医学影像技术名词解释
医学影像技术学名词解释

医学影像技术学名词解释医学影像技术是现代医学中不可或缺的一个重要领域,它通过使用各种影像设备,如X光、CT扫描、磁共振成像(MRI)和超声波等,来获取人体内部的图像信息。
它提供了一种非侵入性和非破坏性的方法,可以帮助医生准确地诊断疾病,制定治疗方案,以及监测疾病的进展。
在本篇文章中,我们将解释一些常见的医学影像技术学名词,帮助读者更好地理解和应用这些技术。
1. X光:X光技术是最早被广泛应用的医学影像技术之一。
它通过使用X射线穿过人体,然后被接收器接收并转化为图像。
X光可以用于检查骨骼结构、肺部和胸部疾病的诊断。
然而,X光无法提供关于软组织结构的详细信息。
2. CT扫描:计算机断层扫描(CT)是一种使用X射线和计算机技术生成具有高分辨率的三维图像的影像技术。
通过在不同角度上扫描身体部位,CT扫描可以提供关于器官、骨骼和血管等结构的详细信息。
它在肿瘤的诊断和手术规划中得到了广泛应用。
3. 磁共振成像(MRI):磁共振成像是一种通过使用强磁场和无损耗的无辐射影像技术,可以产生人体内部详细的解剖结构图像。
MRI可以提供关于器官、血管和软组织的丰富信息,对于诊断脑部和神经系统疾病、肿瘤和骨骼疾病具有很高的准确性。
4. 超声波:超声波是一种使用高频声波产生人体内部图像的影像技术。
超声波被广泛应用于妇产科、心脏病学和肝脏疾病等诊断领域。
它可以提供实时图像,并且不会产生辐射。
超声波在手术指导和组织活检中也起着重要的作用。
5. 核医学:核医学是一种使用放射性同位素制备药物,并通过摄取这些药物来检测人体内的生物过程和疾病的影像技术。
它通常用于癌症诊断和治疗过程中。
核医学包括单光子发射计算机断层扫描(SPECT)和正电子发射计算机断层扫描(PET)等技术。
6. 心电图:心电图是用于记录和显示心脏电活动的图像技术。
它通过将多个电极连接到患者的胸部、四肢和颈部,测量和记录心脏电信号的变化。
心电图可以帮助医生诊断心脏病和心律失常等疾病。
医学影像技术名词解释

医学影像技术名词解释医学影像技术是一种通过使用射线、声波、磁场等物理力学原理对人体进行无创、准确、直观的影像检查、诊断和治疗的技术。
下面将介绍几个医学影像技术的名词解释。
1. X线造影:X线造影是一种利用X射线通过人体组织的不同部位产生影像的技术。
在这种技术中,医生将辐射X射线通过人体,然后使用检测器捕捉X射线通过人体后所产生的影像。
通过X线造影,医生可以检测到骨骼和某些软组织的异常情况。
2. CT扫描:CT(Computed Tomography)扫描是一种利用X射线和计算机技术生成横断面图像的成像技术。
在CT扫描中,患者需要躺在扫描床上,通过一种圆环状的机器进行扫描。
扫描时机器会以位于患者体内的X射线探测器为中心,绕患者旋转,同时发射X射线,并收集经不同角度探测器通过的射线,然后通过计算机处理得到图像。
CT扫描可以检测脑部、胸部、腹部和盆腔等器官的异常情况。
3. 磁共振成像(MRI):磁共振成像(Magnetic Resonance Imaging)利用磁场和无线电波的相互作用原理生成人体内部的影像。
在MRI检查中,患者需要躺在装有磁体的机器中,磁体会产生强大的磁场,然后通过体内的无线电波信号获取图像。
MRI可以提供高分辨率的图像,对柔软组织如脑、脊柱、关节等进行观察。
4. 超声波检查:超声波检查是一种利用超声波的传播和反射原理对人体内部进行检查和诊断的技术。
在超声波检查中,医生在人体上通过轻轻地移动探头,探测器会发射超声波经皮肤进入体内,然后根据超声波在不同组织中的传播和反射信息获取图像。
超声波检查可以检测和评估内脏器官、血管、肌肉骨骼等的情况。
5. 核医学影像:核医学影像是一种利用放射性核素注入人体,再通过探测器捕获核素发出的放射性粒子产生图像的技术。
核医学影像包括正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)。
核医学影像可以检测和评估心脏、肺部、肾脏、骨髓等内部器官的功能和病变。
医学影像学名词解释

医学影像学名词解释第一章成像技术与临床应用1. X 线:波长极短,肉眼看不见的电磁波。
波长范围为0.0006~50nm。
2.自然对比:人体组织结构基于密度上的差别,可产生X 线对比,这种自然存在的差别,称为自然对比。
依靠自然对比所获的X 线图像,称为平片。
3.人工对比:缺乏自然对比的组织或器官,可人为引入在密度上高于或低于它的物质,使之产生对比,称为人工对比。
这种引入的物质称为造影剂。
4.造影检查:用人工对比方法进行的X 线检查称为造影检查。
5.CT:用X线摄影,对X线束对人体层面进行扫描,取得信息,经计算机处理而获得该层面的重建图像,是数字化成像。
6.磁共振成像(MRI):是利用人体中的氢原子核在磁场中受到射频脉冲的激励而发生核磁共振现象,产生磁共振信号,经过信号采集和计算机处理而获得重建断层图像的成像技术。
7.多普勒效应:超声遇到运动的反射界面时,反射波的频率发生改变。
第二章骨骼与肌肉系统1.骨龄:在骨的发育过程中,骨的原始骨化中心和继发骨化中心的出现时间;骨骺与干骺端骨性愈合的时间及其形态的变化都有一定的规律性,这种规律以时间来表示即骨龄。
2.骨质疏松:是指一定单位体积内正常钙化的骨组织减少,即骨组织的有机成分和钙盐都减少,但骨的有机成分和钙盐含量比例仍正常。
3.骨质软化:是指一定单位体积内的骨组织有机成分正常,而矿物质含量减少。
4.骨质破坏:是局部骨质为病理组织所代替而造成骨组织的消失。
5.骨质增生硬化:指一定单位体积内的骨量增多。
6.骨膜异常:包括骨膜反应和骨膜新生骨,是由骨膜受刺激,骨膜水肿、增厚,内层成骨细胞活动增加,最终形成骨膜新生骨,常提示病变存在。
7.Codman 三角:即骨膜三角,引起骨膜增生的病变进展,已形成的骨膜新生骨可被破坏,破坏区两侧的残留骨膜新生骨呈三角形,称为骨膜三角。
8.骨质坏死:是骨组织局部代谢停止,坏死的骨质,称为死骨。
9.关节肿胀:常由关节积液或关节囊及其周围组织充血、水肿、出血和炎症所致。
医学影像技术名词解释

第一篇总论1.穿透作用:是指X线穿过物质时不被吸收的本领,X线的穿透力与管电压相关,与物质的密度和厚度相关。
穿透性是X线成像的基础。
2.荧光作用:X线能激发荧光物质产生荧光,它是进行透视检查的基础。
3.感光作用:由于电离作用,X线照射到胶片,使胶片上的卤化银发生光化学反应,出现银颗粒沉淀,称X线的感光作用。
感光效应是X 线摄影的基础。
4.电离作用:物质受到X线照射,原子核外电子脱离原子轨道,这种作用称为电离作用。
5.造影检查:用人工的方法将高密度或低密度物质引入体内,使其改变组织器官与邻近组织的密度差,以显示成像区域内组织器官的形态和功能的检查方法。
6.对比剂:引入人体产生影像的化学物质。
7.阴性对比剂:原子序数低、吸收X线少,是一种密度低、比重小的物质。
影像显示低密度或黑色。
包括空气、氧气、二氧化碳等。
8.阳性对比剂:原子序数高、吸收X线多,是一种密度高、比重大的物质,影像显示高密度或白色。
包括钡制剂和碘制剂9.直接引入法:通过人体自然管道、病理瘘管或体表穿刺等途径,将对比剂直接引入造影部位的检查方法。
包括口服法、灌注法、穿刺注入法。
10.间接引入法:通过口服或静脉注射将对比剂引入体内,利用某些器官的生理排泄功能将对比剂有选择性地排泄到需要检查的部位而第二篇普通X线成像技术1.实际焦点:X线管阳极靶面实际接受电子撞击的面积称之为实际焦点。
2.有效焦点:实际焦点在X线摄影方向上的投影。
3.标称焦点:实际焦点垂直于X线长轴方向的投影。
X线管规格特性表中标注的焦点为标称焦点。
其焦点的大小值称为有效焦点的标称值。
4.听眶线:外耳孔上缘与眼眶下缘的连线。
5.听眦线:外耳孔中点与眼外眦的连线。
6.听鼻线:外耳孔中点与鼻前棘的连线。
7.瞳间线:两侧瞳孔间的连线。
8.听眉线:外耳孔中点与眶上缘的连线。
9.眶下线:两眼眶下缘的连线。
10.中心线:X线束居中心的那一条线。
11.斜射线:X线中心线以外的线。
12.焦-片距:X线管焦点到胶片(探测器)的距离。
医学影像技术名词解释

名词解释第一篇总论1.穿透作用:是指X线穿过物质时不被吸收的本领,X线的穿透力与管电压相关,与物质的密度和厚度相关。
穿透性是X线成像的基础。
2.荧光作用:X线能激发荧光物质产生荧光,它是进行透视检查的基础。
3.感光作用:由于电离作用,X线照射到胶片,使胶片上的卤化银发生光化学反应,出现银颗粒沉淀,称X线的感光作用。
感光效应是X 线摄影的基础。
4.电离作用:物质受到X线照射,原子核外电子脱离原子轨道,这种作用称为电离作用。
5.造影检查:用人工的方法将高密度或低密度物质引入体内,使其改变组织器官与邻近组织的密度差,以显示成像区域内组织器官的形态和功能的检查方法。
6.对比剂:引入人体产生影像的化学物质。
7.阴性对比剂:原子序数低、吸收X线少,是一种密度低、比重小的物质。
影像显示低密度或黑色。
包括空气、氧气、二氧化碳等。
8.阳性对比剂:原子序数高、吸收X线多,是一种密度高、比重大的物质,影像显示高密度或白色。
包括钡制剂和碘制剂9.直接引入法:通过人体自然管道、病理瘘管或体表穿刺等途径,将对比剂直接引入造影部位的检查方法。
包括口服法、灌注法、穿刺注入法。
10.间接引入法:通过口服或静脉注射将对比剂引入体内,利用某些器官的生理排泄功能将对比剂有选择性地排泄到需要检查的部位而第二篇普通X线成像技术1.实际焦点:X线管阳极靶面实际接受电子撞击的面积称之为实际焦点。
2.有效焦点:实际焦点在X线摄影方向上的投影。
3.标称焦点:实际焦点垂直于X线长轴方向的投影。
X线管规格特性表中标注的焦点为标称焦点。
其焦点的大小值称为有效焦点的标称值。
4.听眶线:外耳孔上缘与眼眶下缘的连线。
5.听眦线:外耳孔中点与眼外眦的连线。
6.听鼻线:外耳孔中点与鼻前棘的连线。
7.瞳间线:两侧瞳孔间的连线。
8.听眉线:外耳孔中点与眶上缘的连线。
9.眶下线:两眼眶下缘的连线。
10.中心线:X线束居中心的那一条线。
11.斜射线:X线中心线以外的线。
医学影像学名词解释集锦

医学影像学名词解释集锦医学影像学名词解释集锦1.自然对比:人体组织结构密度上的差别是产生X 线影像对比的基础,称之为自然对比。
2.人工对比:对于缺乏自然对比的组织或器官,可人为引入在密度上高于或低于它的物质,使之产生对比。
3.螺旋CT:X 线管围绕检查部位连续旋转并进行连续扫描,同时在扫描期间,床沿纵轴连续平移,X 线扫描的轨迹呈螺旋状,故称之为螺旋CT。
4.对比增强扫描:经静脉注入水溶性有机碘剂,于病变部位再行扫描的方法。
5.超声:振动频率在20000Hz 以上,超过人耳听觉阈值上限的声波。
6.衰减:超声在传播的过程中因反射、折射、扩散及组织吸收引起能量逐渐减弱,称为衰减。
7.声影:介质内部结构致密,与邻近的软组织或液体有明显的声阻抗差,引起强反射,下方声能衰减而出现无回声暗区,称为声影。
8.磁共振成像:利用人体中的氢原子核在磁场中受到射频脉冲的激励而发生核磁共振现象,产生磁共振信号,经过信号采集和计算机处理而获得重建断层图像的成像技术。
9.弛豫:终止射频脉冲使磁化矢量逐渐恢复到平衡状态的过程称为弛豫,所需时间称为弛豫时间。
10.流空效应:血管内快速流动的血流,在磁共振成像过程中采集不到信号而呈无信号黑影,即为流空效应。
11.质子弛豫增强效应:一些顺磁性物质作为对比剂缩短周围质子弛豫时间的现象称为质子弛豫增强效应。
12.PACS即图像存档和传输系统,以计算机为中心,由数字化图像信息的获取、网络传输、存储介质存档和处理等部分组成。
13.骨龄:在骨的发育过程中,骨的原始骨化中心和继发骨化中心的出现时间,骨骺与干骺端骨性愈合的时间及其形态的变化都有一定的规律性,这种规律以时间来表示即为骨龄。
14.骨质疏松:一定单位体积内正常钙化的骨组织减少,即骨组织的有机成分和钙盐都减少,但比例仍正常。
15.骨质软化:一定单位体积内骨组织有机成分正常,而矿物质含量减少。
16.骨质破坏:局部骨质为病理组织所代替而造成骨组织的消失。
三基题集医学影像科技术名词解释

1、射线对比度:射线本身是一束无信息的能源,当它透过人体时,射线被部分吸收和散射,高吸收区域透过的射线与低吸收区域透过的射线形成强度分布的差别,这种透过人体组织后形成的射线强度分布上的差异称为射线对比度。
2、放大率:放大的影像比实际肢体增大的倍数叫放大率或称放大倍数。
3、第一斜位:被检者身体右侧朝前倾斜贴暗盒面或立位摄影架面板,或者是摄影床的床面。
左侧远离暗盒或床面,冠状面与暗盒面或床面倾斜一定角度。
4、宽容度:是指连接特性曲线上指定两点密度所对应的曝光量范围。
5、听眶线:外耳孔与眼眶下缘的连线,此线为解剖学上的颅骨基底线,或水平线。
6、透光率: 透过照片的光强度与入射光强度之比。
7、增感率:在照片上取得相同的密度值 1.0 时,无屏与有屏所需要的曝光量之比值。
8、平均斜率:连接胶片特性曲线上指定两点密度 D1 和D2 的直线与横坐标夹角的正切值。
9、栅比:栅比是铅条高度与铅条间距之比。
10、定影:就是将未感光的卤化银溶解掉的过程。
11、时间减影:用作减影的两图像是在不同显影时期获得的12、球管热容量: X 线管处于最大冷却率时,允许承受的最大热量。
13、均匀度:主磁场的均匀性系指 B0 随空间位置的改变而发生的大小变化。
14、空间分辨率:是指图像中可辨认的领接物体空间几何长度的最小极限,即对细微结构的分辨率。
15、 CT 值: CT 影像中每个像素所对应的物质对 X 线线性平均衰减量大小的表示。
16、时间飞跃效应:是指流动的自旋流进静态组织区域而产生比静态组织高的MR 信号。
17、进动:原子自旋轴与主磁场的轴线有一小角度不完全平行,并围绕主磁场轴作较慢的旋转。
18、纵向弛豫:通常将 Mz 的恢复称为纵向驰豫,是自旋-晶格弛豫的反映因此又称其为 T1 弛豫。
19、螺距:定义为扫描时床进速度与扫描层厚之比值。
20、像素:又称像元,指组成图像矩阵中的基本单元。
医学影像学名词解释

总论1、自然对比:人体组织自然存在的密度差别称自然对比2、人工对比:对于缺乏自然对比的组织或器官,可以用人为的方法引入一定量的在密度上高于或低于它的物质,使产生对比,称为人工对比3、造影检查:将造影剂引入器官内或其周围,以产生明显对比显示其形态与功能的方法4、CT:CT不是X线摄影,而是用X线对人体进行扫描,取得信息,经电子计算机处理而获得的重建图像5、DSA:利用电子计算机处理数字化的影像信息,以消除骨骼胳和软组织的减技术骨、关节系统1、骨质疏松:osteoporosis是指一定单位体积内正常钙化的骨组织减少,但1克骨内的钙盐含量正常。
X线表现为骨质密度减低,在长骨松质内骨小梁变细,减少间隙增宽,密质骨表现分层,变薄现象在脊椎椎体内结构呈纵形条纹,周围骨皮质变薄,严重时,椎体内结构消失2、骨质破坏:destructionofbone是局部骨质为病理组织所代替,而造成的骨组织消失,X线表现为骨质局限性密度减低。
骨小梁稀疏或形成骨质缺损,其中全无骨质结构。
早期在哈氏管周围,X线表现破坏呈筛孔状,骨皮质表层的破坏,则呈虫蚀状3、骨质软化:osteomalacia是指一定单位体积内骨组织有机成分正常,而矿物质含量减少,其X线表现为骨质密度减低,骨小梁,骨皮质边缘模糊,骨骼可见到各种变形,及假骨折线等征象4、关节破坏:destructionofjoint是关节软骨及其下方的骨性关节面骨质为病理组织所侵犯,代替所致,其X线表现是当破坏只累及关节软骨时,仅见关节间隙变窄,累及关节面骨质时,则出现相应的骨破坏和缺损5、关节强直:可分为骨性与纤维性两种,骨性强直是关节破坏后,关节骨端由骨组织连接,X线表现为关节间隙正常。
明显狭窄或消失,并有骨小梁通过关节连接两侧骨端。
纤维性强直X线表现可见狭窄的关节间隙,并且无骨小梁贯穿,但临床功能丧失6、骨质坏死:是骨组织局部代谢的停止,坏死的骨质称为死骨,死骨的X线表现为骨质局限性密度增高7、骨膜增生:又称骨膜反应,是因骨膜受刺激,骨膜内层,成骨细胞活动增加所引起的骨质增生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释第一篇总论1.穿透作用:是指X线穿过物质时不被吸收的本领,X线的穿透力与管电压相关,与物质的密度和厚度相关。
穿透性是X线成像的基础。
2.荧光作用:X线能激发荧光物质产生荧光,它是进行透视检查的基础。
3.感光作用:由于电离作用,X线照射到胶片,使胶片上的卤化银发生光化学反应,出现银颗粒沉淀,称X线的感光作用。
感光效应是X 线摄影的基础。
4.电离作用:物质受到X线照射,原子核外电子脱离原子轨道,这种作用称为电离作用。
5.造影检查:用人工的方法将高密度或低密度物质引入体内,使其改变组织器官与邻近组织的密度差,以显示成像区域内组织器官的形态和功能的检查方法。
6.对比剂:引入人体产生影像的化学物质。
7.阴性对比剂:原子序数低、吸收X线少,是一种密度低、比重小的物质。
影像显示低密度或黑色。
包括空气、氧气、二氧化碳等。
8.阳性对比剂:原子序数高、吸收X线多,是一种密度高、比重大的物质,影像显示高密度或白色。
包括钡制剂和碘制剂9.直接引入法:通过人体自然管道、病理瘘管或体表穿刺等途径,将对比剂直接引入造影部位的检查方法。
包括口服法、灌注法、穿刺注入法。
10.间接引入法:通过口服或静脉注射将对比剂引入体内,利用某些器官的生理排泄功能将对比剂有选择性地排泄到需要检查的部位而第二篇普通X线成像技术1.实际焦点:X线管阳极靶面实际接受电子撞击的面积称之为实际焦点。
2.有效焦点:实际焦点在X线摄影方向上的投影。
3.标称焦点:实际焦点垂直于X线长轴方向的投影。
X线管规格特性表中标注的焦点为标称焦点。
其焦点的大小值称为有效焦点的标称值。
4.听眶线:外耳孔上缘与眼眶下缘的连线。
5.听眦线:外耳孔中点与眼外眦的连线。
6.听鼻线:外耳孔中点与鼻前棘的连线。
7.瞳间线:两侧瞳孔间的连线。
8.听眉线:外耳孔中点与眶上缘的连线。
9.眶下线:两眼眶下缘的连线。
10.中心线:X线束居中心的那一条线。
11.斜射线:X线中心线以外的线。
12.焦-片距:X线管焦点到胶片(探测器)的距离。
13. 焦-物距:X线管焦点到被照体的距离。
14.物-片距:被照体到胶片(探测器)距离。
第三篇数字X线成像技术1.模拟:是以某种范畴的表达方式如实的反应另一种范畴。
2.数字图像:成像采用结构逼进法,影像最大值与最小值之间的系列亮度值是离散的,每个像点都具有确定的数值,这种影像就是数字图像。
3.矩阵:是一个数学概念,它表示横行和纵列的数字方阵。
矩阵越大,图像越清晰,分辨力越强。
4.像素:是在矩阵中被分割的小单元。
5.图像的数字化:是将模拟图像分解为一个矩阵的各个像素,测量每个像素的衰减值,并把得到的衰减值转变为数字,再把每个像点的坐标位置和衰减值输入计算机。
6.采集矩阵:是数字曝光摄影时所选择的矩阵,是每幅画面观察野所包含的像素数目。
7.重建时间:指阵列处理器用原始数据重建成显示数据矩阵所需要的时间。
8.噪声:是指不同频率和不同程度的声音无规律地组合在一起。
数字X线成像中的定义:影像上观察到的亮度水平的随机波动。
9.信噪比(SNR):信噪比是信号与噪声的比。
信噪比是评价电子设备灵敏度的一项技术指标。
即有用信号强度与噪声强度之比。
10.窗宽(WW):窗宽表示所显示信号强度值的范围。
窗宽越大,图像层次越丰富;窗宽越小图像层次就越少,对比度越大。
11.窗位(WL):是指图像显示过程中代表图像灰阶的中心位置。
12.IP板:是CR成像系统的关键原件,是实现模拟影像转换为数字信息载体。
由表面保护层、PSL荧光层、基板层、背面保护层组成。
13.光激励发光(PSL):潜影经过激光扫描进行读取,IP被激励后以紫外线形式释放出储存的能量,这种现象叫光激励发光(PSL)。
14.谐调处理:也叫层次处理,处理影像的对比,调整符合诊断的层次,调节整体密度。
如:胸部摄影:肺、纵隔。
15.空间频率处理:通过频率响应的调节,改变影像的锐利度。
边缘增强技术、改变显示矩阵。
16.动态范围控制:在协调处理和空间频率处理前自动进行,是一种在单幅影像显示时提供宽诊断范围的影像增强的新型影像处理算法。
★胸部、四肢17.DR:即直接数字X线摄影,X线穿过人体后由FPD探测的模拟信号直接数字化而形成数字影像的检查技术。
18.DR的双能减影术:又称两次曝光法,即以X线管输出不同能量(KVP)对被摄物体在很短的时间间隔内两次曝光,获得两幅图像或数据,进行图像减影或数据分离整合,分别生成软组织密度像、骨密度像和普通DR胸部像3幅图像。
第四篇CT成像技术1.密度分辨力:指在低对比度情况下,图像对两种组织之间最小密度的分辨能力,常以百分数表示。
如0.2%,5mm,0.45Gy。
2.时间分辨力:对于静止器官的成像,时间分辨力是指影像设备单位时间内采集图像的帧数,它与每帧图像的采集时间、重建时间、螺距以及连续成像能力有关。
对于运动器官的成像,时间分辨力还指扫描野内用于图像重建所需要扫描数据的最短采集时间。
3.空间分辨力:指在高对比度的情况下,密度分辨力大于10%时,图像对组织结构空间大小的鉴别能力。
以LP/cm表示。
4.CT值:CT值是重建图像中像素对X线吸收系数的换算值,单位为亨氏单位(HU)。
5.部分容积效应:又称体积平均值效应。
在同一扫描层面内,含有两种或两种以上不同密度的组织时,所测得的CT值是它们的平均值,因而不能真实地反映其中任何一种组织的CT值。
6.周围间隙现象:同一平面上相邻结构边缘分辨不清。
7.伪影:CT图像中与被扫描组织结构无关的异常影像称为伪影,产生原因较多。
8.普通扫描(平扫):指血管内不注射对比剂的CT扫描。
可采用横断面扫描和冠状面扫描,可以是逐层扫描或螺旋扫描。
9.增强扫描:是指经静脉注射碘对比剂后的CT扫描,可以采用逐层扫描或螺旋扫描。
10.实时增强监测技术:亦称自动跟踪法,指增强扫描时利用专用软件对靶血管的CT值进行实时监测,根据靶血管(靶器官)兴趣区(ROI)CT值的变动,自动(或手动)触发预定的扫描程序。
11.造影扫描:是指对某一器官或结构直接或间接注入对比剂后进行CT扫描的方法。
所用对比剂多数为阳性对比剂,也可使用中性及阴性对比剂。
造影扫描分为血管性造影扫描和非血管性造影扫描两大类。
12.血管性CT造影扫描:是指经介入选择性显示某器官或组织的动脉或静脉血管的CT扫描技术。
13.非血管性CT造影扫描:是指经穿刺或自然通道等引入对比剂,对器官组织进行非血管性造影,然后进行CT扫描的检查方法。
14.CT灌注成像(CTP):是指静脉注射对比剂后,对选定的层面或器官进行持续动态扫描,以获得该层面或器官每一体素的时间密度曲线(TDC),然后利用不同的数学模型计算出组织血流灌注的各项参数,并通过色阶赋值形成彩色灌注图像,借助特殊软件以此来评价组织器官的灌注状态。
15.CT血管成像技术(CTA):指经静脉快速注入对比剂,在靶血管内对比剂达到峰值时进行螺旋扫描采集容积数据,利用CT工作站进行后处理,重组出靶血管的3D图像。
16.CT导向穿刺活检:是以CT图像作为导向工具进行介入诊断和治疗。
17.低剂量螺旋CT:指在满足诊断的前提下,降低X线曝光参数,允许适度噪声,尽量降低被检者辐射剂量的螺旋CT扫描技术。
18.能谱CT成像:利用X线的能量谱进行的CT成像。
第五篇DSA成像技术1.DSA:数字减影血管造影,即血管造影的影像通过数字化处理,把不需要的组织影像删除,只保留血管影像;其特点是图像清晰,分辨率高,为血管病变诊断及介入治疗提供真实的立体图像。
是目前诊断血管疾病最可靠的影像技术,是诊断血管疾病的“金标准”。
2. 蒙片:与普通平片图像完全相同,而密度相反的图像,也即正像,同透视像,通常为不含造影剂的图像,可以为造影序列中任一帧图像,可以是动态蒙片。
mask片即蒙片。
3.能量减影:也称双能减影,边缘减影。
即进行兴趣区血管造影时,同时用两个不同的管电压,如70kV和130kV取得两帧图,作为减影对进行减影,由于两帧图像是利用两种不同的能量摄制的,所以称为能量减影。
临床较少应用。
4.时间减影:时间减影是DSA的常用方式。
在注入的对比剂进入兴趣区之前,将一帧或多帧图像作mask像储存起来,并与时间顺序出现的含有造影剂的充盈像一一地进行相减。
这样,两帧间相同的影像部分被消除了,而造影剂通过血管引起高密度的部分被突出地显示出来。
因造影像和mask像两者获得的时间先后不同,故称时间减影。
5.混合减影:基于时间与能量两种物理变量,先作能量减影再作时间减影。
6.再蒙片:重新确定mask像,针对不自主运动7.补偿滤过:在X线管与患者之间放入附加衰减材料,提供均匀的X 线衰减。
8.移动伪影:因移动使减影对配准不良在影像上形成的伪影。
9.饱和伪影:当视野内某些部位对射线衰减极小时,使局部视频信号饱和,形成均匀亮度的无信号区,妨碍与之重叠的有用结构的观察。
第六篇MR成像技术1.MRI:磁共振成像,是利用处在静磁场中人体内的原子核磁化后,在外加射频磁场作用下发生共振而产生影像的一种成像技术。
2.梯度系统:是指与梯度磁场有关的梯度线圈及电路单元。
它利用梯度线圈产生相对主磁场来说较微弱的随空间位置线性变化的磁场,并叠加在主磁场上。
其功能是对MR信号进行空间编码,以确定成像层面的位置和厚度。
3.自旋(spin):微观粒子(电子、质子和中子)绕其特定轴旋转的特性。
自旋产生环形电流,形成磁场;原子核就相当于一个小磁体,从而具有磁矩。
4.自旋磁矩:在有自旋特性的原子核周围存在的这个微观磁场是磁偶极子,就是所谓的原子核的自旋磁矩。
5.磁化:处在静磁场中的人体内具有自旋能力的原子核,在静磁场方向上产生磁矩即被磁化。
6.拉莫尔进动:当原子核围绕自己的轴作自旋运动时,外加磁场又会产生一个旋力臂作用于自旋质子的磁矩上,使得质子旋进于一个锥形的磁矩轴上,称为拉莫尔进动。
7. 磁共振现象:给处于主磁场中的人体组织施加一个频率与质子的进动频率相同的射频脉冲,射频系统对平衡态的自选系统做功,使其吸收能量,处于低能级的质子获得能量后将跃迁到高能级,这种现象称为磁共振现象。
8.弛豫过程:当停止射频脉冲后,被激发的氢原子核把吸收的能量逐步释放出来,其相位和能级都恢复到激发前的平衡状态,这个恢复过程称为弛豫过程。
9.纵向弛豫:又称自旋-晶格弛豫或T1弛豫,是指90°射频脉冲停止后纵向磁化逐渐恢复至平衡态的过程。
T1是指纵向磁化矢量从最小值恢复至平衡态的63%所经历的弛豫时间。
10.横向弛豫:又称自旋-自旋弛豫或T2弛豫,是反映横向磁化衰减、丧失的过程。
是由共振质子之间能量相互交换所引起相位的变化。
T2是指射频脉冲停止后,横向磁化矢量衰减至其最大值的37%所经历的时间。
11.K空间(Kspace):空间频率K所对应的频率空间,它是一个抽象的频率空间。