2019-2020学年浙江省嘉兴市高一上学期期末考试数学试卷及答案
2020年1月学考选考浙江省嘉兴市2019学年第一学期高三期末教学质量检测数学试题参考答案

sin 2x 3(1 cos 2x) sin(2x ) 3
2
2
32
当 x [0, ] 时, 2x [ , 2 ] .
2
3 33
当 2x [ , 2 ] ,即 x [5 , ] 时, f ( x) 是增函数.
3 23
12 2
高三数学 参考答案 第 1 页 共 6 页
考 选 考 学 省 江 浙
AB
sin
A
1
sin
2 3
21 .
BC
7
14
19.(本题满分 15 分)如图,在四棱柱 ABCD ABCD 中,底面 ABCD 为等腰梯形,
DA AB BC 1 , DC 2 . 平面 DCC D 平面 ABCD ,四边形 DCCD 为菱形,
DDC 60 . (Ⅰ)求证: DA BC ; (Ⅱ)求 DA 与平面 BCC B 所成角的正弦值.
3 , 1 ,0) (0,1,
3) (
33 ,,
3) ,
22
22
BC ( 3 , 1 ,0) , 22
∴ DA BC 3 3 0 0 ,∴ DA BC . 44
(Ⅱ) CC DD (0, 1, 3 ) ,设平面 BCC B 的法向量为 m ( x, y, z) DAB
BD BA
1 , tan OAB
OB BA
1 2
,
∴ tan DAO
1 1 2
1 ,∴ sin DAO
10 .
1 1 1 3
10
2
∴ DA 与平面 BCC B 所成角的正弦值为 10 . 10
方法二、
z D
A
C B
D
O
C
y
2019-2020学年浙江省嘉兴市高一(上)期末数学试卷

2019-2020学年浙江省嘉兴市高一(上)期末数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A B ⊆,A C ⊆,{2B =-,0,1,9},{1C =,3,6,9},则集合A 可以为( ) A .{1,3}B .{1,9}C .{2,0}D .{2,3}2.(5分)已知正方形ABCD 的边长为1,则||(AB AD +=u u u r u u u r )A .2B .3C .2D .223.(5分)若点(sin ,tan )P αα在第二象限,则角α的终边所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.(5分)设函数1()()21x f x x R =∈+,则它的值域为( ) A .(0,1)B .(0,2)C .(1,)+∞D .(2,)+∞5.(5分)已知平面向量,a b r r 满足||23,||4a b ==r r ,且,a b rr 的夹角为30︒,则( )A .()a a b ⊥+r r rB .()b a b ⊥+r r rC .()b a b ⊥-r r rD .()a a b ⊥-r r r6.(5分)函数()sin()4f x x π=+,则()(f x )A .在(0,)2π上单调递增B .在3(,)44ππ上单调递增C .在37(,)44ππ上单调递增 D .在57(,)44ππ上单调递增 7.(5分)函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2xx f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-8.(5分)为了得到函数cos(4)3y x π=+的图象,可以将函数sin 4y x =的图象( )A .向左平移524π个单位 B .向右平移524π个单位C .向左移动56π个单位 D .向右平移56π个单位 9.(5分)已知||||1OA OB ==u u u r u u u r ,60AOB ∠=︒,OC OA OB λμ=+u u u r u u u r u u u r ,其中实数λ,μ满足12λμ+剟,0λ…,0μ…,则点C 所形成的平面区域的面积为( )A .3B .33C .3 D .3 10.(5分)若不等式(||)cos()023x a b x ππ--+…对[1x ∈-,3]恒成立,则(a b -= )A .13B .23C .56D .73二、填空题:11.(6分)若2log 3a =,3log 2b =,则a b =g ,lga lgb += .12.(6分)设函数1,1,(),1,x e x f x lnx x ⎧-<=⎨⎩…则(0)f 的值为 ;若f (a )2=,则a = .13.(6分)已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r ,若||||AB BC =u u u r u u u r,则k = ;若A ,B ,C 三点共线,则k = .14.(6分)若tan 2α=,则sin 3cos sin cos αααα+=- ,sin cos αα= .15.(5分)设函数22,0,()2,0,x x f x x x x -⎧=⎨-+>⎩„若(f f (a ))30+…,则实数a 的取值范围是 . 16.(5分)如图所示,2OD =,4OE =,60DOE ∠=︒,3,3AB AD AC AE ==u u u r u u u r u u u r u u u r ,则BC OE =u u u r u u u rg .17.(5分)设()||f x x x a x =--,对任意的实数(1,2)a ∈-,关于x 的方程()f x tf =(a )共有三个不相等的实数根,则实数t 的取值范围是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤.18.(12分)已知集合2{|4120|}A x x x =--„,{|222|}B x a x a =-+剟. (Ⅰ)若1a =,求()U A B I ð;(Ⅱ)若[4A B =-U ,6],求实数a 的值.19.(12分)已知平面向量(2,4),(3,5),(2,6)a b c ===-r r r. (Ⅰ)若a xb yc =+r r r,求x y +的值;(Ⅱ)若a kc +r r在a b -r r k .20.(12分)已知函数1()2()2x xf x a x R =+∈g 是偶函数. (Ⅰ)求a 的值;(Ⅱ)当(0,)x ∈+∞时,判断函数()f x 的单调性,并证明你的结论.21.(12分)已知函数()sin()(0,0)3f x A x A πωω=+>>的图象经过点,且图象上相邻两条对称轴之间的距离为2π.(Ⅰ)求函数()f x 的解析式及它的单调递增区间;(Ⅱ)是否存在实数m ,使得不等式f f >成立?若存在,请求出m 的取值范围;若不存在,请说明理由. 22.(13分)已知函数1()||1f x a x a x =--+-,(1,)x ∈+∞. (Ⅰ)若1a =,求方程()0f x =的解;(Ⅱ)若函数()y f x =恰有两个不同的零点1x ,212()x x x <,求12x x +的值.2019-2020学年浙江省嘉兴市高一(上)期末数学试卷参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A B ⊆,A C ⊆,{2B =-,0,1,9},{1C =,3,6,9},则集合A 可以为( ) A .{1,3}B .{1,9}C .{2,0}D .{2,3}【解答】解:由已知条件可得:{1B C =I ,9}, 由A B ⊆,A C ⊆,所以{1A =,9}, 故选:B .2.(5分)已知正方形ABCD 的边长为1,则||(AB AD +=u u u r u u u r )A .2B .3CD .【解答】解:Q 正方形ABCD 的边长为1,∴AB AD AC +=u u u r u u u r u u u r,||AC ==u u u r||||AB AD AC ∴+==u u u r u u u r u u u r故选:C .3.(5分)若点(sin ,tan )P αα在第二象限,则角α的终边所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:由题意,点(sin ,tan )P αα位于第二象限,所以sin 0tan 0αα<⎧⎨>⎩,所以α在第三象限;故选:C .4.(5分)设函数1()()21xf x x R =∈+,则它的值域为( ) A .(0,1)B .(0,2)C .(1,)+∞D .(2,)+∞【解答】解:20x >Q ,211x ∴+>,∴10121x<<+,即函数的值域为(0,1). 故选:A .5.(5分)已知平面向量,a b r r 满足|||4a b ==r r ,且,a b rr 的夹角为30︒,则( )A .()a a b ⊥+r r rB .()b a b ⊥+r r rC .()b a b ⊥-r r rD .()a a b ⊥-r r r【解答】解:Q 平面向量,a b r r 满足||23,||4a b ==r r ,且,a b rr 的夹角为30︒, ∴对于22:()(23)234cos30240A a a b a a b +=+=+⨯⨯︒=≠r rr r r r gg ; 对于22:()4423cos30280B b a b b a b +=+=+⨯⨯︒=≠r r r rr r g g; 对于22:()4423cos3020C b a b b a b -=-=-⨯⨯︒=≠r r r rr r g g; 对于22:()(23)234cos300D a a b a a b -=-=-⨯⨯︒=r rr r r r g g; ∴()a a b ⊥-rr r 故选:D .6.(5分)函数()sin()4f x x π=+,则()(f x )A .在(0,)2π上单调递增B .在3(,)44ππ上单调递增C .在37(,)44ππ上单调递增 D .在57(,)44ππ上单调递增 【解答】解:由于函数()sin()4f x x π=+,故在(0,)2π上,(44x ππ+∈,3)4π,函数()f x 没有单调性,故排除A ;在(4π,3)4π上,(42x ππ+∈,)π,函数()f x 单调第减,故排除B ;在3(4π,7)4π上,(,2)4x πππ+∈,函数()f x 没有单调性,故排除C , 在5(4π,7)4π上,3(42x ππ+∈,2)π,函数()f x 单调第增,故D 满足条件, 故选:D .7.(5分)函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2xx f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-【解答】解:由图象可知,函数的定义域为R ,故排除C ;由f (1)0=可知,故排除D ; 当x →-∞时,()0f x →,故排除A ; 故选:B .8.(5分)为了得到函数cos(4)3y x π=+的图象,可以将函数sin 4y x =的图象( )A .向左平移524π个单位 B .向右平移524π个单位 C .向左移动56π个单位 D .向右平移56π个单位 【解答】解:将函数sin 4y x =的图象向左平移524π个单位,得到5sin(4)cos(4)63y x x ππ=+=+的图象, 故选:A .9.(5分)已知||||1OA OB ==u u u r u u u r ,60AOB ∠=︒,OC OA OB λμ=+u u u r u u u r u u u r,其中实数λ,μ满足12λμ+剟,0λ…,0μ…,则点C 所形成的平面区域的面积为( )ABCD【解答】解:建立平面直角坐标系; 因为||||1OA OB ==u u u r u u u r,60AOB ∠=︒,所以(1,0)A ,1(2B;设(,)C x yQ OC OA OB λμ=+u u u r u u u r u u u r,∴12x y λμ⎧=+⎪⎪⎨⎪=⎪⎩⇒x y y λμ⎧=-⎪⎪⎨⎪=⎪⎩;Q 实数λ,μ满足12λμ+剟,0λ…,0μ…,∴0120x y x y y ⎧⎪⎪⎪⎪+⎨⎪⎩…剟…;对应区域如图:;由31(231x yA xy⎧-=⎪⎪⇒⎨⎪+=⎪⎩,3);3(1,3)32x yBx y⎧-=⎪⎪⇒⎨⎪+=⎪⎩;3331123122OBD OACS S S∆∆∴=-=⨯⨯-⨯⨯=阴影;即点C所形成的平面区域的面积为33.故选:B.10.(5分)若不等式(||)cos()023x a b xππ--+…对[1x∈-,3]恒成立,则(a b-=) A.13B.23C.56D.73【解答】解:当113x-剟或733x剟时,cos()023xππ+…;当1733x剟时,cos()023xππ+„,∴当113x-剟或733x剟时||0x a b--…;当1733x剟时,||0x a b--„,设()||f x x a b =--,则()f x 在(,)a -∞上单调递减,在(,)a +∞上单调递增, 且()f x 的图象关于直线x a =对称, 17()()033f f ∴==,1782333a ∴=+=,即43a =,又774()||0333f b =--=,故1b =.41133a b ∴-=-=. 故选:A . 二、填空题:11.(6分)若2log 3a =,3log 2b =,则a b =g 1 ,lga lgb += . 【解答】解:2log 3a =Q ,3log 2b =, 则32123lg lg a b lg lg ==g g , 10lga lgb lgab lg +===.故答案为:1,0.12.(6分)设函数1,1,(),1,x e x f x lnx x ⎧-<=⎨⎩…则(0)f 的值为 0 ;若f (a )2=,则a = .【解答】解:根据题意,函数1,1,(),1,x e x f x lnx x ⎧-<=⎨⎩…,则0(0)1110f e =-=-=,若f (a )2=,当1a <时,f (a )12a e =-=,解可得31a ln =>,舍去;当1a …时,f (a )2lna ==,解可得2a e =,符合题意; 故2a e =, 故答案为:0,2e ,13.(6分)已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r ,若||||AB BC =u u u r u u u r ,则k = 32;若A ,B ,C 三点共线,则k = .【解答】解:Q (,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r, ∴(4,7)AB OB OA k =-=--u u u r u u u r u u u r ,(4,5)CB OB OC k =-=+-u u u r u u u r u u u r ,Q 若||||AB BC =u u u r u u u r ,∴32k ==, A Q 、B 、C 三点共线,(5)(4)(7)(4)0k k ∴-⨯---⨯+=,解得23k =-.故答案为:32;23- 14.(6分)若tan 2α=,则sin 3cos sin cos αααα+=- 5 ,sin cos αα= .【解答】解:sin 3cos tan 3235sin cos tan 121αααααα+++===---,222sin cos tan 22sin cos 1415sin cos tan αααααααα=∴===+++, 故答案为:5,25. 15.(5分)设函数22,0,()2,0,x x f x x x x -⎧=⎨-+>⎩„若(f f (a ))30+…,则实数a 的取值范围是3[,)2-+∞ . 【解答】解:根据()f x 的解析式作出其图象如图所示:由图可知当()3f x =-时仅有一解3x =,当()3f x =时仅有一解32x =-.令f (a )t =,则(f f (a ))30+…,即()3f t -…,3t ∴„,即f (a )3„,32a ∴-…. a ∴的取值范围为3[,)2-+∞.故答案为:3[,)2-+∞.16.(5分)如图所示,2OD =,4OE =,60DOE ∠=︒,3,3AB AD AC AE ==u u u r u u u r u u u r u u u r ,则BC OE =u u u r u u u rg 36 .【解答】解:连接DE ;Q 3,3AB AD AC AE ==u u u r u u u r u u u r u u u r ,//DE BC ∴且13DE BC =;∴2233()3334324cos6036BC OE DE OE OE OD OE OE OE OD ==-=-=⨯-⨯⨯⨯︒=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r g g g g ;故答案为:3617.(5分)设()||f x x x a x =--,对任意的实数(1,2)a ∈-,关于x 的方程()f x tf =(a )共有三个不相等的实数根,则实数t 的取值范围是 (0,1) . 【解答】解:根据解析式可得f (a )a =-,由题意得,关于x 的方程()f x tf =(a )有三个不相等的实数根即()f x at =-有三个不相等的实数根;即()y f x =与y at =-有三个不同的交点; 22(1),()(1),x a x x af x x a x x a ⎧-+=⎨-+-<⎩…, (1)当12a <„时,1122a a a -+剟,则()f x 在1(,)2a --∞上单调递增,在1(2a -,)a 上单调递减,在(,)a +∞上单调递增, 故21(1)()24a a f x f --⎛⎫==⎪⎝⎭极大值,()f x f =极小值(a )a =-, 所以需满足(1)2/4a ata sup sup at -<-⎧⎪⎨-<><>>-⎪⎩对任意(1,2)a ∈恒成立,解得01t <<;(2)当11a -<<时,1122a a a -+<<,则()f x 在1(,)2a --∞上单调递增,在1(2a -,1)2a +上单调递减,在1(2a +,)+∞上单调递增, 故21(1)()24a a f x f --⎛⎫== ⎪⎝⎭极大值,21(1)()24a a f x f ++⎛⎫==-⎪⎝⎭极小值, 则需22(1)(1)44a a at +--<-<对任意11a -<<恒成立, ①当0a =时,11044-<<成立,此时t R ∈,②当01a <<时,112244a a a a t ++-+-<-<恒成立,解得01t 剟, ③当10a -<<时,112244a a a a t ++-+<<-恒成立,解得01t 剟, 综上01t 剟, 结合(1)(2)得(0,1)t ∈, 故答案为(0,1).三、解答题:解答应写出文字说明、证明过程或演算步骤.18.(12分)已知集合2{|4120|}A x x x =--„,{|222|}B x a x a =-+剟. (Ⅰ)若1a =,求()U A B I ð;(Ⅱ)若[4A B =-U ,6],求实数a 的值.【解答】解:(Ⅰ)当1a =时,{|24}B x x =-剟,{|26}A x x =-剟, 所以{|2U C B x x =<-或4}x >, 所以(){|46}U A B x x =<I „ð. (Ⅱ)[4A B =-Q U ,6],∴242226a a -=-⎧⎨-+⎩剟,即222a a =⎧⎨-⎩剟,解得2a =.19.(12分)已知平面向量(2,4),(3,5),(2,6)a b c ===-r r r . (Ⅰ)若a xb yc =+r r r,求x y +的值;(Ⅱ)若a kc +r r在a b -r rk .【解答】解:(Ⅰ)因为(2,4),(3,5),(2,6)a b c ===-r r r, 所以(32,56)xb yc x y x y +=-+r r, 又a xb yc =+r r r , 所以322564x y x y -=⎧⎨+=⎩,解得57114x y ⎧=⎪⎪⎨⎪=⎪⎩,所以1114x y +=(Ⅱ)由题意知(1,1),(22,46)a b a kc k k -=--+=-+r r r r,所以||)()(22)(46)46a b a kc a b k k k -+-=---+=--r rr r r r g, 因为a kc +r r在a b -r r,()()||a kc a b a b +--rr r r g rr 解得2k =-20.(12分)已知函数1()2()2x x f x a x R =+∈g 是偶函数. (Ⅰ)求a 的值;(Ⅱ)当(0,)x ∈+∞时,判断函数()f x 的单调性,并证明你的结论. 【解答】解:(Ⅰ)因为1()2()2x xf x a x R =+∈g 是偶函数, 所以()()f x f x -=,即112222x xx xa a --+=+g g , 化简得1(1)(2)02x xa --=,所以1a = (Ⅱ)结论:1()22x xf x =+在(0,)+∞单调递增.下证之. 任取120x x <<,则2112121212121212121122(22)(21)()()2(2)2222222x x x x x x x x x x x x x x x x f x f x ++----=+-+=-+=g因为120x x <<,所以1212220,210x x x x +-<>>, 所以12210x x +>>所以121212(22)(21)02x x x x x x ++--<,即12()()f x f x <所以1()22x x f x =+在(0,)+∞单调递增.21.(12分)已知函数()sin()(0,0)3f x A x A πωω=+>>的图象经过点,且图象上相邻两条对称轴之间的距离为2π.(Ⅰ)求函数()f x 的解析式及它的单调递增区间;(Ⅱ)是否存在实数m ,使得不等式f f >成立?若存在,请求出m 的取值范围;若不存在,请说明理由.【解答】解:(Ⅰ)因为函数()sin()(0,0)3f x A x A πωω=+>>的图象经过点,所以(0)sin 3f A π=,解得2A =又函数图象上相邻两条对称轴之间的距离为2π得4T π=, 又由2T πω=,得12ω=, 所以1()2sin()23f x x π=+结合函数sin y x =的单调性, 令122()2232k x k k Z πππππ-+++∈剟,解得54433k x k ππππ-++剟, 所以函数()f x 的单调递增区间是5[4,4]()33k k k Z ππππ-++∈, (Ⅱ)由题意知222010m m m ⎧-+⎨-+⎩……,所以01m 剟,[0,1] 由函数()f x 的单调递增区间是5[4,4]()33k k k Z ππππ-++∈知,()f x 在[0,1]上单调递增,又f f >,所以>,解得12m >, 结合01m 剟,得112m <„. 22.(13分)已知函数1()||1f x a x a x =--+-,(1,)x ∈+∞. (Ⅰ)若1a =,求方程()0f x =的解;(Ⅱ)若函数()y f x =恰有两个不同的零点1x ,212()x x x <,求12x x +的值. 【解答】解:(Ⅰ)当1a =时,1()|1|101f x x x =--+=-,所以2||11xx x -=-- 所以12211x x x x <<⎧⎪-⎨=-⎪-⎩或2211x x x x ⎧⎪-⎨=-⎪-⎩…,解得x =x ∈∅所以当1a =时,方程()0f x =的解集为⎪⎪⎩⎭(Ⅱ)由题意令()0f x =得1||1a x a x -=--, 记1()||,()1g x a h x x a x =-=--, 作函数()g x 与()h x 的图象,由函数()y f x =在定义域(1,)+∞内恰有两个不同的零点1x ,212()x x x <, 可知0a „不合题意,故0a >如图所示,要使函数()y f x =恰有两个不同的零点,则应有直线y x a =-与函数1()||1g x a x =--的图象相切或者直线y x a =-经过点1(1,0)a+, (1)当直线y x a =-与函数1()||1g x a x =--的图象相切时, 联立方程11y x a y a x =-⎧⎪⎨=-⎪-⎩,消去y 得2(21)210x a x a -+++=,由△0=得2(21)4(21)0a a +-+=,所以12a =-(舍去)或32a =此时22x =,直线32y x =-,联立1312y x =--,解得115x +=所以1255x x ++=(2)当直线y x a =-经过点1(1,0)a +时,有101a a=+-,所以210a a --=,得15a += 此时直线方程为11515,y x x ++=-=联立151511y x y x ⎧+=-⎪⎪⎨+⎪=-⎪-⎩,消去y 解得235x +=,所以1225x x +=+. 综上所述,当32a =时,1255x x ++=;当15a +=时,1225x x +=+.。
(9份试卷汇总)2019-2020学年嘉兴市数学高一(上)期末质量跟踪监视模拟试题

2019-2020学年高一数学上学期期末试卷一、选择题1.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若111tan tan tan A B C +=,则2223a b c++的最小值是( ) A .5B .8C .7D .62.已知数列{}n a 的前n 项和为n S ,18a =,42a =且满足()*212n n n a a a n N ++=-∈,若510S a λ=,则λ的值为( ) A.13-B.3-C.12-D.2-3.设x ∈R ,则“|x-2|<1”是“x 2+x -2>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件4.若向量a r ,b r 满足a b =r r ,当a r ,b r 不共线时,a b +r r 与a b -r r 的关系是( )A .相等B .平行C .垂直D .相交但不垂直5.已知向量()13a =r,,向量()3b x r ,=,若向量b r 在向量a r方向上的投影为3-,则实数x 等于( ) A .3B .2C .2-D .3-6.已知||4a =r ,||2b =r ,()()3b a b a a b +⋅-=⋅v v vv v v ,则向量a r 与向量b r 的夹角等于( )A .3π B .23π C .34π D .56π 7.若方程1lg ()03xx a -+=有两个不相等的实数根,则实根a 的取值范围是( ) A.1(,)3+∞B.1(,)3-∞C.(1,)+∞D.(,1)-∞8.为比较甲、乙两地时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月l4时的平均气温: ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的正确的统计结论的编号为( ) A .①③B .①④C .②③D .②④9.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭10.函数()af x x x=-(a R ∈)的图象不可能...是( ) A. B. C. D.11.已知实数,且,则以下不等式恒成立的是( ) A .B .C .D .12.函数2()(3)ln f x x x =-⋅的大致图象为 ( )A .B .C .D .二、填空题13.对于函数()cos 3f x x ππ⎛⎫=-⎪⎝⎭,下列结论中,正确的是(填序号)__________. ①()y f x =的图像是由()cos f x x π=的图像向右平移3π个长度单位而得到, ②()y f x =的图像过点31,2⎛⎫- ⎪ ⎪⎝⎭, ③()y f x =的图像关于点5,06⎛⎫ ⎪⎝⎭对称, ④()y f x =的图像关于直线23x =-对称. 14.设函数f (x )=2211x x a x x a-⎧⎪⎪⎪⎨⎪⎪+≥⎪⎩,<,,若f (2)=5,则实数a 的最大值为______;15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b=___. 16.已知是奇函数,且(1),若,则___.三、解答题17.在直角坐标系xOy 中,以坐标原点O 为圆心的圆与直线34x y -=相切。
浙江省嘉兴市2019-2020学年高一上学期期末检测数学试题及答案

浙江省嘉兴市2019~2020学年第一学期期末检测高一数学试卷 (2020.1)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页;非选择题部分3至5页。
满分150分,考试时间120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
选择题部分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知{}{},,2,0,1,9,1,3,6,9A B A C B C ⊆⊆=−=,则集合A 可以为( ) A.{1,3}B.{1,9}C.{2,0}D.{2,3}2.已知正方形ABCD 的边长为1,则AB AD +=( )A.2B.3D.3.若点()sin ,tan P αα在第二象限,则角α的终边所在的象限为( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设函数()()121xf x x R =∈+,则它的值域为( ) A.(0,1)B.(0,2)C.(1,+∞)D.(2,+∞)5.已知平面向量,a b 满足23,4a b ==,且,a b 的夹角为30°,则( ) A.()a ab ⊥+ B.()b a b ⊥+C.()b a b ⊥−D.()a ab ⊥−6.函数()sin 4f x x π⎛⎫=+ ⎪⎝⎭,则()f x ( ) A.在0,2π⎛⎫⎪⎝⎭上单调递增B.在3,44ππ⎛⎫⎪⎝⎭上单调递增 C.在37,44ππ⎛⎫⎪⎝⎭上单调递增D.在57,44ππ⎛⎫⎪⎝⎭上单调递增7.函数()f x 的图象如图所示,则它的解析式可能是( )A.()212xx f x −= B.()()21xf x x =−C.()ln f x x =D.()1xf x xe =−8.为了得到函数cos 43y x π⎛⎫=+ ⎪⎝⎭的图象,可以将函数sin 4y x =的图象( ) A.向左平移524π个单位B.向右平移524π个单位 C.向左移动56π个单位 D.向右平移56π个单位 9.已知1,60,OA OB AOB OC OA OB λμ==∠=︒=+,其中实数,λμ满足12,0,0λμλμ≤+≤≥≥,则点C 所形成的平面区域的面积为( ) A.3B.334C.32D.3410.若不等式()cos 023x a b x ππ⎛⎫−−+≥ ⎪⎝⎭对[]1,3x ∈−恒成立,则a b −=( )A.13B.23C.56D.73非选择题部分二、填空题:11.若23log 3,log 2a b ==,则a b ⋅=______,lga lgb +=______.12.设函数()1,1,ln ,1,x e x f x x x ⎧−<=⎨≥⎩则()0f 的值为______;若()2f a =,则a =______.13.已知向量()()(),12,4,5,,10OA k OB OC k ===−,若AB BC =,则k =______;若,,A B C 三点共线,则k =______. 14.若tan 2α=,则sin 3cos sin cos αααα+−=______,sin cos αα=______.15.设函数()22,0,2,0,x x f x x x x −≤⎧=⎨−+>⎩若()()30f f a +≥,则实数a 的取值范围是______.16.如图所示,2,4,60,3,3OD OE DOE AB AD AC AE ==∠=︒==,则BC OE ⋅=______.17.设()f x x x a x =−−,对任意的实数()1,2a ∈−,关于x 的方程()()f x tf a =共有三个不相等的实数根,则实数t 的取值范围是______.三、解答题:解答应写出文字说明、证明过程或演算步骤。
浙江省嘉兴市2020届高三第一学期期末检测数学试题(含答案)

DDC 60 . (Ⅰ)求证: DA BC ; (Ⅱ)求 DA 与平面 BCC B 所成角的正弦值.
D A
C B
19.方法一、
D
H
C
(Ⅰ)连接 DB 、BA ,取 DC 中点 H ,连接 DH 、HB .
A
B
∵等腰梯形 ABCD 中, DA AB BC 1 , DC 2 .
3 , 1 ,0) (0,1,
3) (
33 ,,
3) ,
22
22
BC ( 3 , 1 ,0) , 22
∴ DA BC 3 3 0 0 ,∴ DA BC . 44
(Ⅱ) CC DD (0, 1, 3 ) ,设平面 BCC B 的法向量为 m ( x, y, z) ,则
嘉兴市 2019—2020 学年第一学期期末检测(2020.1)
高三数学 参考答案
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分)
1.A;
2.A;
3.B;
4.C;
5.C;
6.B;
7.D;
8.C;
9.D;
10.D.
10.提示:连接 AD .
PA
BC
( PD
DA)
1 1 2
1 ,∴ sin DAO
10 .
1 1 1 3
10
2
∴ DA 与平面 BCC B 所成角的正弦值为 10 . 10
方法二、
z D
A
C B
D
O
C
y
A
B
x
(Ⅰ)取 DC 中点 O ,连接 OD .
∵四边形 DCCD 为菱形, DDC 60 ,∴ OD CD .
2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。
浙江省嘉兴市2019-2020学年高三上学期期末考试数学试题及答案

浙江省嘉兴市2019~2020学年第一学期期末检测高三数学试题卷(2020.1)本试题卷分选择题和非选择题两部分。
全卷共6页,选择题部分1至3页;非选择题部分4至6页。
满分150分,考试时间120分钟。
考生注意:1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P A B P A P B ⋅=⋅若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()()()10,1,2,,n kk kn n P k C p p k n −=−=⋅⋅⋅台体的体积公式()1213V S S h =其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高. 柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π= 球的体积公式343V R π=其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U R =,集合{}|11A x x =−<≤,{}1,1B =−,则()U A C B =( )A. {}|1x x ≠−B. {}|1x x ≠C. {}|11x x −<<D. {}|11x x −≤≤2. 已知i 是虚数单位,()122z i i +=−,则z =( ) A. 1B. 2C. iD. 2i3. 设曲线12x y x +=−在点()1,2−处的切线与直线0ax by c ++=垂直,则ab=( ) A.13B. 13− C. 3 D. -34. 函数()22log f x x x =+,则满足(]01,4x ∈,且()0f x 为整数的实数0x 的个数为( ) A. 3B. 4C. 17D. 185. 设,m n R ∈,则“m n >”是“m m n n >”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件D. 既不充分也不必要条件6. 已知x ,y 满足条件2020240x y y x y −−≤⎧⎪−≤⎨⎪+−≥⎩,若z ax y =+的最大值为0,则实数a 的值为( )A. 12−B. -2C.12D. 27. 如图是某三棱锥的正视图和俯视图(单位:cm ),则该三棱锥侧视图面积是( )(单位:2cm )A. 2B.C.32D.8. 等差数列{}n a 满足:10a >,31047a a =.记12n n n n a a a b ++=,当数列{}n b 的前n 项和n S 取最大值时,n =( )A. 17B. 18C. 19D. 209. 已知A ,B 是椭圆C :2213y x +=短轴的两个端点,点O 为坐标原点,点P 是椭圆C 上不同于A ,B 的动点,若直线PA ,PB 分别与直线4x =−交于点M ,N ,则OMN ∆面积的最小值为( )A. B.C. D.10. 如图,ABC ∆中,2AB =,3AC =,BC 边的垂直平分线分别与BC ,AC 交于点D ,E ,若P 是线段DE 上的动点,则PA BC ⋅的值为( )A. 与角A 有关,且与点P 的位置有关B. 与角A 有关,但与点P 的位置无关C. 与角A 无关,但与点P 的位置有关D. 与角A 无关,且与点P 的位置无关非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11. 已知55sin,cos 66P ππ⎛⎫⎪⎝⎭是角α的终边上一点,则cos α=______,角α的最小正值是______. 12. 已知箱中装有10个不同的小球,其中2个红球、3个黑球和5个白球,现从该箱中有放回地依次取出3个小球.则3个小球颜色互不相同的概率是______;若变量ξ为取出3个球中红球的个数,则ξ的方差()D ξ=______.13. 已知213nx x ⎛⎫+ ⎪⎝⎭的展开式中的各二项式系数的和比各项系数的和小240,则n =______;展开式中的系数最大的项是______.14. 在ABC ∆中,角A ,B ,C 所对的边分别为4a =,4b =,6c =.I 是ABC ∆内切圆的圆心,若AI xAB yAC =+,则x =______;y =______.15. 已知()()111x x a a a f x −=>+,实数1x ,2x 满足()()121f x f x +=,则()12f x x +的最小值为______.16. 已知两定点1,04P ⎛⎫− ⎪⎝⎭,1,04Q ⎛⎫ ⎪⎝⎭位于动直线l 的同侧,集合{}|,1M l P Q l =点到直线的距离之和等于,()(){},|,,N x y x y l l M =∉∈.则集合N 中的所有点组成的图形面积是______.17. 已知矩形ABCD ,4AB =,2BC =,E 、F 分别为边AB 、CD 的中点.沿直线DE 将ADE ∆翻折成PDE ∆,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为______.三、解答题:本大题共5小题,共74分。
2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22、(1)当 a 1时, f x
x
1 1
1
x
1
0
,所以
2x x 1
x 1
1 x 2
x 2
所以
2 x x 1
x
或
1
x x
2 1
x 1,解得 x
1 2
5
或 x
( ) 所以当 a 1时,方程 f
x
= 0 的解集为 1
5 ;
2
(2)由题意令
f (x) = 0 得
x
1
1
a
x a ,记 g x
2
a kc a b ab
4k 6 , 2
解得 k 2 .
20、(1)因为
f
x
a 2x
1 2x
x
R 是偶函数,
所以
f
x
f
x ,即 a 2x
1 2x
a 2x
1 2x
,
化简得
a
1
2x
1 2x
0
,
所以 a 1 ;
(2)结论:
f
x
2x
1 2x
在(0,+∞)单调递增.证明如下:
任取 0 x1 x2 ,则
f
x1 f
x2
2 x1
1 2 x1
2
x2
1 2 x2
2 x1
2x2
2 x2 2 x1
2 x1 2x2
2x1 2x2 2x1 x2 1 2x1 x2
因为 0 x1 x2 ,所以 2x1 2x2 0, 2x1 x2 1 0 ,所以 2x1x2 1 0
所以
A.2
B.3
C. 2
D. 2 2
3.已知点 P sin , tan 在第二象限,则 为( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4.设函数
f
x
2
1 x
1
x
R
,则它的值域为(
)
A.(0,1)
B.(0,2)
C.(1,+∞)
D.(2,+∞)
5.已知平面向量 a, b 满足 a 2 3, b 4 ,且 a, b 的夹角为 30°,则( )
1
A.
3
2
B.
3
5
C.
6
7
D.
3
二、填空题
11.若 a log2 3,b log3 2 ,则 ab =______, lg a lg b =______.
12.设函数
f
x
ex ln
1, x 1
则
x, x 1
f
0
的值为______;若
f
a
2 ,则 a
=______.
13.已知向量 OA k,12,OB 4,5,OC k,10 ,若 AB BC ,则 k =______;
1 x 1
a
,
h
x
x
a
,
作函数 g x 与 h x 的图象,
由函数 y f x 在定义域(1,+∞)内恰有两个不同的零点 x1, x2 x1 x2 ,
可知 a 0 不合题意,故 a 0
如图所示,要使函数 y f x 恰有两个不同的零点,则应有直线 y x a 与函数
gx
1 a x 1
的图象相切或者直线
y
x
a
经过点
1
1 a
,
0
(i)当直线 y x a 与函数 g x
x
1 1
a
的图象相切时,
y xa
联立方程
y
a
1 x 1
,消去
y
得
x2
2a
1
x
2a
1
0
,
由 0 得 2a 12 42a 1 0 ,所以 a 1 (舍去)或 a 3
2
2
此时 x2
2 ,直线 y
m 的取值范围;若不存在,请说明理由.
22.已知函数
f x
x
1
1
a
x a, x 1, .
( ) (1)若 a 1,求方程 f x = 0 的解集;
(2)若函数 y f x 恰有两个不同的零点 x1, x2 x1 x2 ,求 x1 x2 的值.
1-10BCCAD DBABA 11、1 0 ; 12、0
x
y
5 7 1 14
,
所以 x y 11 ;
14
(2)由题意知 a b 1, 1,a kc 2 2k, 4 6k ,
所以 a b
2,
a kc
ab
2 2k 4 6k 4k 6 ,
因为 a kc 在 a b 上的投影是
2 ,所以
2x1 2x2 2x1x2 1 2x1 x2
0 ,即 f
x1 f
x2
所以
f
x
2x
1 2x
在(0,+∞)单调递增.
21、(1)因为函数
f
x
Asin
x
3
A
0,
0
的图象经过点
0,
3,
所以
f
0
A sin
3 ,解得 A 2
3
又函数图象上相邻两条对称轴之间的距离为 2 得T 4 ,
又由 T
16、36;17、 0,1
数学试卷参考答案
e2
13、 3 2
2 3
14、5
2 5
,15、
3 2
,
18、(1)当 a 1 时,解不等式 x2 4x 12 0 得: 2 x 6
B x 2 x 4, A x 2 x 6 ,
所以 ðRB x | x 2 或 x 4
所以 A ðR B x 4 x 6
2
,得
1 2
,所以
f
x
2
sin
1 2
x
3
结合函数 y sin x 的单调性,
令 2k 1 x 2k k Z ,解得 5 4k x 4k ,
2
2 32
3
3
所以函数
f
x 的单调递增区间是
5 3
4k , 3
4k
k
Z;
m2 2m 0 (2)由题意知 m2 1 0 ,所以 0 m 1 ,
,消去
y
解得
x2
3 2
5
,
所以 x1 x2 2 5 .
综上所述,当 a
3 2 时, x1 x2
5 2
5
;当 a 1 2
5
时, x1 x2
2
5.
A. a a b
B. b a b
C. b a b
D. a a b
6.函数
f
x
sin
x
4
,则
f
x
(
A.在
0,
2
上单调递增
C.在
3 4
,
7 4
上单调递增
)
B.在
4
,
3 4
上单调递增
D.在
5 4
,
7 4
上单调递增
7.函数 f x 的图象如图所示,则它的解析式可能是( )
2019-2020 学年浙江嘉兴市高一上学期期末考试数学试卷及答案
一、单选题
1.已知 A B, A C, B 2, 0,1,9,C 1,3, 6,9 ,则集合 A 可以为( )
A.{1,3}
B.{1,9}
C.{2,0}
D.{2,3}
2.已知正方形 ABCD 的边长为 1,则 AB AD =( )
(2)若 A B 4, 6 ,
2a 4
a 2
则 2 2a 2 6 , 2 a 2 ,
解得 a 2 .
19、(1)因为 a 2, 4,b 3,5,c 2, 6 ,所以 xb yc 3x 2y,5x 6y ,
又
a
xb
yc
,所以
3x 5x
2 6
y y
2 4
,解得
若 A, B, C 三点共线,则 k =______.
14.若
tan
2
,则
sin 3cos sin cos
=______, sin
cos
=______.
15.设函数
f
x
2x, x 0, x2 2x, x
0,
若
f
f
a
3
0 ,则实数 a
的取值范围是
______.
16.如图所示, OD 2,OE 4, DOE 60, AB 3AD, AC 3AE ,则 BC OE =______.
(2)若 A B 4, 6 ,求实数 a 的值.
19.已知平面向量 a 2, 4,b 3,5,c 2, 6 .
(1)若
a
xb
yc
,求
x
y
的值;
(2)若 a kc 在 a b 上的投影是 2 ,求实数 k .
20.已知函数
f
x
a 2x
1 2x
x
R 是偶函数.
(1)求 a 的值;
所以 m2 2m 0,1, m2 10,1
由函数
f
x 的单调递增区间是
5 3
4k , 3
4k
k
Z 知,
f x 在[0,1]上单调递增,
又 f m2 2m f m2 1 ,所以 m2 2m m2 1 ,解得 m 1 2 结合 0 m 1 ,得 1 m 1
17.设 f x x x a x ,对任意的实数 a 1, 2 ,关于 x 的方程 f x tf a 共有