '(x)=2x-==.随着x变化时, f '(x)和f(x)的变化如下:所以当a=1时, f(x)的单调递增区间为(2,+∞),单调递减区间为(1,2).(2)因为对任意m∈[2,e+1],直线PM的倾斜角都是钝角,所以对任意m∈[2,e+1],直线PM的斜率小于0,即<0,即f(m)<1,故f(x)在区间[2,e+1]上的最大值小于1.易得f '(x)=2ax-=,x∈(1,+∞).令g(x)=ax2-ax-2.①当a=0时, f(x)=-4ln(x-1), f(x)在[2,e+1]上单调递减, f(x)max=f(2)=0<1(x∈[2,e+1]),满足题意.②当a<0时,二次函数g(x)的图象开口向下,又g(0)=-2,g(1)=-2,所以∀x∈(1,+∞),g(x)<0,故∀x∈(1,+∞),f '(x)<0,故f(x)在(1,+∞)上单调递减,故f(x)在[2,e+1]上单调递减, f(x)max=f(2)=4a<1(x∈[2,e+1]),满足题意.③当a>0时,二次函数g(x)的图象开口向上,又g(0)=-2,g(1)=-2.所以∃x0∈(1,+∞),使得当x∈(1,x0)时,g(x)<0;当x∈(x0,+∞)时,g(x)>0.所以f(x)在区间(1,+∞)内先递减后递增.故f(x)在区间[2,e+1]上的最大值是f(2)或f(e+1).所以由题意知即所以0<a<.综上,a的取值范围是.4.解析(1)函数f(x)的定义域为(-∞,+∞), f '(x)=e x-a,∴a≤0时,f '(x)>0, f(x)在R上单调递增;a>0时,x∈(-∞,ln a)时,f '(x)<0, f(x)单调递减,x∈(ln a,+∞)时, f '(x)>0, f(x)单调递增.∴a≤0时, f(x)的单调递增区间为(-∞,+∞);a>0时, f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞).(2)由(1)可知,a>0时, f(x)min=f(ln a),∴由题意知f(ln a)≥0.即a-aln a-1≥0.记g(a)=a-aln a-1(a>0).∵g'(a)=1-(ln a+1)=-ln a,∴g(a)在(0,1)上递增,在(1,+∞)上递减,∴g(a)≤g(1)=0,故g(a)=0,得a=1.(3)证明:由(2)可知e x≥x+1,故ln(1+x)≤x(x>-1),易知x>0时,ln(1+x)<x.要证原不等式成立,只需证:<2.n=1时,∵k≥2时,<==-,∴n≥2时,<+=+-<2.故原不等式成立.。

(- )三年高考数学(文)真题分类解析:专题07-导数的应用

(- )三年高考数学(文)真题分类解析:专题07-导数的应用

考纲解读明方向分析解读1.会利用导数研究函数的单调性,掌握求函数单调区间的方法.2.掌握求函数极值与最值的方法,解决利润最大、用料最省、效率最高等实际生产、生活中的优化问题.3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为12~17分,属于高档题.命题探究练扩展2018年高考全景展示1.【2018年新课标I卷文】已知函数.(1)设是的极值点.求,并求的单调区间;(2)证明:当时,.【答案】(1) a=;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.详解:(1)f(x)的定义域为,f ′(x)=a e x–.由题设知,f ′(2)=0,所以a =.从而f (x )=,f ′(x )=.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥时,f (x )≥.设g (x )=,则 当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )的最小值点.故当x >0时,g (x )≥g (1)=0.因此,当时,.点睛:该题考查的是有关导数的应用问题,涉及到的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要保证函数的生存权,先确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果.2017年高考全景展示1.【2016高考四川文科】已知a 函数3()12f x x x =-的极小值点,则a = ( ) (A)-4 (B) -2 (C)4 (D)2 【答案】D 【解析】考点:函数导数与极值.【名师点睛】本题考查函数的极值.在可导函数中函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点,2.【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 【考点】 导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数)('x f 的正负,得出原函数)(x f 的单调区间. 3.【2017课标1,文21】已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =,)(x f 在(,)-∞+∞单调递增;当0a >,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】(2)①若0a =,则2()xf x e =,所以()0f x ≥.【考点】导数应用【名师点睛】本题主要考查导数的两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出)('x f ,有)('x f 的正负,得出函数)(x f 的单调区间;(二)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数)(x f 极值或最值.4.【2017课标II ,文21】设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.【答案】(Ⅰ)在(,1-∞- 和(1)-+∞单调递减,在(11--单调递增(Ⅱ)[1,)+∞【解析】试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间(2)对a 分类讨论,当a ≥1时,()(1)(1)1x f x x x e x a x =-+≤+≤+,满足条件;当0a ≤时,取2000001,()(1)(1)112x f x x x ax =>-+=>+,当0<a <1时,取012x =,20000()(1)(1)1f x x x ax >-+>+.试题解析:(1)2()(12)x f x x x e '=--令()0f x '=得1x =-当(,1x ∈-∞-时,()0f x '<;当(1x ∈--+时,()0f x '>;当(1)x ∈-+时,()0f x '<所以()f x 在(,1-∞- 和(1)-+∞单调递减,在(11--单调递增【考点】利用导数求函数单调区间,利用导数研究不等式恒成立【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.2016年高考全景展示1. 【2016高考山东文数】(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间;(Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围.【答案】 (Ⅰ)当0a ≤时,函数()g x 单调递增区间为()0,+∞; 当0a >时,函数()g x 单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭.(Ⅱ)12a >.【解析】试题分析:(Ⅰ)求导数()'ln 22,f x x ax a =-+ 可得()()ln 22,0,g x x ax a x =-+∈+∞, 从而()112'2ax g x a x x-=-=, 讨论当0a ≤时,当0a >时的两种情况下导函数正负号,确定得到函数的单调区间. (Ⅱ)分以下情况讨论:①当0a ≤时,②当102a <<时,③当12a =时,④当12a >时,综合即得.(Ⅱ)由(Ⅰ)知,()'10f =.①当0a ≤时,()'0f x <,()f x 单调递减. 所以当()0,1x ∈时,()'0f x <,()f x 单调递减. 当()1,x ∈+∞时,()'0f x >,()f x 单调递增. 所以()f x 在1x =处取得极小值,不合题意. ②当102a <<时,112a >,由(Ⅰ)知()'f x 在10,2a ⎛⎫⎪⎝⎭内单调递增,可得当当()0,1x ∈时,()'0f x <,11,2x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >, 所以()f x 在(0,1)内单调递减,在11,2a ⎛⎫⎪⎝⎭内单调递增, 所以()f x 在1x =处取得极小值,不合题意.考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.考纲解读明方向分析解读 三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年新课标I 卷文】已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C.的最小正周期为,最大值为3 D.的最小正周期为,最大值为4【答案】B【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 2.【2018年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增 B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.2017年高考全景展示1.【2017课标II,文13】函数的最大值为. 【答案】【考点】三角函数有界性【名师点睛】通过配角公式把三角函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用求最值.2.【2017课标II,文3】函数的最小正周期为A. B. C. D.【答案】C【解析】由题意,故选C.【考点】正弦函数周期【名师点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间; 由求减区间;3.【2017天津,文7】设函数,其中.若且的最小正周期大于,则(A)(B)(C)(D)【答案】【解析】试题分析:因为条件给出周期大于,,,再根据,因为,所以当时,成立,故选A.【考点】三角函数的性质【名师点睛】本题考查了的解析式,和三角函数的图象和性质,本题叙述方式新颖,是一道考查能力的好题,本题可以直接求解,也可代入选项,逐一考查所给选项:当时,,满足题意,,不合题意,B选项错误;,不合题意,C选项错误;,满足题意;当时,,满足题意;,不合题意,D选项错误.本题选择A选项.4.【2017山东,文7】函数 最小正周期为A. B. C. D.【答案】C 【解析】【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为|ω|2π,y =tan(ωx +φ)的最小正周期为|ω|π.③对于形如的函数,一般先把其化为的形式再求周期.5.【2017浙江,18】(本题满分14分)已知函数f (x )=sin 2x –cos 2x –sin x cos x (x R ).(Ⅰ)求的值.(Ⅱ)求的最小正周期及单调递增区间.【答案】(Ⅰ)2;(Ⅱ)最小正周期为,单调递增区间为.【解析】试题分析:(Ⅰ)由函数概念,分别计算可得;(Ⅱ)化简函数关系式得,结合可得周期,利用正弦函数的性质求函数的单调递增区间.【考点】三角函数求值、三角函数的性质【名师点睛】本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.2016年高考全景展示1.【2016高考新课标2文数】函数的部分图像如图所示,则()(A)(B)(C)(D)【答案】A【解析】试题分析:由图知,,周期,所以,所以,因为图象过点,所以,所以,所以,令得,,所以,故选A.考点:三角函数图像的性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A,h的值,函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.2.【2016高考天津文数】已知函数,.若在区间内没有零点,则的取值范围是()(A)(B)(C)(D)【答案】D【解析】考点:解简单三角方程【名师点睛】对于三角函数来说,常常是先化为y =Asin(ωx +φ)+k 的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式. 3.【2016高考新课标1文数】若将函数y =2sin (2x +6π)的图像向右平移41个周期后,所得图像对应的函数为( )(A )y =2sin(2x +4π) (B )y =2sin(2x +3π) (C )y =2sin(2x –4π) (D )y =2sin(2x –3π) 【答案】D 【解析】试题分析:函数的周期为,将函数的图像向右平移个周期即个单位,所得函数为,故选D.考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数. 4.[2016高考新课标Ⅲ文数]函数的图像可由函数的图像至少向右平移_____________个单位长度得到.【答案】【解析】考点:1、三角函数图象的平移变换;2、两角差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.5.【2016高考山东文数】(本小题满分12分)设.(I)求得单调递增区间;(II)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.【答案】()的单调递增区间是(或)()【解析】试题分析:()化简得由即得写出的单调递增区间()由平移后得进一步可得()由()知把的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图象,再把得到的图象向左平移个单位,得到的图象,即所以考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,利用“左加右减、上加下减”变换原则,得出新的函数解析式并求值.本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.。

【3年高考2年模拟】2016届人教版新课标高三数学(文)一轮复习课件§3.2导数的应用(I)

【3年高考2年模拟】2016届人教版新课标高三数学(文)一轮复习课件§3.2导数的应用(I)

利用导数研究函数的极值
典例2 (2014重庆,19,12分)已知函数f(x)= x + a -ln x- 3 ,其中a∈R,且曲线y=f
4x
2
(x)在点(1, f(1))处的切线垂直于直线y= 1 x.
2
(1)求a的值;
(2)求函数f(x)的单调区间与极值.
解析 (1)对f(x)求导得f '(x)= 14 - xa2 - 1x ,由f(x)在点(1, f(1))处的切线垂直于
2

时,
f
'(x)≤0,
f(x)单调递减,f(x)在x=
6
时取得最大值.故选B.
3.已知f(x)=x3-ax2+4x有两个极值点x1、x2,且f(x)在区间(0,1)上有极大值,无极
小值,则a的取值范围是
.
答案 a> 7
2
解析 f '(x)=3x2-2ax+4,则(-2a)2-4×3×4>0,解得a>2 3 ,或a<-2 3 ,又f(x)在
求函数极值的步骤: (1)确定函数的定义域; (2)求方程f '(x)=0的根; (3)用方程f '(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表 格; (4)由f '(x)=0根的两侧导数的符号来判断f(x)在这个根处取极值的情况.
2-1 若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极 值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点. (1)求a和b的值; (2)设函数g(x)的导函数g'(x)=f(x)+2,求g(x)的极值点.

五年高考3年模拟§3.2 导数的应用

五年高考3年模拟§3.2 导数的应用

a
a2 4 a a2 4 , 时, f '(x)<0; ∪ 2 2
(2)由(1)知, f(x)存在两个极值点当且仅当a>2.
由于f(x)的两个极值点x1,x2满足x2-ax+1=0,
所以x1x2=1,不妨设x1<x2,则x2>1,
故f(x)没有零点;
1 +ln a<0,即f(-ln a)<0. ③当a∈(0,1)时,1- a
栏目索引
3.(2017课标全国Ⅰ,21,12分)已知函数f(x)=ae2x+(a-2)ex-x. (1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.
栏目索引
解析 本题考查了利用导数讨论函数的单调性和函数的零点问题. (1)f(x)的定义域为(-∞,+∞), f '(x)=2ae2x+(a-2)ex-1=(aex-1)(2ex+1).
2ln x2 ln x1 ln x2 ln x1 ln x2 f ( x1 ) f ( x2 ) 1 由于 =- -1+a =-2+a =-2+a 1 , x x x x xx x x
1 2 1 2 1 2 1 2
x
x2
2
栏目索引
f ( x ) f ( x2 ) 1 <a-2等价于 -x2+2ln x2<0. x2 x1 x2 1 设函数g(x)= -x+2ln x, x
(i)若a≤0,则f '(x)<0,所以f(x)在(-∞,+∞)单调递减.
(ii)若a>0,则由f '(x)=0得x=-ln a. 当x∈(-∞,-ln a)时, f '(x)<0;当x∈(-ln a,+∞)时, f '(x)>0.所以f(x)在(-∞,-ln a)单调递减,在(-ln a,+ ∞)单调递增.

三年高考高考数学真题分项汇编专题导数及其应用解答题文含解析.doc

三年高考高考数学真题分项汇编专题导数及其应用解答题文含解析.doc

专题04导数及其应用(解答题)1.[2019年高考全国I卷文数】已知函数/' (x) =2sinx-xcosx~x, f r (x)为f (x)的导数.(1)证明:f' (x)在区间(0, Jt )存在唯一零点;(2)若xG [0, “]时,f (x) 2ax,求a的取值范围.【答案】(1)见解析;(2).【解析】(1)设,贝9.当时,;当时,,所以在单调递增,在单调递减.又,故在存在唯一零点.所以在存在唯一零点.(2)由题设知,可得aWO.由(1)知,在只有一个零点,设为,且当时,;当时,,所以在单调递增,在单调递减.又,所以,当时,.又当时,axWO,故.因此,a的取值范围是.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题•对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.2.【2019年高考全国II卷文数】已知函数.证明:(1)存在唯一的极值点;(2)有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)的定义域为(0, +).因为单调递增,单调递减,所以单调递增,又,,故存在唯一,使得.又当时,,单调递减;当时,,单调递增.因此,存在唯一的极值点.(2)由(1)知,又,所以在内存在唯一根.由得.又,故是在的唯一根.综上,有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.[2019年高考天津文数】设函数,其中.(I )若aWO,讨论的单调性;(II)若,(i)证明恰有两个零点;(ii)设为的极值点,为的零点,且,证明.【答案】(I)在内单调递增.;(II) (i)见解析;(ii)见解析.【解析】(I)解:由已知,的定义域为,且因此当aWO时,,从而,所以在内单调递增.(II)证明:(i)由(I )知.令,由,可知在内单调递减,又,且故在内有唯一解,从而在内有唯一解,不妨设为,贝山当时,,所以在内单调递增;当时,,所以在内单调递减,因此是的唯一极值点.令,则当时,,故在内单调递减,从而当时,,所以.从而又因为,所以在内有唯一零点.又在内有唯一零点1,从而,在内恰有两个零点.(ii)由题意,即从而,即.因为当时,,又,故,两边取对数,得,于是整理得.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法. 考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力.4.[2019年高考全国III卷文数】己知函数.(1)讨论的单调性;(2)当0〈a〈3时,记在区间[0, 1]的最大值为必最小值为皿,求的取值范围.【答案】(1)见详解;(2).【解析】(1).令,得尸0或.若Q0,则当时,;当时,.故在单调递增,在单调递减;若沪0,在单调递增;若以0,则当时,;当时,.故在单调递增,在单调递减.(2)当时,由(1)知,在单调递减,在单调递增,所以在[0,1]的最小值为,最大值为或.于是所以当时,可知单调递减,所以的取值范围是.当时,单调递增,所以的取值范围是.综上,的取值范围是.【名师点睛】这是一道常规的导数题目,难度比往年降低了不少•考查函数的单调性,最大值、最小值的计算.5.[2019年高考北京文数】已知函数.(I )求曲线的斜率为1的切线方程;(II)当时,求证:;(III)设,记在区间上的最大值为% (a),当M (a)最小时,求a的值.【答案】(I )与;(II)见解析;(III).【解析】(I )由得.令,即,得或.又,,所以曲线的斜率为1的切线方程是与,即与.(II)令.由得.令得或.的情况如下:所以的最小值为,最大值为.故,即.(III)由(II)知,当时,;当时,;当时,.综上,当最小时,.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.[2019年高考浙江】己知实数,设函数(1)当时,求函数的单调区间;(2)对任意均有求的取值范围.注:e=2. 71828…为自然对数的底数.【答案】(1)的单调递增区间是,单调递减区间是;(2).【解析】(1)当时,.所以,函数的单调递减区间为(0, 3),单调递增区间为(3, +).(2)由,得.当时,等价于.令,则.设,贝y.(i)当时,,贝IJ记,则所以,.因此,.(ii)当时,.令,则,故在上单调递增,所以.由(i)得,.所以,.因此.由(i) (ii)知对任意,,即对任意,均有.综上所述,所求a的取值范围是.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.[2019年高考江苏】设函数、为f 3的导函数.(1)若EFb=c, f (4) =8,求a 的值;(2)若a^b, I FC,且f 3和的零点均在集合中,求f(x)的极小值;(3)若,且/• (x)的极大值为必求证:辰.【答案】(1);(2)见解析;(3)见解析.【解析】(1)因为,所以.因为,所以,解得.(2)因为,从而.令,得或.因为都在集合中,且,所以.此时,.令,得或.列表如下:所以的极小值为.(3)因为,所以,因为,所以,则有2个不同的零点,设为. 由,得.列表如下:所以的极大值.解法一:.因此.解法二:因为,所以.令,则.令,得.列表如下:所以当时,取得极大值,且是最大值,故.所以当时,,因此.【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.[2018年高考全国III卷文数】已知函数.(1)求曲线在点处的切线方程;(2)证明:当时,.【答案】(1); (2)见解析.【解析】(1),.因此曲线在点处的切线方程是.(2)当时,.令,则.当时,,单调递减;当时,,单调递增;所以.因此.【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当时,,令,求出的最小值即可证明.9.[2018年高考全国I卷文数】已知函数.(1)设是的极值点,求,并求的单调区间;(2)证明:当时,.【答案】(1)在(0, 2)单调递减,在(2, +8)单调递增;(2)见解析.【解析】(1)f (x)的定义域为,f ' (x) =ae* _ .由题设知,f ' (2) =0,所以a=.从而f (x) =, f ' (x)=.当0〈x〈2 时,f ' (x) <0;当x>2 时,f ' (x) >0.所以f 3在(0, 2)单调递减,在(2, +8)单调递增.(2)当a三时,/' (x) 5*.设g (x)=,贝l|当0〈x〈l时,g f (x) <0;当x>l时,g,(x) >0.所以是g(x)的最小值点.故当x>0 时,g (x) 2g (1) =0.因此,当时,.【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果.10.[2018年高考全国II卷文数】已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.【答案】(1)在(-8, ) , (, +8)单调递增,在(,)单调递减;(2)见解析.【解析】(1)当a=3 时,f(X)=, f (x)=.令f' (x) =0解得尸或_¥=.当xW (-8, ) u (, +8)时,f' (x) >0;当xW (,)时,f' (x)〈0.故f(X)在(-8, ) , (, +OO)单调递增,在(,)单调递减.(2)由于,所以等价于.设=,则g ' (x)=》0,仅当尸0时g ' (x) =0,所以g(Q在(-8, +OO)单调递增.故g(X)至多有一个零点,从而f(X)至多有一个零点.又 /' (3a - 1)=,f (3a+l)=,故f 5有一个零点.综上,f 3只有一个零点.【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数()的定义域;②求导数'();③由’()>0(或气)<0)解出相应的的取值范围,当'()>耐,()在相应区间上是增函数;当’()<勿寸,()在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数()有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.11.【2018年高考北京文数】设函数.(I )若曲线在点处的切线斜率为0,求a;(II )若在处取得极小值,求a的取值范围.【答案】(I ); (II)•【解析】(I )因为,所以.由题设知,即,解得.(II)方法一:由(I)得.若a>l,则当时,;当时,.所以在尸1处取得极小值.若,则当时,,所以.所以1不是的极小值点.综上可知,a的取值范围是.方法二:.(1)当沪0时,令得尸1.随x的变化情况如下表:.•.在尸1处取得极大值,不合题意.(2)当a>0时,令得.%1当,即a=l时,,.•.在上单调递增,.•.无极值,不合题意.%1当,即0<3<1时,随X的变化情况如下表:•••在尸1处取得极大值,不合题意.%1当,即a〉l时,随x的变化情况如下表:在A=1处取得极小值,即3>1满足题意.(3)当a〈0时,令得.随x的变化情况如下表:在尸1处取得极大值,不合题意.综上所述,a的取值范围为.【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③ 利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.12.【2018年高考天津文数】设函数,其中,且是公差为的等差数列.(I)若求曲线在点处的切线方程;(II)若,求的极值;(III)若曲线与直线有三个互异的公共点,求d的取值范围.【答案】(I) x+尸0; (II)函数f(x)的极大值为6;函数f(x)的极小值为-6; (III) d的取值范围为.【解析】(I )解:由已知,可得f(x)=x(旷1) (x+l)=xj¥,故=3/-1,因此f(0)=0, =-1,又因为曲线尸f3在点(0, /■(()))处的切线方程为厂/<0)= (T),故所求切线方程为x+y=0.(II )解:由已知可得f(x)=(尸仍+3) (x~t2)3—9 lx~t為=X3-3hx + ^i尸&3+9 ti.故=3/-6 fo^-3122~9.令=0,解得x^tir,或A=fa+.当x变化时,,f(x)的变化如下表:所以函数的极大值为/(fo-) = (-) J-9X (-)=6;函数f(x)的极小值为Afe+) = ()3-9X ()=-6.(Ill)解:曲线y=f{x)与直线y=-(A^fe)-6有三个互异的公共点等价于关于x的方程^x~t2+d) (j*-t2) {x~t2 -4 +(旷紡+ 6=0有三个互异的实数解,令iFFti,可得u3+(l-d)屮6=0.设函数g(x)=f+(l-d)x+6,则曲线y=f{x)与直线尸-(旷&)-6有三个互异的公共点等价于函数y=g(x) 有三个零点.=3/+(W).当</Wl时,M0,这时在R上单调递增,不合题意.当/〉1时,=0,解得必=,应=.易得,£(X)在(-8, Xi)上单调递增,在[xi,应]上单调递减,在(&, +8)上单调递增.g(x)的极大值g(xJ=g()=>0.g(x)的极小值gg) =&()=-.若g(Q$0,由g(x)的单调性可知函数尸g(x)至多有两个零点,不合题意.若即,也就是,此时,且,从而由的单调性,可知函数在区间内各有一个零点,符合题意.所以,的取值范围是.【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力.13.[2018年高考浙江】已知函数f(x)= -lnx.(I)若/'(x)在尸卫,X2(XI H X2)处导数相等,证明:f(xj+f(x2)〉8-81n2;(II )若aW3-41n2,证明:对于任意Q0,直线y=kx+a与曲线y=f{x)有唯一公共点.【答案】(I)见解析;(II)见解析.【解析】(I )函数f (力的导函数,由得,因为,所以.由基本不等式得.因为,所以.由题意得.设,则,所以所以g(x)在E256, +8)上单调递增,故,即.(II )令沪,/?=,贝Uf(77?) - km~ a>\a\+k~ k~ a^O,f (n) - kn~ a〈W〈0,所以,存在及丘 5, n~)使/"(X。

2019版高考数学(文科)(5年高考+3年模拟)考点清单全国卷1地区通用版:3.2 导数的应用 PDF版

2019版高考数学(文科)(5年高考+3年模拟)考点清单全国卷1地区通用版:3.2 导数的应用 PDF版

题,这些问题通常称为 ㊀ 优化 ㊀ 问题, 导数在这一类问题中有着重 要的作用,它是求函数最大( 小) 值的有力工具.
优化问题 ң 用函数表示成数学问题 ʏ ˌ 优化问题的答案 ѳ 用导数解决数学问题
对应学生用书起始页码 P58
方法 1㊀ 利用导数研究函数单调性的方法
㊀ ㊀ 1. 用导数法求可导函数单调区间的一般步骤 求定义域 用求得的根 划分区间 ң ң 求导数 f ᶄ( x) 确定 f ᶄ( x) 在各个 开区间内的符号 ң ң 求 f ᶄ( x)= 0 在 定义域内的根 得相应开区 间上的单调性 ң f ᶄ( x) ȡ0;若函数单调递减,则 f ᶄ( x) ɤ0 来求解. - a) - a 2 x. (2) 转化为不等式的恒成立问题,利用 若函数单调递增,则 ㊀ ( 2017 课标全国Ⅰ,21,12 分 ) 已知函数 f ( x ) = e x ( e x

②若 a >0,则由(1) 得,当 x = ln a 时, f( x) 取得最小值, 最小
a ( 2 ) 时, f( x) 取得最小值, a 3 a 最小值为 f ( ln ( - ) ) = a [ -ln ( - ) ] . 2 4 2 3 a 从而当且仅当a [ -ln ( - ) ] ȡ0, 4 2
( ).
( ( ) ) 时, f ᶄ( x) <0; a 当 xɪ ( ln ( - ) ,+ɕ ) 时, f ᶄ( x) >0. 2 a 故 f ( x ) 在 ( - ɕ ,ln ( - ) ) 上 单 调 递 减, 2 a ( ln ( - 2 ) ,+ɕ ) 上单调递增.
(2) ①若 a = 0,则 f( x) = e 2x ,所以 f( x) ȡ0. 时,f( x) ȡ0.
(1) 利用集合间的包含关系处理, y = f ( x ) 在 ( a, b ) 上单调,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 导数的应用 A组 三年高考真题(2016~2014年) 1.(2016·四川,6)已知a是函数f(x)=x3-12x的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 2.(2015·陕西,9)设f(x)=x-sin x,则f(x)( ) A.既是奇函数又是减函数 B.既是奇函数又是增函数 C.是有零点的减函数 D.是没有零点的奇函数 3.(2015·安徽,10)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( ) A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0 C.a<0,b<0,c>0,d>0 D.a>0,b>0,c>0,d<0 4.(2014·新课标全国Ⅱ,11)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( ) A.(-∞,-2] B.(-∞,-1] C.[2,+∞) D.[1,+∞) 5.(2014·湖南,9)若0<x1<x2<1,则( ) A.e2x-e1x>ln x2-ln x1 B.e2x-e1x<ln x2-ln x1 C.x2e1x>x1e2x D.x2e1x<x1e2x 6.(2014·新课标全国Ⅰ,12)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( ) A.(2,+∞) B.(1,+∞) C.(-∞,-2) D.(-∞,-1)

7.(2016·新课标全国卷Ⅱ,20)已知函数f(x)=(x+1)ln x-a(x-1). (1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程; (2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围. 8.(2016·新课标全国Ⅲ,21)设函数f(x)=ln x-x+1. (1)讨论f(x)的单调性;

(2)证明:当x∈(1,+∞)时,1(3)设c>1,证明:当x∈(0,1)时,1+(c-1)x>cx. 9.(2016·山东,20)设f(x)=xln x-ax2+(2a-1)x,a∈R. (1)令g(x)=f′(x),求g(x)的单调区间; (2)已知f(x)在x=1处取得极大值.求实数a的取值范围. 10.(2016·四川,21)设函数f(x)=ax2-a-ln x,g(x)=1x-eex,其中a∈R,e=2.718…为自然对数的底数. (1)讨论f(x)的单调性; (2)证明:当x>1时,g(x)>0; (3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立. 11.(2016·北京,20)设函数f(x)=x3+ax2+bx+c. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围; (3)求证:a2-3b>0是f(x)有三个不同零点的必要而不充分条件. 12.(2015·新课标全国Ⅱ,21)已知f(x)=ln x+a(1-x). (1)讨论f(x)的单调性; (2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围. 13.(2015·新课标全国Ⅰ,21)设函数f(x)=e2x-aln x. (1)讨论f(x)的导函数f′(x)零点的个数;

(2)证明:当a>0时,f(x)≥2a+aln2a.

14.(2015·福建,22)已知函数f(x)=ln x-(x-1)22. (1)求函数f(x)的单调递增区间; (2)证明:当x>1时,f(x)<x-1; (3)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1). 15.(2015·浙江,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数 y=ax2+b(其中a,b为常数)模型. (1)求a,b的值; (2)设公路l与曲线C相切于P点,P的横坐标为t. ①请写出公路l长度的函数解析式f(t),并写出其定义域; ②当t为何值时,公路l的长度最短?求出最短长度. 16.(2015·湖南,21)已知a>0,函数f(x)=aexcos x(x∈[0,+∞)).记xn为f(x)的从小到大的第n(n∈N*)个极值点. (1)证明:数列{f(xn)}是等比数列; (2)若对一切n∈N*,xn≤|f(xn)|恒成立,求a的取值范围.

17.(2015·山东,20)设函数f(x)=(x+a)ln x,g(x)=x2ex. 已知曲线y=f(x) 在点(1,f(1))处的切线与直线2x-y=0平行. (1)求a的值; (2)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由; (3)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值. 18.(2015·浙江,20)设函数f(x)=x2+ax+b(a,b∈R).

(1)当b=a24+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式; (2)已知函数f(x)在[-1,1]上存在零点,0≤b-2a≤1,求b的取值范围. 19.(2015·天津,20)已知函数f(x)=4x-x4,x∈R. (1)求f(x)的单调区间; (2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x), 求证:对于任意的实数x,都有f(x)≤g(x);

(3)若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1<x2,求证:x2-x1≤-a3+134. 20.(2015·广东,21)设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1). (1)若f(0)≤1,求a的取值范围; (2)讨论f(x)的单调性;

(3)当a≥2时,讨论f(x)+4x在区间(0,+∞)内的零点个数. 21.(2014·安徽,20)设函数f(x)=1+(1+a)x-x2-x3,其中a>0. (1)讨论f(x)在其定义域上的单调性; (2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值. 22.(2014·广东,21)已知函数f(x)=13x3+x2+ax+1(a∈R). (1)求函数f(x)的单调区间; (2)当a<0时,试讨论是否存在x0∈0,12∪12,1,使得f(x0)=f12. 23.(2014·天津,19)已知函数f(x)=x2-23ax3(a>0),x∈R. (1)求f(x)的单调区间和极值; (2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.

24.(2014·陕西,21)设函数f(x)=ln x+mx,m∈R. (1)当m=e(e为自然对数的底数)时,求f(x)的极小值; (2)讨论函数g(x)=f′(x)-x3零点的个数;

(3)若对任意b>a>0,f(b)-f(a)b-a<1恒成立,求m的取值范围. 25.(2014·新课标全国Ⅰ,21)设函数f(x)=aln x+1-a2x2-bx(a≠1),曲线y=f(x)在点(1, f(1))处的切线斜率为0. (1) 求b;

(2)若存在x0≥1,使得f(x0)<aa-1,求a的取值范围.

B组 两年模拟精选(2016~2015年) 1.(2016·河北保定第二次模拟)已知函数f(x)=x2-2cos x,则f(0),f-13,f25的大小关系是( ) A.f(0)C.f252.(2016·云南师大附中检测)若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是( )

A.-∞,518 B.(-∞,3] C.518,+∞ D.[3,+∞) 3.(2016·四川雅安第三次诊断模拟)设函数f(x)的导函数为f′(x),对任意x∈R,都有xf′(x)成立,则( ) A.3f(2)>2f(3) B.3f(2)=2f(3) C.3f(2)<2f(3) D.3f(2)与2f(3)大小不确定

4.(2016·甘肃兰州诊断)若函数f(x)=2x3+3x2+1 (x≤0),eax (x>0)在[-2,2]上的最大值为2, 则a的取值范围是( ) A.12ln 2,+∞ B.0,12ln 2 C.(-∞,0] D.-∞,12ln 2 5.(2015·山东省实验中学二诊)已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)<13, 则f(x)A.{x|-1C.{x|x<-1或x>1} D.{x|x>1} 6.(2015·广东佛山调研)若函数f(x)=x3-3x在(a,6-a2]上有极小值,则实数a的取值范围是( ) A.(-5,1) B.[-5,1) C.[-2,1) D.(-2,1)

7.(2015·赣州市十二县联考)若函数f(x)=13x3-a2x2+(3-a)x+b有三个不同的单调区间,则实数a的取值范围是________. 8.(2015·河南南阳三模)已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________. 9.(2015·河北衡水中学模拟)已知函数f(x)=xln x,g(x)=-x2+ax-3,其中 a为实数. (1)求函数f(x)在[t,t+2]上的最小值; (2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.

相关文档
最新文档