电子式剩余电流断路器与电磁式剩余电流断路器对比分析简版
剩余电流断路器常见故障分析 断路器解决方案

剩余电流断路器常见故障分析断路器解决方案剩余电流是集剩余电流保护、过电流保护和短路保护为一体的断路器,发生故障后应有专业人员排出故障,若需检修,也必需有专业检修人员进行,必要时应返回生产单位。
常见故障一般如下。
1、剩余电流断路器不能合闸剩余电流断路器不能合闸,是指断路器操作机构接通位置时,立刻脱扣跳闸。
若因分合闸操作机构不良引起的故障,应检查机构连杆及机械传动部分有无损坏,并予以更换。
剩余电流脱扣装置不良引起的故障。
由热脱扣过电流保护动作引起的故障。
热脱扣机构因过流动作后双金属片没有得到充分冷却,不能立刻操作合闸。
2、剩余电流断路器不跳闸(拒动)式剩余电流断路器信号放大电路,电源的降压元件损坏,在发生接地故障时,因放大电路无电源而引起拒动。
剩余电流断路器中的剩余电流损坏,接地故障时无信号输出而引起拒动。
剩余电流断路器脱扣线圈开路,无法执行跳闸指令而引起拒动。
剩余电流断路器脱扣器失灵而引起拒动。
剩余电流断路器机构故障或触点熔焊引起拒动。
3、剩余电流断路器灵敏度低剩余电流断路器动作灵敏度低的原因,紧要是剩余特性变差,电子式元件、电磁式剩余电流脱扣器性能变差所至。
纯电磁式,由于大短路电流接地造成的剩余电流互感器过载特性差,或接受铁镍合金非晶态磁性材料,因高温造成的塑料铁心骨架变形导致的灵敏度下降(严重变形时会造成拒动)。
这类故障应返厂修理。
电子式剩余电流断路器灵敏度低,一般常见的多为晶体管放大倍数下降,晶闸管掌控极触发参数变差等。
4、剩余电流断路器误动作剩余电流断路器误动作故障,是指在动作电流值充分使用条件的情况下,由使用环境条件、线路结构、负载特点、外界电磁干扰、设备大电流启动等造成的误动作,以及断路器本身因使用操作不当,机构零件性能变差所产生的误动作。
因错接线引起,如N线、PE线混接,会引起剩余电流断路器误动作。
10kW以上降压起动时,由于自保持线圈碰壳或绝缘油及绝缘纸板老化,起动时弧光对外壳放电,引起剩余电流保护装置动作。
熔断器,剩余电流断路器

对比熔断器,剩余电流断路器区别RCCB、ELCB、RCBO、RCD是英文的缩写。
RCCB:Residual current circuit breaker,剩余电流动作断路器ELCB:Earth leakage circuit breaker,漏电断路器(接地漏电保护)RCD:Residual current device,剩余电流动作断路器RCBO:Residual Current Circuit Breaker with Overcurrent Protection,剩余电流动作断路器依照ABB的样本,RCCB与RCBO的区别是前者不带过流保护,后者带。
RCD应该包含RCCB、RCBO两者。
ELCB是接地泄漏电流保护用的,跟剩余电流还有有区别的。
小型漏电断路器(线路断路器):RCCB:Residual current circuit breaker, 是指不带过流保护的剩余电流动作保护器, (不带过载脱扣)RCBO:Residual Current Circuit Breaker with Overcurrent Protection,电磁式剩余电流动作断路器, (带超负载脱扣),测试只串接一组线(上入下出),能脱扣是电磁式,完全不动的是电子式小型断路器 MCB (Miniature Circuit Breaker)塑壳式断路器 MCCB(Moulded Case Circult Breaker)ACB-万能式(框架式)断路器主要区别是:1、分断能力不同,ACB的分断能力相对较高,MCCB次之,MCB最差,当然现在有不少的MCCB的生产企业能够将MCCB的分断能力作到很高,但稳定和可靠性不好;2、安装的位置不同,ACB多被采用作为主断路器,因为它本身具有延时功能,能够延时分断和脱扣,而且还具有很好的通信功能和选择性,而MCCB多被采用作为配电电器,在线路的中间位置,因为它只具备分断能力和反时限脱扣能力,不具备选择性,多以只能作为下级保护开关紧急停止开关HW ;MCB多被用在负载端,因为它的分断能力相对比较低一半为6000A和4500A;3、外形尺寸也相差很大,MCB的体积小,安装方便,ACB的体积最大,安装繁杂,MCCB处中间。
浅谈剩余电流动作保护器

浅谈剩余电流动作保护器(1)摘要:随着人们生活水平的提高以及社会的发展和科技进步,各类家用电器、办公自动化设备等迅速进入办公室、家庭,提高了人们的工作效率,丰富了人们的精神和物质生活。
但是,由于电气设备本身的缺陷、使用不当和安全技术措施不力而造成的人身触电和火灾事故,给人们的生命财产带来了不应有的损失。
剩余电流动作保护器(RCD)是保障人身和财产安全的重要保护电器。
本文介绍了剩余电流动作保护器的分类、用途、工作原理等并探讨了剩余电流动作保护器该如何选用。
关键词:剩余电流动作保护器分类工作原理选用随着人们生活水平的提高,为满足人们工作生活的舒适、方便,办公自动化电器和各类家用电器不断增加。
但是,由于电气设备本身的缺陷、使用不当和安全技术措施不力而造成的人身触电和火灾事故,给人们的生命财产带来了不应有的损失。
剩余电流动作保护器(RCD)是保障人身和财产安全的重要保护电器。
1概述剩余电流动作保护器RCD(Residual Current Operated Protector),指当线路或设备出现对地漏电(中性接地系统)或触电事故时,能迅速自动断开故障线路的保护电器。
它主要由检测元件(零序电流互感器)、中间环节(包括放大器、比较器、脱扣器等)、执行元件(主开关)以及试验元件等几个部分组成。
其主要用途是:①防止由于电气设备和电气线路漏电而引起触电事故;②防止用电过程中的单相触电事故;③及时切断电气设备运行中的单相接地故障,防止因漏电而引起火灾事故。
其适用于相线与地之间的人身触电、导线漏电、插座接错线等漏电类故障,但不适用于相线与中性线之间的该类故障。
2RCD的分类剩余电流动作保护器的分类方式有很多。
比如,根据运行方式分类;根据安装方式分类;根据级数和电流回路分类;根据保护功能分类;根据剩余动作电流可调性分类;根据接线方式分类;在剩余电流含有直流分量时,根据剩余电流的动作特性分类。
参照国家标准,剩余电流动作保护器可以分为以下三种:(一)不带过载、短路保护,仅有漏电保护的剩余电流动作保护器,以前称为漏电开关;(二)带过载保护、短路保护和漏电保护的剩余电流动作保护器,以前称为漏电断路器;(三)没有过载、短路保护功能,也不直接分合电路,仅有漏电报警作用的保护器,以前称为漏电继电器。
剩余电流动作保护器总论

剩余电流动作保护器总论引言在现代电气工程中,剩余电流动作保护器是一种重要的保护设备,其目的是保护人员和设备免受电流漏电的危害。
在这篇文档中,我们将对剩余电流动作保护器进行深入的研究和分析,包括其定义、工作原理、分类、应用领域、特点和优缺点等方面的内容。
一、定义剩余电流动作保护器,也称为漏电保护器或人身安全保护器,是一种保护电气设备和人员的安全设备。
它通过检测电路中存在的剩余电流,并在超出设定阈值时迅速切断电源,以减轻或消除漏电电流带来的危害。
通俗来讲,剩余电流动作保护器就是一种自动开关,能够自动切断电路,以保护设备和人员的安全。
二、工作原理剩余电流动作保护器的工作原理是基于电气回路的法律,即基尔霍夫电流律。
当电路中有漏电时,回路中的电流分为两部分:一部分通过正常回路,另一部分则通过漏电回路。
剩余电流动作保护器的作用是检测这部分漏电电流,并在其超过预设阈值时切断电源,以保证人员和设备的安全。
三、分类根据其结构和性质,剩余电流动作保护器可以分为以下几类:1. 电磁式剩余电流动作保护器电磁式剩余电流动作保护器是一种传统的剩余电流保护器,其工作原理是利用电磁力作用,使得开关动作,在一定的时间内保持开断状态,以切断电流。
然而,电磁式保护器的动作时间较长,且对脉冲漏电保护效果不佳,因此已被淘汰。
2. 电子式剩余电流动作保护器电子式剩余电流动作保护器是一种新型的保护器,其采用微处理器控制,内部集成了高速A/D转换器和DSP芯片,能够以极短的时间检测漏电电流,并迅速切断电源,保护人员和设备的安全。
相比于电磁式保护器,电子式保护器具有更高的灵敏度和更短的动作时间。
3. 复合式剩余电流动作保护器复合式剩余电流动作保护器是一种将电磁式和电子式保护器结合起来的保护器。
它采用电子式判断,电磁式动作,具备两种保护器的优点,能够在短时间内切断漏电电流,以提高设备的安全性。
四、应用领域剩余电流动作保护器广泛应用于家庭、公共场所和工业制造等领域中,主要用于以下几个方面:1. 家庭和公共场所用电保护由于家庭和公共场所用电器的电气安装不规范或老化,常常会出现漏电的情况,这时候剩余电流动作保护器就能发挥重要作用,防止漏电带来的意外伤害。
剩余电流动作保护装置的工作原理

剩余电流动作保护装置的工作原理2007-07-15来源:本站剩余电流动作保护装置的结构原理如图1所示。
其结构一般包括W--检测元件(剩余电流互感器)、A--判别元件(剩余电流脱机器)、B--执行元件(机械开关电器或报警装置)、T--试验装置和E--电子信号放大器(电子式)等部分。
检测元件用来检测线路中的剩余电流,判别元件把检测剩余电流与预定值相比较,当剩余电流达到或超过预定值时,发出一个脱扣信号,使执行元件断开电路或驱动报警信号。
1 剩余电流保护装置的工作原理在正常情况下,电路中没有发生人身电击、设备漏电或接地故障时,剩余电流保护装置通过电流互感器一次侧电路的电流矢量和等于零,即 IL1 + IL2 + IL3 + IN = 0则电流IL1、IL2、IL3和IN在电流互感器中产生磁通的矢量和等于零,即 FL1 + FL2 + FL3 + FN = 0 这样在电流互感器的二次线圈中没有感应电压输出,因此剩余电流保护装置保持正常供电。
当电路中发生人身电击、设备漏电、故障接地时,通过设备接地电阻RA有一个接地电流 IN 流过,则通过互感器电流的矢量和不等于零,为 IL1 + IL2 + IL3 + IN≠0剩余电流互感器中产生磁通矢量和也不等于零,即 FL1 + FL2 + FL3 + FN≠0互感器二次回路中有一个感应电压输出,此电压直接或通过电子信号放大器施加在脱扣线圈上,产生一个工作电流。
二次回路的感应电压输出随着故障电流的增大而增大,当接地故障电流达到额定值时,脱扣线圈中的电流足以推动脱扣机构动作,使主开关断开电路,或使报警装置发出报警信号。
剩余电流互感器二次回路输出信号比较小,一般小于1mVA。
要直接推动剩余电流脱扣器动作,脱扣器需要很高的动作灵敏度,要求其动作功耗在mVA级,这种剩余电流脱扣器一般采用释放式的电磁结构,结构复杂、工艺要求较高。
互感器二次回路的输出信号,也可以通过一个电子放大器后,施加到脱扣器上,这种情况下对脱扣器的灵敏度要求较低,可以采用拍合式的电磁铁或螺管电磁铁,结构简单、工艺要求较低。
剩余电流断路器知识知识讲解

剩余电流断路器知识剩余电流断路器知识在低压电网中安装剩余电流动作保护器(以下称为剩余电流保护器)是防止人身触电、电气火灾及电气设备损坏的一种有效的防护措施。
世界各国和国际电工委员会通过制订相应的电气安装规程和用电规程在低压电网中大力推广使用剩余电流动作保护器。
我国的剩余电流保护器是从70年代中期开始发展,并首先在农村低压电网中推广应用的,经过80年代到90年代的不断完善和发展已形成一个品种完善、规格齐全,符合IEC国际标准的剩余电流保护器的产品系列。
在低压电网的安全保护中,尤其是农村低压电网的安全保护中发挥了重要的作用。
2 剩余电流保护器的分类2.1 根据动作方式分2.1.1 电磁式剩余电流保护器零序电流互感器的二次回路输出电压不经任何放大,直接激励剩余电流脱扣器,称为电磁式剩余电流保护器,其动作功能与线路电压无关。
2.1.2 电子式剩余电流保护器零序电流互感器的二次回路和脱扣器之间接入一个电子放大线路,互感器二次回路的输出电压经过电子线路放大后再激励剩余电流脱扣器,称为电子式剩余电流保护器,其动作功能与线路电压有关。
电磁式和电子式剩余电流保护器的性能比较如表1所示。
2.2 根据剩余电流保护器的功能分2.2.1 剩余电流断路器剩余电流断路器是检测剩余电流,将剩余电流值与基准值相比较,当剩余电流值超过基准值时,使主电路触头断开的机械开关电器。
剩余电流断路器带有过载和短路保护,有的剩余电流断路器还可带有过电压保护。
2.2.2 剩余电流继电器剩余电流继电器是检测剩余电流,将剩余电流值与基准值相比较,当剩余电流值超过基准值时,发出一个机械开闭信号使机械开关电器脱扣或声光报警装置发出报警的电器。
剩余电流继电器常和交流接触器或低压断路器组成剩余电流保护器,作为农村低压电网的总保护开关或分支保护开关使用。
2.2.3 移动式剩余电流保护器移动式剩余电流保护器是由插头、剩余电流保护装置和插座或接线装置组成的电器,它包括剩余电流保护插头、移动式剩余电流保护插座、剩余电流保护插头插座转换器等,用来对移动电器设备提供漏电保护。
电磁式电流互感器与电子式电流互感器的比较[权威资料]
![电磁式电流互感器与电子式电流互感器的比较[权威资料]](https://img.taocdn.com/s3/m/7cb535b70b1c59eef9c7b468.png)
电磁式电流互感器与电子式电流互感器的比较[权威资料] 电磁式电流互感器与电子式电流互感器的比较本文档格式为WORD,感谢你的阅读。
【摘要】科技的飞速发展,电压等级的逐步增加,使得电力测量结果也要愈加的精确,同时也可以进一步优化测量设备的安全可靠性能。
本文介绍了传统电磁式电流互感器的诸多问题,分析了电子式电流互感器的优点。
【关键词】电磁式电流互感器;电子式电流互感器国家电力局发布了最新信息,全国用电量到 2020 年可达到 7.7 万亿千瓦时,同时发电机容量大约是 16 亿千瓦。
然而我国的用电量还在不断增加,为了满足用电需求,我国将全面投入到智能化、大型化电力系统的建设中。
“十二五”期间,我国将建设 5000 个智能变电站,而且这些变电站是将风能、潮汐能、太阳能、核能等新能源转换成电能的重要支柱。
随着变电站网络设备的自动化不断提升,电子式电流互感器作为低压侧数据处理系统源头的设备。
其测量结果的精确程度,获得的结果是否可靠,都影响着电网网络的稳定、经济、安全有效地运行。
1 电流互感器的作用电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。
如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。
安在开关柜内,是为了要接电流表之类的仪表和继电保护用。
每个仪表不可能接在实际值很大的导线或母线上,所以要通过互感器将其转换为数值较小的二次值,在通过变比来反映一次的实际值。
2 传统的电磁式电流互感器电流互感器的特点是:(1)一次线圈串联在电路中,并且匝数很少,因此,一次线圈中的电流完全取决于被测电路的负荷电流.而与二次电流无关;(2)电流互感器二次线圈所接仪表和继电器的电流线圈阻抗都很小,所以正常情况下,电流互感器在近于短路状态下运行。
长时间以来,在电流计量和继电保护方面,带铁心的传统型电磁式电流互感器占据着主要位置。
但是其内部结构中含有铁心,使得传统电磁式电流互感器存在无法克服的缺点:(1)若高压母线的电势很高时,对传感线圈的绝缘性要求就会非常高。
高可靠性电子式剩余电流保护断路器

e. 易于安装。 端子容量大, 顶端 25 mm2, 底端 35 mm2; 便于在 DIN 导轨上固定。
f. 强 韧 的 螺 丝 端 子 。 产 品 端 子 顶 部 扭 矩 可 达 3 N·m, 底部扭矩达到 4 N·m, 使得螺丝不会因用 力过大而损坏。
Key words Residual current protective circuit breaker Implemented standard Electromagnetic interference (EMI) Reliability
摘 要 介绍电子式、 电磁式剩余电流保护断路 器的区别; GE 公司全新产品电子式剩余电流保 护断 路 器 ; GE 内 部 ETP - 910 标 准 高 于 对 应 的 IEC、 GB 标准之处。
产品技术
高可靠性电子式剩余电流保护断路器
黄 涛 赵 晋 (GE 能源集团工业系统部, 上海市 200233) High Reliability Electronic Residual Current Protective Circuit Breaker Huang Tao Zhao Jin (GE Engergy Industrial Solution, Shanghai 200233, China)
带载测试一个月以上, 通过温度、 湿度、 电压等参数 的变化加速老化测试。
b. 加 强 加 速 老 化 试 验 (Highly Accelerated Life Testing), 用 液 氮 作 冷 却 源 加 速 试 验 进 程。
c. 锡 丝 (Tin Whisker), 是 指 在 一 定 环 境 条 件 下, 使用纯锡或含锡合金的电子组件焊脚上, 经过 一段时间 (短为几天, 长为几年, 甚至几十年), 表 面 会 生 长 出 像 胡 须 一 样 的 锡 丝 。 可 长 达 10 mm, 一 般小于 1 mm; 直径在 0. 006 ~ 10 μm, 一般约 1 μm; 生 长 速 率 可 高 达 9 mm / 年 , 一 般 情 况 下 生 长 速 率 是相当缓慢的, 但具有很强的不确定性。 所以对于 焊脚间距小的电子元件, 由于锡胡须的生长, 可引 发元件焊 脚 之 间的短路, 导致元件永久性失效或 间 歇 性 失 效 。 Sn - Pb (锡 铅 ) 合 金 可 以 有 效 地 抑 制 锡胡须的生 长 , 但 是 GE 电 子 元 件 的 无 铅 化 不 允 许 使 用 Sn - Pb 合 金 作 表 面 处 理 材 料 , 这 就 必 须 重 视 锡 胡 须 问 题 。 GE 对 试 品 进 行 长 达 3 000 h 的 测 试 , 以验证线路板上的锡丝是否满足此试验各项标准的 要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁式剩余电流断路器与电子式剩余电流断路器对比分析
1 产品结构:
跟据IEC61008或IEC61009标准,将剩余电流断路器分为脱扣与电源电压无关的剩余电流断路
器和脱扣与电源电压有关的剩余电流断路器,前者为电磁式,后者为电子式。
1.1 电磁式剩余电流断路器:
脱扣与电源电压无关的电磁式剩余电流断路器基本原理如图1所示,
图1 电磁式剩余电流断路器基本原理
对于电磁式剩余电流断路器的脱扣器A 是“永磁平衡式电磁脱扣器”,脱扣器的工作原理如图2所
示,当零序互感器二次线圈没有检测出剩余故障电流时,磁场力矩与弹簧力矩相等,脱扣器处于静
止状态(图2a );当零序互感器二次线圈检测出剩余故障电流时,电流产生的电磁力矩抵消原磁
场力矩,弹簧力矩大于磁场力矩使脱扣器动作,继而驱动开关机构分断电路(图2b )。
由于脱扣
器与电源之间不存在电的连接,所以电磁式剩余电流断路器保护动作与电源电压无关,其动作能量
直接来自零序互感器的二次感应电流和断路器闭合时储存的机械能。
A 0286 a: 无剩余故障电流 b :存在剩余故障电流 图2 永磁平衡式电磁脱扣器的工作原理
A 0286
1.2 电子式剩余电流断路器:
脱扣器与电源电压有关的电子式剩余电流断路器基本原理和相应电子线路原理如图3、图4所
示。
胎换骨 图3 电子式剩余电流断路器基本原理
图4.电子线路原理图
电子式剩余电流断路器的脱扣器为“电压分励脱扣器”,当系统发生接地故障时,零序互感
器检出的剩余电流经电子放大器放大后驱动电压分励脱扣器动作,并推动开关机构分断电路。
图5
所示了电磁式剩余电流断路器和电子式剩余电流断路器两类产品工作原理的区别,从中可以看出:
电子式剩余电流断路器与前者最大的差异是电子放大器和分励脱扣器工作及驱动均需用系统电源支
持。
图5.电磁式与电子式剩余电流断路器工作原理区别
电子式剩余电流断路器由于电子放大器的作用,使内部的零序互感器二次感应电流仅可为一电压或电流信号,对其能量并无特殊要求,同时也使脱扣器的设计大为简单,在今天的微电子时代,此类产品的材料成本和生产成本均较低,这也是在我国得以大量使用的主要原因。
2两类剩余电流断路器产品的可靠性分析
2.1当电源系统异常时电磁式与电子式剩余电流断路器保护功能的可靠性
由于电磁式与电子式剩余电流路器最大的差异是保护动作是否需要系统电源支持,这就决定了不需要系统电源支持的电磁式剩余电流断路器在下述常见的电源系统异常时,仍可以对接地故障提供可靠保护;电子式剩余电流断路器此时则因缺少有效的工作电压不能可靠地对接地故障进行保护。
2.1.1系统电源发生局部N线断裂故障
常用的单相或四极电子式剩余电流断路器的电子放大器和分励脱扣器的电源通常取自系统某一相线和N线,这就会造成系统出现上述故障时产品不能正常进行接故障保护。
由于此时电源相线对地电压仍为危险电压,所以剩余电流断路器所保护的区域仍有发生直接或间接触电故障、接地故障引起的火灾的隐患。
2.1.2系统电源发生局部断相故障
对于安装在三相配电系统的多级电子式剩余电流断路器,如果断相故障发自剩余电流断路器的供电相线,其接地保护功能也将失效,此时来自其它两相的接地故障不能由剩余电流断路器进行保护性分断。
2.1.3由于供电相线发生接地故障,使相线对N线电压低于剩余电流断路器工作电压
当系统发生上述故障时,电子式剩余电流断路器不能进行保护性分断,虽然根据我国标准要求此时相线对N线的电压已低于50V,但如果安装在同相中其它保护设备不能及时分断故障电路将会造成后续两个危险隐患:局部PE线电位升高,增加没有进行等电位联接的地方发生触电故障的危险;由于接地故障电流的持续作用造成火灾。
2.2电磁式与电子式剩余电流断路器自身工作的可靠性
电磁式与电子式剩余电流断路器自身工作的可靠性主要应从以下几方面加以分析:
2.2.1工作温度对可靠性的影响
剩余电流断路器使用的工作温度主要来自环境温度、工作中流过导线的负荷电流产生的温度和内部元件工作发热产生的温度三部分。
电磁式剩余电流断路器使用的永磁平衡式电磁脱扣器极限工作温度通常在1200C左右,且自身在没有剩余电流作用时不发热。
因实际使用中环境温度和工作中流过导线的负荷电流产生的温度,使电磁脱扣器的工作温度一般不会高于850C,所以电磁脱扣器不会出现退磁拒动等影响工作可靠性的故障。
电子式剩余电流断路器中的电子放大器,在系统电源接通后,电子元件一直处于工作状态,因此对于电子式剩余电流断路器电子元件的工作温度,与电磁式剩余电流断路器相比,除环境温度和工作中流过导线的负荷电流产生的温度外,还有内部电子元件工作发热产生的温度,其工作条件更要严酷。
有资料显示:集成电路器芯片、可控硅等电子元件在850C环境下工作时,老化失效率要比在400C的环境下高出5-6倍,由于电子放大器中的多种电子元件同时工作,因此同在850C内部工作温度下,电子式剩余电流断路器的失效率是电磁式剩余电流断路器的160倍。
2.2.2工频过电压与暂态过电压对可靠性的影响:
因为多种因素,特别是供电条件较差的地区,配电系统的电源电压常出现较大波动或产生工频过电压,使剩余电流断路器的工作电压高于标准的工作电压范围。
对于电磁式产品,因与电网电压无关,所以工频过电压不会影响其工作的可靠性;
但对于电子式产品,工频过电压会使电子元件的工作电压升高加速老化或一些压敏元件损坏,降低其运行可靠性。
大气过电压和系统的操作过电压等暂态过电压,对于剩余电流断路器运行可靠性的影响可从两个方面分析:
相线对PE线的电涌电流作用于剩余电流断路器
电涌电流通过零序互感器形成暂态剩余电流,由于持续时间短,能量较小对于电磁式产品的运行可靠性影响不大;但对于电子式产品有可能使集成芯片发生触发翻转进行功能性动作,从而降低运行的可靠性。
直接通过电源作用于剩余电流断路器:
由于电磁式剩余电流断路器与电源系统没有直接联系,因此不会影响其运行可靠性;对于电子式剩余电流断路器可能通过电子放大器工作电源端进入电子放大器,造成压敏元件或其它元件损环。
同时有可能直接触发可控硅等执行元件,使分励脱扣器动作分断系统,影响运行可靠性。
2.2.3系统谐波及电磁干扰对可靠性的影响:
众所周知,对于电子产品防止由于谐波和电磁干扰引起的高频振荡是较为困难的,对于电子式剩余电流断路器系统谐波及电磁干扰可导致产品误动作继而影响运行的可靠性,虽然根据IEC有关标准,电子式剩余电流断路器进行了各类防电磁干扰的电磁兼容设计,并通过相应的试验验证,但要彻底消除对其影响是很困难的,在这方面电磁式产品更有优势。
2.3 产生过程及工艺对可靠性的影响:
2.3.1 电磁式剩余电流断路器生产工艺
电磁式剩余电流断路器保护动作的能量仅来自剩余电流,其能量值仅80-350μVA,所以电磁式剩余电流断路器对“永磁平衡式电磁脱扣器”及零序互感器对选材、设计和加工要求较高。
以“永磁平衡式电磁脱扣器”生产为例:对于铁磁材料处理、动静铁芯极面加工、线圈绕制及接头焊接、脱扣器组装等环节均要求有较强的加工手段和工艺控制,所以ABB公司在以生产手表和精密仪表而著称的瑞士设有一家专业生产厂ABB CMC公司, ABB CMC公司从20世纪60年代初即开始生产“永磁平衡式电磁脱扣器”,经过40年的不断创新,目前脱扣器的动作能量仅需25μVA,全部生产过程均在超净车间内完成,脱扣器经自动生产线生产并经100%的检验测试。
ABB公司各系列电磁式剩余电流保护装置中“永磁平衡式电磁脱扣器”均来自瑞士ABB CMC 专业产生厂。
除上述部件生产精度要求外,剩余电流断路器的组装调试工艺也将影响产品的可靠性,目前ABB公司采用的是机械和电磁双调节的调试工艺,在专用调试设备进行在线通电调试,保证每台剩余电流断路器的保护特性符合标准要求。
电磁式剩余电流断路器虽加工调试工艺复杂,但在上述环节得到有较控制后,可使产品在实际使用和保护功能的可靠性得到保证。
2.3.2 电子式剩余电流断路器生产工艺
电子式剩余电流断路器的生产调试工艺从原理上较电磁式剩余电流断路器简单,但负责任的生产厂为提高电子型产品自身可靠性,从设计、选材、制造、老化筛选、储运等各环节进行了大量的工作和有效的质量控制。
以ABB公司电子型剩余电流断路器生产为例,ABB公司为克服各类来自电源系统电污染对工作可靠性的影响,投资设计开发了专用芯片及相关电子线路设计。
为减小由于元件老化失效对可靠性影响,在关键元件进厂时即采取了电冲击及高温除尘等控制工序,电子线路板在自动生产线上组装完成后,逐台进行性能测试和通电老化筛选。
在剩余电流断路器完成组装后仍需对每产品进行性能测试,保证每台剩余电流断路器的保护特性符合标准要求。
经过上述一系列的努力,电子式剩余电流断路器的可靠性得以大幅度的提高,但电子式剩余电流断路器的综合可靠性是无法与电磁式剩余电流断路器相比。
3结论
前面的分析可清楚地看出,电子式剩余电流断路器无论是从产品本身的可靠性,还是从产品与电源系统供电配合的可靠性等方面均不能达到令人满意的结果。
正因如此,德国等国家在终端配电系统中只允许使用保护动作与电压无关的电磁式剩余电流断路器。
我国一些专业资深人士在不同场合针对电子型剩余电流断路器保护动作与电源电压有关、稳定性差等缺陷,建议在工程中使用保护动作与电压无关的电磁型剩余电流断路器。
新版的GB13955-XXXX《剩余电流保护装置安装运行规
范》的5.6款也要求在电源电压偏差较大的地区和高温和特低温环境中应优先选用动作与电压无关的电磁式剩余电流保护器。