集合不等式函数测试试卷.doc

合集下载

第一次月考测试卷(集合与逻辑、不等式)【考点通关】高一数学题型归纳与解题策略必修第一册(原卷版)

第一次月考测试卷(集合与逻辑、不等式)【考点通关】高一数学题型归纳与解题策略必修第一册(原卷版)

第一次月考测试卷说明:1.本试题共4页,满分150分,考试时间120分钟。

2.答题前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、试室号、座位号填写在答题卷上。

3. 答题必须使用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷上各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卷整洁,考试结束后,将答题卷交回,试卷自己保存。

第I 卷(选择题 共60分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.(2022·广东高一月考)已知集合{}03A xx =≤≤∣,{}0,1,3,4B =,则A B =( ) A .{}0,1B .{}0,1,3C .{}0,1,4D .{}0,3,42.(2022·广东高一期中)已知实数,0a b c abc >>≠,则下列结论一定正确的是( ) A .a ab c> B .ab bc > C .11a c< D .2ab bc ac b +>+3.(2022·广东·高一月考)王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今"青海长云暗雪山,孤城遥望玉门关黄沙百战穿金甲,不破楼兰终不还",由此推断,最后一句“不返家乡"是“不破楼兰"的( ) A .必要条件 B .充分条件C .充要条件D .既不充分也不必要4.(2022·广东·高一月考)设集合{}13A x x =-≤≤,集合{}B x x a =≥,若A B ⊆,则a 的取值范围为( ) A .3a ≥B .13a -≤≤C .1a ≥-D .1a ≤-5.(2022·广东·高一期末)若“2x =”是“22(3)40m x m x -++=”的充分不必要条件,则实数m 的值为( ) A .1B .12-C .12-或1D .1-或126.(2022·广东广雅中学高一月考)不等式2210(0)mx x m -->>的解集可能是( ) A .1|3x x ⎧<-⎨⎩或}1x >B .RC .1332x x ⎧⎫-<<⎨⎬⎩⎭D .∅7.(2022·四川绵阳·高一期末)若两个正实数x ,y 满足3x y +=,且不等式2416351m m x y+>-++恒成立,则实数m 的取值范围为( ) A .{}41m m -<< B .{1m m <-或}4m > C .{}14m m -<<D .{0m m <或}3m >8.(2022·广东高一月考)关于x 的一元二次不等式21110a x b x c ++<与22220a x b x c ++<的解集分别为P Q 、,则“111222a b c a b c ==”是“P Q =”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。

22版高中数学A版必修第一册练习--第一章 集合与常用逻辑用语 第二章 一元二次函数、方程和不等式

22版高中数学A版必修第一册练习--第一章 集合与常用逻辑用语 第二章  一元二次函数、方程和不等式

第一章集合与常用逻辑用语第二章一元二次函数、方程和不等式(全卷满分150分,考试用时120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021北京东城高一上期末)已知集合A={-1,0,1},集合B={x∈N|x2=1},那么A∩B=()A.{1}B.{0,1}C.{-1,1}D.{-1,0,1}2.(2021湖北武汉部分高中高一上期末联考)已知p:a≥0;q:∀x∈R,x2-ax+a>0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2021北京顺义高一上期末)已知实数a,b在数轴上对应的点如图所示,则下列式子中正确的是()A.1b >1aB.a2>b2C.b-a>0D.|b|a<|a|b4.(2021陕西宝鸡高三上期末)已知集合A={x|x2+2x-8>0},B={x|x-a>0},若B⊆A,则实数a的取值范围为 ()A.a≥2B.a>2C.a≥4D.a>45.(2021山西大学附属中学高一上期中)已知命题“∃x∈R,使2x2+(a-1)x+12≤0”是假命题,则实数a的取值范围是()A.-3≤a≤1B.-3<a<1C.a≤-1或a≥3D.-1<a<36.(2021浙江嘉兴高一上期末)已知a>0,b>0,且2a+1b =1,则2a+b的最小值为()A.2√2B.3C.8D.97.(2021全国八省(市)高三上联考)关于x的方程x2+ax+b=0,有下列四个命题:①x=1是该方程的根;②x=3是该方程的根;③该方程两根之和为2;④该方程两根异号.如果只有一个是假命题,则该命题是()A.①B.②C.③D.④8.(2021浙江丽水五校高一上检测)已知关于x的不等式a(x+1)(x-3)+1>0(a≠0)的解集是{x|x1<x<x2}(x1<x2),则下列结论中一定错误的是 ()A.x1+x2=2B.x1x2<-3C.x2-x1>4D.-1<x1<x2<3二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.(2021福建福州四十中、十中高一上期末联考) 下列结论正确的有()A.若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0B.不等式x2-4x+5>0的解集为RC.“x>1”是“(x-1)(x+2)>0”的充分不必要条件D.∀x∈R,√x2=x10.(2021重庆育才中学高一上期中)下列不等式中一定成立的是()A.a3+b3≥a2b+ab2(a,b∈R)B.x2+3>2x(x∈R)C.y=x2+2x2-1≥2√2+1D.a2+b2≥2(a-b-1)11.(2021福建龙溪高一上期中)设全集U={x|x>0},集合M={x|y=√x-1},N={y|y=x2+2},则下列结论正确的是()A.M∩N={x|x>2}B.M∪N={x|x>1}C.(∁U M)∪(∁U N)={x|0<x<2}D.(∁U M)∩(∁U N)={x|0<x<1}12.(2021湖南益阳高二上期末)若a>0,b>0,且a+b=4,则下列不等式成立的是()A.√ab≤2B.a2+b2≥8C.1a +1b≥1 D.0<1ab≤14三、填空题(本题共4小题,每小题5分,共20分)13.(2021上海洋泾中学高一上期中)已知关于x的不等式组{x2-2x-8>0,2x2+(2k+7)x+7k<0仅有一个整数解,则实数k的取值范围为.14.(2021山东烟台高一上期中)若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方的子集,则称两个集合构成“蚕食”.已知集合A={-1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则a的取值集合为.15.(2021四川成都树德中学高二阶段性测试)若关于x的不等式ax2>-ax-1对任意实数x都成立,则实数a的取值范围是.16.(2021湖北荆州沙市中学高一上期中)已知正数x,y满足2x+y=xy+a,当a=0时,x+y的最小值为;当a=-2时,x+y的最小值为.(第一空2分,第二空3分)四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2021广东深圳高一上期中)已知集合A={x|a<x<a+1},B={x||x+1|≤1}.(1)若a=1,求A∪B;(2)在①A∪B=B,②(∁R B)∩A=⌀,③B∪(∁R A)=R这三个条件中任选一个作为已知条件,求实数a的取值范围.(注:如果选择多个条件分别解答,则按第一个解答计分)18.(12分)(2021重庆彭水第一中学高一上期中)已知命题p:“∃x∈R,使不等式x2-2x-m≤0成立”是假命题.(1)求实数m的取值集合A;(2)若q:-4<m-a<4是¬p的充分不必要条件,求实数a的取值范围.19.(12分)(2020内蒙古包头高一下期末)已知x>y>0,z>0,求证:(1)zx <zy ;(2)(x+y)(x+z)(y+z)>8xyz.20.(12分)(2020山东青岛高一上期中)(1)若关于x的不等式ax2-3x+2>0(a∈R)的解集为{x|x<1或x>b},求a,b的值;(2)解关于x的不等式ax2-3x+2>5-ax(a∈R).21.(12分)(2021北京丰台高三上期中)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业为积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一个把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理量x之间的函数关系可近似地x2+40x+3 200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.表示为y=12(1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(2)为了使该企业可持续发展,政府决定对该企业进行财政补贴,补贴方案共有两种:①每日进行定额财政补贴,金额为2 300元;②根据日加工处理量进行财政补贴,金额为30x.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方案?为什么?22.(12分)(2021山东潍坊安丘实验中学、青云学府高一上联考)已知关于x的不等式(k2-2k-3)x2+(k+1)x+1>0(k∈R)的解集为M.(1)若M=R,求k的取值范围;(2)若存在两个不相等的负实数a、b,使得M={x|x<a或x>b},求实数k的取值范围;(3)是否存在实数k,满足“对于任意n∈N*,都有n∈M,对于任意的负整数m,都有m∉M”?若存在,求出k的值;若不存在,说明理由.答案全解全析1.A 由题意,集合A ={-1,0,1},B ={x ∈N|x 2=1}={1},所以A ∩B ={1}. 故选A .2.B ∵q :∀x ∈R,x 2-ax +a >0, ∴Δ=(-a )2-4a <0,解得0<a <4. 设A ={a |a ≥0},B ={a |0<a <4}, ∵B ⫋A ,∴p 是q 的必要不充分条件. 故选B .3.A 对于选项A,由题中数轴可得b <a <0,不等号两边同乘1ab ,可得1b >1a ,A 正确; 对于选项B,∵b <a <0,∴a 2<b 2,B 错误; 对于选项C,∵b <a ,∴b -a <0,C 错误;对于选项D,∵b <0,a <0,∴|b |a =-ab ,|a |b =-ab ,即|b |a =|a |b ,D 错误. 故选A .4.A 易得A ={x |x >2或x <-4},因为B ={x |x >a },所以若B ⊆A ,则a ≥2. 故选A .5.D ∵命题“∃x ∈R,使2x 2+(a -1)x +12≤0”是假命题,∴2x 2+(a -1)x +12>0对x ∈R 恒成立,即方程2x 2+(a -1)x +12=0无实根, ∴Δ=(a -1)2-4×2×12<0,解得-1<a <3,故实数a 的取值范围是-1<a <3. 故选D .6.D 2a +b =(2a +b)(2a +1b )=5+2ab +2ab ≥5+2√2ab ·2ab =9,当且仅当{ab =1,2a +1b =1,即{a =13,b =3时取等号, ∴2a+b 的最小值为9.故选D .7.A 若①是假命题,则②③④是真命题,则关于x 的方程x 2+ax +b =0的一根为3,由于两根之和为2,则该方程的另一根为-1,两根异号,符合题意;若②是假命题,则①③④是真命题,则x =1是方程x 2+ax +b =0的一个根,由于两根之和为2,则另一个根也为1,两根同号,不符合题意;若③是假命题,则①②④是真命题,则关于x 的方程x 2+ax +b =0的两根为1和3,两根同号,不符合题意;若④是假命题,则①②③是真命题,则关于x 的方程x 2+ax +b =0的两根为1和3,两根之和为4,不符合题意.综上所述,命题①为假命题. 故选A .8.D 由不等式a (x +1)(x -3)+1>0(a ≠0)的解集是{x |x 1<x <x 2}(x 1<x 2), 可知a <0,且a (x +1)(x -3)+1=0(a ≠0)的两根为x 1、x 2,不妨设y =a (x +1)(x -3)(a ≠0),则y =a (x +1)(x -3)(a ≠0)的图象与直线y =-1的交点的横坐标为x 1、x 2,由图易得x 1<-1,x 2>3,因此D 中结论一定错误. 故选D .9.ABC 易知选项A 正确;对于选项B,x 2-4x +5=(x -2)2+1>0的解集为R,故正确; 对于选项C,解不等式(x -1)(x +2)>0,得x <-2或x >1, 设A ={x |x >1},B ={x |x <-2或x >1},则A ⫋B ,∴“x >1”是“(x -1)(x +2)>0”的充分不必要条件,故正确; 对于选项D,√x 2=|x |,若x <0,则√x 2≠x ,故错误. 故选ABC .10.BD ∵a 3+b 3-a 2b -ab 2=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ),(a -b )2≥0,a +b 的符号不定,∴a 3+b 3与a 2b +ab 2的大小关系不确定,A 错误; ∵x 2-2x +3=(x -1)2+2≥2>0, ∴x 2+3>2x ,B 正确;y =x 2+2x 2-1=x 2-1+2x 2-1+1,当x 2-1<0时,y <0,C 错误;a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0,故a 2+b 2≥2(a -b -1),D 正确. 故选BD .11.CD ∵M ={x |y =√x -1}={x |x ≥1},N ={y |y =x 2+2}={y |y ≥2}, ∴M ∩N ={x |x ≥2},M ∪N ={x |x ≥1},故A,B 均不正确; 易得∁U M ={x |0<x <1},∁U N ={y |0<y <2},∴(∁U M )∪(∁U N )={x |0<x <2},(∁U M )∩(∁U N )={x |0<x <1},故C,D 均正确. 故选CD .12.ABC 对于选项A,由基本不等式可得√ab ≤a+b 2=2,当且仅当a =b =2时,等号成立,A 正确;对于选项B,2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=16,∴a 2+b 2≥8,当且仅当a =b =2时,等号成立,B 正确; 对于选项C,1a +1b=a+b 4(1a+1b)=14(b a+a b+2)≥14(2√b a·ab+2)=1,当且仅当a =b =2时,等号成立,C正确;对于选项D,由A 可知√ab ≤2,即0<ab ≤4,∴1ab ≥14,D 错误. 故选ABC .13.答案 -5≤k <3或4<k ≤5解析 由不等式x 2-2x -8>0,解得x <-2或x >4, 解方程2x 2+(2k +7)x +7k =0,得x 1=-72,x 2=-k ,当-k <-72,即k >72时,不等式2x 2+(2k +7)x +7k <0的解集为{x|-k <x <-72},若不等式组只有一个整数解,则-5≤-k <-4,解得4<k ≤5;当-k >-72,即k <72时,不等式2x 2+(2k +7)x +7k <0的解集为{x|-72<x <-k}, 若不等式组只有一个整数解,则-3<-k ≤5,解得-5≤k <3. 综上可得,实数k 的取值范围是-5≤k <3或4<k ≤5. 14.答案 {0,12,2}解析 当a =0时,B =⌀,此时B ⫋A ,满足题意;当a >0时,B ={-√2a ,√2a },则集合A ,B 只能构成“蚕食”, 所以-√2a =-1或√2a =2, 解得a =2或a =12.故a 的取值集合为{0,12,2}.15.答案 0≤a <4解析 当a =0时,不等式ax 2>-ax -1即0>-1,对任意实数x 都成立,符合题意; 当a ≠0时,关于x 的不等式ax 2>-ax -1,即ax 2+ax +1>0对任意实数x 都成立, 等价于{a >0,Δ=a 2-4a <0,解得0<a <4.综上所述,a 的取值范围为0≤a <4. 16.答案 3+2√2;7解析 当a =0时,2x +y =xy ,则2y +1x =1, ∴x +y =(x +y )·(2y+1x)=3+2x y+yx≥3+2√2x y·yx=3+2√2,当且仅当x =1+√2,y =2+√2时等号成立,故此时x +y 的最小值为3+2√2.当a =-2时,2x +y =xy -2,若x =1,则等式不成立,故x ≠1,则y =2(x+1)x -1>0,∴x >1,x +y =x +2(x+1)x -1=x +2+4x -1=x -1+4x -1+3≥2√4x -1·(x -1)+3=4+3=7,当且仅当x =3时取等号,此时x +y 的最小值为7.17.解析 (1)由题意得A ={x |1<x <2},B ={x ||x +1|≤1}={x |-2≤x ≤0}, (3分) ∴A ∪B ={x |-2≤x ≤0或1<x <2}. (5分)(2)选①.∵A ∪B =B ,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0, (8分)解得-2≤a ≤-1.(9分)∴实数a 的取值范围为{a |-2≤a ≤-1}. (10分) 选②.∵(∁R B )∩A =⌀,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0, (8分)解得-2≤a ≤-1.(9分)∴实数a 的取值范围为{a |-2≤a ≤-1}. (10分) 选③.∵B ∪(∁R A )=R,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0,(8分)解得-2≤a≤-1.(9分)∴实数a的取值范围为{a|-2≤a≤-1}. (10分)18.解析(1)∵命题p:“∃x∈R,使不等式x2-2x-m≤0成立”是假命题, ∴¬p:“∀x∈R,不等式x2-2x-m>0恒成立”是真命题, (1分)∴方程x2-2x-m=0无实根, (3分)∴Δ=4+4m<0,解得m<-1, (5分)即实数m的取值集合A={m|m<-1}.(6分)(2)∵-4<m-a<4,即a-4<m<a+4,∴q:a-4<m<a+4, (8分)由(1)可知¬p:m<-1,若q:a-4<m<a+4是¬p的充分不必要条件,则4+a≤-1,解得a≤-5.(11分)故实数a的取值范围是{a|a≤-5}.(12分)19.证明(1)因为x>y>0,所以xy>0,1xy>0, (2分)于是x·1xy >y·1xy,即1y>1x, (4分)由z>0,得zx <zy.(6分)(2)因为x>0,y>0,z>0,所以x+y≥2√xy,x+z≥2√xz,y+z≥2√yz, (9分) 所以(x+y)(x+z)(y+z)≥2√xy×2√xz×2√yz=8xyz, (10分)当且仅当x=y=z时,等号同时成立, (11分)又x>y,所以(x+y)(x+z)(y+z)>8xyz.(12分)20.解析(1)∵不等式ax2-3x+2>0(a∈R)的解集为{x|x<1或x>b},∴a>0,且1,b是一元二次方程ax2-3x+2=0的两个实数根, (2分)∴{1+b=3a,1×b=2a,a>0,解得{a=1,b=2.(5分)(2)不等式ax2-3x+2>5-ax等价于ax2+(a-3)x-3>0,即(ax-3)(x+1)>0.(6分)当a=0时,原不等式的解集为{x|x<-1}; (7分)当a≠0时,方程(ax-3)(x+1)=0的两根为x1=-1,x2=3a,当a>0时,原不等式的解集为{x|x<-1或x>3a}, (8分)当a<0时,①若3a >-1,即a<-3,则原不等式的解集为{x|-1<x<3a}, (9分)②若3a <-1,即-3<a<0,则原不等式的解集为{x|3a<x<-1}, (10分)③若3a=-1,即a=-3,则原不等式的解集为⌀.(11分)综上所述,当a>0时,原不等式的解集为{x|x<-1或x>3a};当a=0时,原不等式的解集为{x|x<-1};当-3<a<0时,原不等式的解集为{x|3a<x<-1};当a=-3时,原不等式的解集为⌀;当a<-3时,原不等式的解集为{x|-1<x<3a}. (12分)21.解析(1)由题意可知,日加工处理每吨厨余垃圾的平均成本为yx =x2+3200x+40,x∈[70,100].(2分)又x2+3200x+40≥2√x2·3200x+40=2×40+40=120,当且仅当x2=3200x,即x=80时,等号成立, (3分)所以该企业日加工处理量为80吨时,日加工处理每吨厨余垃圾的平均成本最低.(4分) 因为100<120,所以此时该企业处理1吨厨余垃圾处于亏损状态.(5分)(2)若该企业采用第一种补贴方案,设该企业每日获利为y1元,由题可得y 1=100x-(12x2+40x+3200)+2 300=-12x2+60x-900=-12(x-60)2+900.(7分)因为x∈[70,100],所以当x=70时,企业获利最大,最大利润为850元.(8分) 若该企业采用第二种补贴方案,设该企业每日获利为y2元,由题可得y 2=130x-(12x2+40x+3200)=-12x2+90x-3 200=-12(x-90)2+850. (10分)因为x∈[70,100],所以当x=90时, 企业获利最大,最大利润为850元.(11分)答案示例1:因为两种方案所获最大利润相同,所以选择两种方案均可.(12分)答案示例2:因为两种方案所获最大利润相同,但第一种补贴方案只需要企业日加工处理量为70吨即可获得最大利润,所以选择第一种补贴方案.(12分)答案示例3:因为两种方案所获最大利润相同,但第二种补贴方案能够为社会做出更大的贡献,所以选择第二种补贴方案.(12分)22.解析(1)当k2-2k-3=0时,k=-1或k=3,若k=-1,则原不等式化为1>0,恒成立,满足题意,若k=3,则原不等式化为4x+1>0,解得x>-14,不满足题意,舍去.(2分)当k2-2k-3≠0时,则{k 2-2k -3>0,(k +1)2-4(k 2-2k -3)<0, 解得k >133或k <-1.综上可知,k 的取值范围为k ≤-1或k >133. (4分)(2)根据不等式解集的形式可知k 2-2k -3>0,解得k >3或k <-1. ∵不等式解集的两个端点就是对应方程的实数根,∴(k 2-2k -3)x 2+(k +1)x +1=0(k ∈R)有两个不相等的负实数根, (6分) ∴{ (k +1)2-4(k 2-2k -3)>0,-k+1k 2-2k -3<0,1k 2-2k -3>0,解得3<k <133, ∴k 的取值范围为3<k <133. (8分)(3)存在.根据题意可得M ={x |x >t },-1≤t <1, 当k 2-2k -3=0时,解得k =3或k =-1,若k =-1,则原不等式为1>0,恒成立,不满足条件,若k =3,则原不等式的解集是{x|x >-14},满足条件; (10分)当k 2-2k -3>0时,此一元二次不等式的解集形式不是{x |x >t }的形式,不满足条件; 当k 2-2k -3<0时,此一元二次不等式的解集形式不是{x |x >t }的形式,不满足条件. 综上,满足条件的k 的值为3. (12分)。

高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一第二章一元二次函数、方程和不等式单元测试试卷 (3)数学第二章测试卷A卷本试卷满分100分,考试时间80分钟。

一、单项选择题(本大题共5小题,每小题5分,共计25分。

在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.若$a+b+c=0$,且$a<b<c$,则下列不等式一定成立的是A。

$ab<bc$B。

$ab<ac$XXX<bc$D。

$ab<bc$2.已知正数$a$、$b$满足$\frac{22}{1194}+\frac{a}{b}=1$,则$\frac{a}{b}+\frac{b}{a}$的最小值是A。

6B。

12C。

24D。

363.已知二次函数$f(x)=x^2+bx+c$的两个零点分别在区间$(-2,-1)$和$(-1,0)$内,则$f(3)$的取值范围是A。

$(12,20)$B。

$(12,18)$C。

$(18,20)$D。

$(8,18)$4.若$x>0$,$y>0$,且$\frac{2}{x+1}+\frac{1}{x+2y}=1$,则$2x+y$的最小值为A。

2B。

$\frac{2}{3}$C。

$2+\frac{2}{3}$D。

$3$5.关于$x$的不等式$(ax-1)<x$恰有2个整数解,则实数$a$的取值范围是A。

$-\frac{34}{43}<a\leq-\frac{3}{4}$或$\frac{4}{3}<a\leq\frac{43}{34}$B。

$-\frac{3}{4}<a\leq-\frac{2}{3}$或$\frac{2}{3}<a\leq\frac{3}{4}$C。

$-\frac{34}{43}\leq a<-\frac{3}{4}$或$\frac{4}{3}\leq a<\frac{43}{34}$D。

$-\frac{3}{4}\leq a<-\frac{2}{3}$或$\frac{2}{3}\leq a\leq\frac{3}{4}$二、多项选择题(本大题共2小题,每小题5分,共计10分。

2014年高考数学(理)三轮专项模拟(通用)试卷:集合、常用逻辑用语、不等式、函数与导数

2014年高考数学(理)三轮专项模拟(通用)试卷:集合、常用逻辑用语、不等式、函数与导数

集合、常用逻辑用语、不等式、函数与导数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·北京高考)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当φ=π时,y=sin(2x+φ)=sin(2x+π)=-sin 2x,此时曲线y=sin(2x+φ)必过原点,但曲线y=sin(2x+φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.【答案】 A2.(2013·韶关模拟)设a=log0.32,b=log0.33,c=20.3,d=0.32,则这四个数的大小关系是()A.a<b<c<d B.b<a<d<cC.b<a<c<d D.d<c<a<b【解析】由函数y=log0.3x是减函数知,log0.33<log0.32<0.又20.3>1,0<0.32<1,所以b<a<d<c.【答案】 B3.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos 2x,x∈RB.y=log2|x|,x∈R且x≠0C.y=e x-e-x2,x∈RD.y=x3+1,x∈R【解析】 A 中,y =cos 2x 在(0,π2)上递减,A 不满足题意. C 中函数为奇函数,D 中函数非奇非偶.对于B :y =log 2|x |(x ≠0)是偶函数,在(1,2)内是增函数. 【答案】 B4.设f (x )=⎩⎨⎧2e x -1, x <2,log 3(x 2-1),x ≥2,则不等式f (x )<2的解集为( ) A .(10,+∞) B .(-∞,1)∪[2,10) C .(1,2]∪(10,+∞)D .(1,10)【解析】 原不等式等价于⎩⎨⎧ x ≥2,log 3(x 2-1)<2,或⎩⎨⎧x <2,2e x -1<2, 即⎩⎨⎧ x ≥2,0<x 2-1<9,或⎩⎨⎧x <2,x -1<0, 解得2≤x <10或x <1. 【答案】 B5.(2013·山东高考)函数y =x cos x +sin x 的图象大致为( )【解析】 函数y =x cos x +sin x 为奇函数,则排除B ;当x =π2时,y =1>0,排除C ;当x =π时,y =-π<0,排除A ,故选D.【答案】 D6.(2013·江西高考)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1【解析】 S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪21=13×23-13=73,S 2=⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2,S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1),ln 2<ln e =1,且73<2.5<e(e -1),所以ln 2<73<e(e -1),即S 2<S 1<S 3.【答案】 B7.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b2D .v =a +b2【解析】 设甲、乙两地之间的距离为s . ∵a <b ,∴v =2s sa +s b=2sab (a +b )s =2ab a +b <2ab2ab=ab .又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a .【答案】 A8.(2012·重庆高考)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x)的图象如图1所示,则下列结论中一定成立的是( )图1A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)【解析】 当x <-2时,y =(1-x )f ′(x )>0,得f ′(x )>0;当-2<x <1时,y =(1-x )f ′(x )<0,得f ′(x )<0; 当1<x <2时,y =(1-x )f ′(x )>0,得f ′(x )<0; 当x >2时,y =(1-x )f ′(x )<0,得f ′(x )>0,∴f (x )在(-∞,-2)上是增函数,在(-2,1)上是减函数,在(1,2)上是减函数,在(2,+∞)上是增函数,∴函数f (x )有极大值f (-2)和极小值f (2). 【答案】 D第Ⅱ卷二、填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上)9.(2013·山东高考)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=________.【解析】 当x >0时,f (x )=x 2+1x ,∴f (1)=12+11=2.∵f (x )为奇函数,∴f (-1)=-f (1)=-2. 【答案】 -210.设变量x ,y 满足约束条件⎩⎨⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z =2x +3y +1的最大值为________.【解析】 作出不等式组表示的可行域,如图阴影部分所示.又z =2x +3y +1可化为y =-23x +z 3-13,结合图形可知z =2x +3y +1在点A 处取得最大值.由⎩⎨⎧ x +2y -5=0,x -y -2=0,得⎩⎨⎧x =3,y =1,故A (3,1). 此时z =2×3+3×1+1=10.【答案】 1011.(2013·孝感模拟)已知符号函数sgn(x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn(ln x )-ln 2x 的零点个数为________.【解析】 当x >1时,ln x >0,sgn(ln x )=1, ∴f (x )=1-ln 2x ,令f (x )=0,得x =e. 当x =1时,ln x =0,sgn(ln x )=0, ∴f (x )=-ln 2x ,令f (x )=0,得x =1满足. 当0<x <1时,ln x <0,sgn(ln x )=-1, ∴f (x )=-1-ln 2x <0,f (x )=0无解. ∴函数f (x )的零点为x =1与x =e. 【答案】 212.(2013·烟台模拟)已知第一象限的点(a ,b )在直线2x +3y -1=0上,则代数式2a +3b 的最小值为________.【解析】 由题意知2a +3b =1,a >0,b >0,则2a +3b =⎝ ⎛⎭⎪⎫2a +3b (2a +3b )=4+9+6b a +6ab ≥13+26b a ·6a b =25,当且仅当a =b =15时取等号,即2a +3b 的最小值为25.【答案】 2513.已知y =f (x )+x 2是奇函数,且f (1)=1,若g (x )=f (x )+2,则g (-1)=________.【解析】 ∵y =f (x )+x 2是奇函数,且f (1)=1, ∴f (-1)+(-1)2=-[f (1)+12],∴f (-1)=-3. 因此g (-1)=f (-1)+2=-1. 【答案】 -114.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(1-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (2 013)=________.【解析】当x>0时,∵f(x)=f(x-1)-f(x-2),∴f(x+1)=f(x)-f(x-1),∴f(x+1)=-f(x-2),即f(x+3)=-f(x),∴f(x+6)=f(x),即当x>0时,函数f(x)的周期是6.又∵f(2 013)=f(335×6+3)=f(3),由已知得f(-1)=log22=1,f(0)=0,f(1)=f(0)-f(-1)=0-1=-1,f(2)=f(1)-f(0)=-1-0=-1,f(3)=f(2)-f(1)=-1-(-1)=0,∴f(2 013)=0.【答案】015.已知函数f(x)的导数f′(x)=a(x+1)(x-a),若f(x)在x=a处取得极大值,则a的取值范围是________.【解析】若a=0,则f′(x)=0,函数f(x)不存在极值;若a=-1,则f′(x)=-(x+1)2≤0,函数f(x)不存在极值;若a>0,当x∈(-1,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,所以函数f(x)在x=a处取得极小值;若-1<a<0,当x∈(-1,a)时,f′(x)>0,当x∈(a,+∞)时,f′(x)<0,所以函数f(x)在x=a处取得极大值;若a<-1,当x∈(-∞,a)时,f′(x)<0,当x∈(a,-1)时,f′(x)>0,所以函数f(x)在x=a处取得极小值,所以a∈(-1,0).【答案】(-1,0)三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=12x2-x+52,0≤x≤3}.(1)若A∩B=∅,求a的取值范围;(2)当a取使不等式x2+1≥ax恒成立的a的最小值时,求(∁R A)∩B. 【解】A={y|y<a或y>a2+1},B={y|2≤y≤4}.(1)当A ∩B =∅时,⎩⎨⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤- 3.∴a 的取值范围是(-∞,-3]∪[3,2]. (2)由x 2+1≥ax ,得x 2-ax +1≥0, 依题意Δ=a 2-4≤0, ∴-2≤a ≤2. ∴a 的最小值为-2.当a =-2时,A ={y |y <-2或y >5}. ∴∁R A ={y |-2≤y ≤5}. ∴(∁R A )∩B ={y |2≤y ≤4}.17.(本小题满分12分)已知函数f (x )=2x +k ·2-x ,k ∈R . (1)若函数f (x )为奇函数,求实数k 的值;(2)若对任意的x ∈[0,+∞)都有f (x )>2-x 成立,求实数k 的取值范围. 【解】 (1)∵f (x )=2x +k ·2-x 是奇函数, ∴f (-x )=-f (x ),x ∈R , 即2-x +k ·2x =-(2x +k ·2-x ),∴(1+k )+(k +1)·22x =0对一切x ∈R 恒成立, ∴k =-1.(2)∵x ∈[0,+∞),均有f (x )>2-x , 即2x +k ·2-x >2-x 成立, ∴1-k <22x 对x ≥0恒成立, ∴1-k <(22x )min ,∵y =22x 在[0,+∞)上单调递增, ∴(22x )min =1, ∴k >0.∴实数k 的取值范围是(0,+∞).18.(本小题满分12分)(2013·北京高考)设L 为曲线C :y =ln x x 在点(1,0)处的切线.(1)求L 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 【解】 (1)设f (x )=ln xx ,则f ′(x )=1-ln x x 2. 所以f ′(1)=1,所以L 的方程为y =x -1.(2)证明:令g (x )=x -1-f (x ),则除切点之外,曲线C 在直线L 的下方等价于g (x )>0(∀x >0,x ≠1).g (x )满足g (1)=0,且g ′(x )=1-f ′(x )=x 2-1+ln xx 2.当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,故g (x )单调递减; 当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,故g (x )单调递增. 所以,g (x )>g (1)=0(∀x >0,x ≠1). 所以除切点之外,曲线C 在直线L 的下方. 19.(本小题满分13分)(2013·济南图2模拟)已知函数f (x )=13ax 3+(a -2)x +c 的图象如图2所示. (1)求函数y =f (x )的解析式; (2)若g (x )=kf ′(x )x -2ln x 在其定义域内为增函数,求实数k 的取值范围.【解】 (1)∵f ′(x )=ax 2+a -2,由图可知函数f (x )的图象过点(0,3),且f ′(1)=0. 得⎩⎨⎧ c =3,2a -2=0,即⎩⎨⎧c =3,a =1. ∴f (x )=13x 3-x +3. (2)∵g (x )=kf ′(x )x -2ln x =kx -kx -2ln x ,∴g ′(x )=k +k x 2-2x =kx 2+k -2xx 2.∵函数y =g (x )的定义域为(0,+∞),∴若函数y =g (x )在其定义域内为单调增函数,则函数g ′(x )≥0在(0,+∞)上恒成立,即kx 2+k -2x ≥0在区间(0,+∞)上恒成立.即k ≥2x x 2+1在区间(0,+∞)上恒成立.令h (x )=2xx 2+1,x ∈(0,+∞),则h (x )=2x x 2+1=2x +1x ≤1(当且仅当x =1时取等号).∴k ≥1.∴实数k 的取值范围是[1,+∞).20.(本小题满分13分)(2013·烟台模拟)某幼儿园准备建一个转盘,转盘的外围是一个周长为k 米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k 元/根,且当两相邻的座位之间的圆弧长为x 米时,相邻两座位之间的钢管和其中一个座位的总费用为⎣⎢⎡⎦⎥⎤2+(128x +20)x 25k 元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y 元.(1)试写出y 关于x 的函数关系式,并写出定义域; (2)当k =50米时,试确定座位的个数,使得总造价最低? 【解】 (1)设转盘上总共有n 个座位,则x =k n 即n =kx , y =3k 2x +⎣⎢⎡⎦⎥⎤2+(128x +20)x 25k 2x, 定义域⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x ≤k 2,kx ∈Z . (2)y =f (x )=k 2⎝ ⎛⎭⎪⎫5x+(128x +20)25,y ′=-125+64x 3225x2k 2,令y ′=0得x =2516.当x ∈⎝ ⎛⎭⎪⎫0,2516时,f ′(x )<0,即f (x )在x ∈⎝ ⎛⎭⎪⎫0,2516上单调递减,当x ∈⎝ ⎛⎭⎪⎫2516,25时,f ′(x )>0,即f (x )在x ∈⎝ ⎛⎭⎪⎫2516,25上单调递增,y 的最小值在x =2516时取到,此时座位个数为502516=32个.21.(本小题满分13分)(2013·鄂州模拟)已知函数f (x )=13x 3-ax +1. (1)求x =1时,f (x )取得极值,求a 的值; (2)求f (x )在[0,1]上的最小值;(3)若对任意m ∈R ,直线y =-x +m 都不是曲线y =f (x )的切线,求a 的取值范围.【解】 (1)因为f ′(x )=x 2-a ,当x =1时,f (x )取得极值,所以f ′(1)=1-a =0,a =1. 又当x ∈(-1,1)时,f ′(x )<0,x ∈(1,+∞)时,f ′(x )>0, 所以f (x )在x =1处取得极小值,即a =1符合题意. (2)当a ≤0时,f ′(x )>0对x ∈(0,1)成立,所以f (x )在[0,1]上单调递增,f (x )在x =0处取最小值f (0)=1, 当a >0时,令f ′(x )=x 2-a =0,x 1=-a ,x 2=a , 当0<a <1时,a <1,x ∈(0,a )时,f ′(x )<0,f (x )单调递减, x ∈(a ,1)时,f ′(x )>0,f (x )单调递增, 所以f (x )在x =a 处取得最小值f (a )=1-2a a 3. 当a ≥1时,a ≥1,x ∈[0,1]时,f ′(x )<0,f (x )单调递减, 所以f (x )在x =1处取得最小值f (1)=43-a . 综上所述,当a ≤0时,f (x )在x =0处取最小值f (0)=1;当0<a <1时,f (x )在x =a 处取得最小值f (a )=1-2a a3;当a≥1时,f(x)在x=1处取得最小值f(1)=43-a.(3)因为∀m∈R,直线y=-x+m都不是曲线y=f(x)的切线,所以f′(x)=x2-a≠-1对x∈R成立,只要f′(x)=x2-a的最小值大于-1即可,而f′(x)=x2-a的最小值为f(0)=-a,所以-a>-1,即a<1.所以a的取值范围是(-∞,-1).。

集合与常用逻辑用语、一元二次函数、方程和不等式单元测试答

集合与常用逻辑用语、一元二次函数、方程和不等式单元测试答

高一数学必修一第一、二章测试题一、单选题(每小题5分,共40分)1.若集合A ={x ∈N |x ≤ 2 020 },a =22 ,则下列结论正确的是( ) A .{a }⊆A B .a ⊆A C .{a }∈A D .a ∉A 分析选D.因为A ={x ∈N |x ≤ 2 020 },所以A 中元素全是整数,因为a =22 ,所以a ∉A .2.设全集为R ,集合A ={1,2,3},B ={x |y =x -2 },则A ∩(R B )=( ) A .{1,2} B .{1} C .{1,3} D .{1,2,3}分析选B.因为B ={x |x ≥2},所以R B ={x |x <2},且A ={1,2,3}, 所以A ∩(R B )={1}.3.已知集合A ={x |(x -1)(x +2)<0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪x x -1>0 ,则A ∩B =( )A .{x |-2<x <0}B .{x |1<x <2}C .{x |0<x <1}D .R分析选A.因为集合A ={x |(x -1)(x +2)<0}={x |-2<x <1},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1>0 ={x |x <0或x >1},所以A ∩B ={x |-2<x <0}. 4.设a =x 2+y 2-2x +2y +1,b =-4,则实数a ,b 的大小关系( ) A .a <b B .a >b C .a =b D .与x ,y 取值有关分析选B.a -b =x 2+y 2-2x +2y +5=(x -1)2+(y +1)2+3>0,所以a >b . 5.已知t >0,则函数y =2t 2-t +2t的最小值为( )A .-2B .12C .3D .2分析选C.因为t >0,则函数y =2t 2-t +2t =2t +2t-1≥22t ·2t-1=3,当且仅当t =1时取等号.所以函数y =2t 2-t +2t的最小值为3.6.若不等式kx 2-6kx +k +8≥0的解集为R ,则实数k 的取值范围是( ) A .0≤k ≤1B .0<k ≤1C .k <0或k >1D .k ≤0或k ≥1分析选A.由于不等式kx 2-6kx +k +8≥0的解集为R ,分以下两种情况讨论:①当k =0时,则有8≥0,合乎题意;②当k ≠0时,则有⎩⎪⎨⎪⎧k >0Δ=36k 2-4k (k +8)=32k (k -1)≤0 , 解得0<k ≤1.综上所述,0≤k ≤1.7.某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等.假设今明两年该物品的价格分别为p 1,p 2(p 1≠p 2),则这两种方案中平均价格比较低的是( ) A .甲B .乙C .甲、乙一样D .无法确定解:甲方案:每年购买的数量相等;乙方案:每年购买的金额相等. 设甲每年购买的数量x ;乙每年购买的金额y . 因为今明两年该物品的价格分别为p 1,p 2(p 1≠p 2), 则甲的平均价格甲==,①乙的平均价格乙==,②两式作商可得=>=1,故乙的平均价格比较低,故选:B .8.某公司从2018年起每人的年工资主要由三个项目组成并按下表规定实施:项目 计算方法基础工资 2018年1万元,以后每年逐增10%住房补贴 按工龄计算:400元×工龄 医疗费每年1 600元固定不变若该公司某职工在2020年将得到的住房补贴与医疗费之和超过基础工资的25%,到2020年底这位职工的工龄至少是( )A .2年B .3年C .4年D .5年分析选C.设这位职工工龄至少为x 年,则400x +1 600>10 000·(1+10%)2×25%, 即400x +1 600>3 025,即x >3.562 5,所以至少为4年.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得2分,有选错的得0分) 9.下列命题中,正确的是( ) A .若a b >,则22ac bc > B .若a b >,则33a b >C .若0a b >>,0m >,则b m ba m a+>+ D .若15a -<<,23b <<,则43a b -<-<分析选BCD : 取0c,代入验证A,有00>,错误,故A 不正确;对于B :记()3f x x =,则()f x 为增函数,所以a b >时有()()f a f b >,故B 正确; 对于C :记()(0,0)b xf x a b x a x+=>>≥+,易证()f x 为增函数,所以0m >时有()()0f m f >,即b m ba m a+>+成立,故C 正确; 对于D :23,32b b <<∴-<-<-,又有15a -<<,利用同向不等式相加,有:43a b -<-<,故D正确.故选:BCD10.下列不等式不一定正确的是( ) A .|x +1x |≥2B .x 2+y 2xy ≥2C .x 2+y 22>xyD .|x +y |2≥|xy |分析选BCD.因为x 与1x 同号,所以⎪⎪⎪⎪⎪⎪x +1x =|x |+1|x | ≥2,A 正确; 当x ,y 异号时,B 不正确;当x =y 时,x 2+y 22=xy ,C 不正确;当x =1,y =-1时,D 不正确. 10.有以下说法,其中正确的为( )A .“x ,y 为无理数”是“xy 为无理数”的充分条件B .“若x ∈A ∩B ”则“x ∈A ”的否定是“若x ∈A ∩B ”则“x ∉∈A ”C .“x 2-2x -3=0”是“x =3”的必要条件D .“x >1”是“1x<1”的充分不必要条件分析选CD.对于A ,2 是无理数,但2 ×2 =2是有理数,故A 不正确;对于B ,“若x ∈A ∩B ”则“x ∈A ”是全称量词命题,它的否定是“∃x ∈A ∩B ”则“x ∉∈A ”,故B 不正确;对于C ,x =3⇒x 2-2x -3=0,反之不成立,因此“x 2-2x -3=0”是“x =3”的必要条件,故C 正确;对于D ,1x<1⇒x >1或x <0,因此“x >1”是“1x<1”的充分不必要条件,故D 正确.12.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的取值可以是( ) A .4 B .5 C .6 D .7分析选CD.设y =x 2-6x +a ,其图象为开口向上,对称轴为x =3的抛物线,如图所示.关于x 的一元二次不等式x2-6x +a ≤0的解集中有且仅有3个整数,a 需满足⎩⎪⎨⎪⎧22-6×2+a ≤012-6×1+a >0 ,解得5<a ≤8,又a ∈Z ,所以a 的取值是6,7,8. 三、填空题(每小题5分,共20分)13.命题∀x ∈R ,∃n ∈N ,2n>x 2的否定为________.分析存在量词命题的否定是全称量词命题,所以该命题的否定为 答案:∃x ∈R , ∀n ∈N ,2n≤x2 14.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为____________.分析:由(x -m )2>3(x -m ),得(x -m )(x -m -3)>0,解得x >m +3或x <m . 所以p :x >m +3或x <m .由x 2+3x -4<0,解得-4<x <1,即q :-4<x <1. 因为p 是q 成立的必要不充分条件,所以q ⇒p ,p ⇒q , 所以{x |-4<x <1}{x |x >m +3或x <m }.结合数轴可知m +3≤-4或m ≥1,解得m ≤-7或m ≥1.答案:m ≤-7或m ≥1 15.已知不等式axx -1<1的解集为{x |x <1或x >2},则a =______.分析由(1)101a x x -+<-,即[](1)1(1)0a x x -+-<,由不等式的解与方程的关系,(1)210a -⨯+=所以,a =1216.已知正实数a ,b 满足ab -b +1=0,则1a +4b 的最小值是________,此时b =________.分析由ab -b +1=0可得a =b -1b ,由a =b -1b>0,得b >1, 所以1a +4b =b b -1 +4b =1b -1 +4(b -1)+5,因为1b -1 +4(b -1)≥4,所以1a +4b ≥9,当且仅当a =13 ,b =32 时等号成立.答案:9 32四、解答题(共70分)17.(10分)设全集为R ,集合A ={x |x 2-2x -3>0},B ={x |a -1<x <2a +3}. (1)若a =-1,求(R A )∩B ;(2)在①A ∪B =A ,②A ∩B =B ,③(R A )∩B =∅,这三个条件中任选一个作为已知条件,求实数a 的取值范围.(注:如果选择多个条件分别解答,则按第一个解答计分)分析(1)全集为R ,集合A ={x|x 2-2x -3>0}={x|x <-1或x >3},所以R A ={x|-1≤x ≤3}; 又a =-1时,集合B ={x|a -1<x <2a +3}={x|-2<x <1},所以(R A)∩B ={x|-1≤x <1}.(2)选择①A ∪B =A 作为已知条件.(选择②,③的解法同①)因为A ∪B =A ,所以B ⊆A , 又由A ={x|x <-1或x >3}得当B =∅时a -1≥2a +3,解得a ≤-4;当B ≠∅时⎩⎪⎨⎪⎧a -1<2a +32a +3≤-1 或⎩⎪⎨⎪⎧a -1<2a +3a -1≥3 ,所以⎩⎪⎨⎪⎧a >-4a ≤-2 或⎩⎪⎨⎪⎧a >-4a ≥4,所以-4<a ≤-2或a ≥4.综上,可得a 的取值范围为a ≤-2或a ≥4. 18.(12分)解关于x 的不等式x 2-(3m +1)x +2m 2+2m <0.分析:x 2-(3m +1)x +2m 2+2m<0,即x 2-(3m +1)x +2m(m +1)=(x -2m)(x -m -1)<0, 令(x -2m)(x -m -1)=0,解得x =2m 或x =m +1, 当2m >m +1,即m >1时,解集为{x|m +1<x<2m}, 当2m <m +1,即m <1时,解集为{x|2m<x<m +1}, 当m =1时,解集为∅.综上所述,当m =1时,解集为∅;当m>1时,解集为{x|m +1<x<2m};当m<1时,解集为{x|2m<x<m +1}. 19.(12分)(1) 若x>3,求y =4x +2+13x -的最小值. (2)已知0,0a b >>,且1a b +=,4141M a b =++求M 的最大值.解(1)因为x>3,所以x -3>0.又因为y =4(x -3)+1x -3 +1414(3)14183x x ≥-⨯=- 当且仅当14(3)3x x -=-,即132x -=时,72x =等号成立,故y 的最小值是18. (2)2(4141)4()22(41)(41)4()2(41)(41)8()423M a b a b a b a b a b a b =+++=+++++≤++++++=++=,当4a+1=4b+1时取等号,此时a=b=12∴M 的最大值是3 20.(12分)已知命题p :“∃x ∈R ,x 2-2x +a =0”;命题q :“∀x ∈{x |1≤x ≤2},x 2+ax -8≤0” 若p,q 至少有一个为假命题,求实数a 的取值范围.分析命题p :“∃x ∈R ,x 2-2x +a =0”为假命题,可得方程x 2-2x +a =0无实数解,即有Δ=4-4a <0,解得a >1;命题q :“∀x ∈{x|1≤x ≤2},x 2+ax -8≤0”为真命题,可得⎩⎪⎨⎪⎧1+a -8≤04+2a -8≤0 ,解得a ≤2,命题q 为假a ≥2.综上可得,a 的取值范围是a >1. 21.(12分)()1已知x ,y 都是正数.求证:()()()2233338.x y x y x y x y +++≥()2已知a ,b ,c 为正数,且满足1a b c ++=.证明:164149a b c++≥.21.(1)证明:由基本不等式可知()()()(()(22332x y x yxy xy +++≥⋅⋅()23388xy xy x y =⋅=,(当且仅当x y =时取得等号). (2)∵1a b c ++=,∴()16411641a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭16416421b a c a c b a b a c b c ⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21≥+21168449=+++= 当且仅当47a =,27b =,17c =时,上式等号成立. 22.(12分)第一机床厂投资A 生产线500万元,每万元可创造利润1.5万元.该厂通过引进先进技术,在A 生产线的投资减少了x (x >0)万元,且每万元创造的利润变为原来的(1+0.005x )倍.现将在A 生产线少投资的x 万元全部投入B 生产线,且每万元创造的利润为1.5(a -0.013x )万元,其中a >0. (1)若技术改进后A 生产线的利润不低于原来A 生产线的利润,求x 的取值范围; (2)若B 生产线的利润始终不高于技术改进后A 生产线的利润,求a 的最大值. 分析(1)由题意得1.5(1+0.005x)(500-x)≥1.5×500,整理得x 2-300x ≤0, 解得0≤x ≤300,又x >0,故0<x ≤300.(2)由题意知,B 生产线的利润为 1.5(a -0.013x)x 万元,技术改进后,A 生产线的利润为 1.5(1+0.005x)(500-x)万元,则1.5(a -0.013x)x ≤1.5(1+0.005x)(500-x)恒成立,又x >0, 所以a ≤x 125 +500x +1.5恒成立.又x 125 +500x +1.5≥2x 125·500x+1.5=5.5, 当且仅当x 125 =500x ,即x =250时,等号成立,又a>0,所以0<a ≤5.5,所以a 的最大值为5.5.。

高一数学集合不等式练习

高一数学集合不等式练习

高一数学集合不等式练习 1、 判断下列四个集合是否为相等集合。

}1{},1|),{(},1|{},1|{2222+==+==+==+==x y D x y y x C x y y B x y x A2、满足条件M ∪{1}={1,2,3}的集合M 的个数是_________3、已知集合A={x||x|≤2,x ∈R},B={x|x ≥a},且A B ,则实数a 的取值X 围是_____.4、若全集I=R ,f (x )、g (x )均为x 的二次函数,P={x|f (x )<0,Q={x|g(x )≥0},则不等式组⎩⎨⎧<<0)(0)(x g x f 的解集可用P 、Q 表示为_____. 5、设I 是全集,非空集合P 、Q 满足P Q I.若含P 、Q 的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是(只要写出一个表达式).6、设集合M={x|x=412+k ,k ∈Z},N={x|x=214+k ,k ∈Z},则( ) A.M=N B.M N C.M N D.M ∩N=∅7、若a, b 是非零实数,m =||||||ab ab b b a a +-,则m 的值的集合是. 8、设P 、Q 为两个非空实数集合,定义集合},,|{Q b P a b a Q P ∈∈+=+若}5,2,0{=P ,}6,2,1{=Q ,则P+Q 中元素的个数是___________.9、 设A 、B 是两个非空集合,我们规定:A x x B A ∈=-|{且}B x ∉,根据上述规定,M-(M-N)等于( D )(A)M (B)N (C)M⋃N (D)M⋂N10、若集合M 满足{0,1}⊆M {―2,―1,0,1,2},则M 的个数是( )(A )2个 (B )4个 (C )6个 (D )7个 11设实数集R为全集,集合}0)(|{)(},0)(|{},0)(|{======x h x x H x g x Q x f x P ,则方程0)()()(22=+x h x g x f 的解集是( ) (A )P ⋂Q ⋂H (B )P ⋂Q (C )P ⋂Q ⋂ (D )P ⋂Q ⋃H12、已知集合{}R x x x M ∈≤-=,2|1||,⎭⎬⎫⎩⎨⎧∈≥+=Z x x x P ,115|,则P M 等于( ) A .{}Z x x x ∈≤<,30| B .{}Z x x x ∈≤≤,30|C .{}Z x x x ∈≤≤-,01|D .{}Z x x x ∈<≤-,01|13、若非空集合N M ⊂,则“M a ∈或N a ∈”是“N M a ∈”的( )(A)充分非必要条件 (B)必要非充分条件 (C)充要条件 (D)既非充分又非必要条件14、设集合A={x||x|<4},B={x|x 2-4x+3>0}, 则集合{x|x ∈A 且}B A x ∉=15、非空集合M 满足下列条件:(1)M ⊆{1,2,3,4,5};(2)若元素∈a M ,则∈-a 6M 。

新教材2023年高考数学总复习考案3阶段测试一集合常用逻辑不等式及函数的概念与性质课件

新教材2023年高考数学总复习考案3阶段测试一集合常用逻辑不等式及函数的概念与性质课件

11.给出下列结论,其中正确的结论是( BC )
A.函数 y=12-x2+1的最大值为12 B.若定义在R上的奇函数f(x)在(-∞,0)内有100个零点,则函数 f(x)有201个零点 C.在同一平面直角坐标系中,函数y=2x与y=log2x的图象关于直线 y=x对称 D.已知函数y=loga(2-ax)(a>0且a≠1)在(0,1)上是减函数,则实 数a的取值范围是(1,2)
二、多选题(本题共4个小题,每个小题5分,共20分.在每个小题给 出的四个选项中有多项是正确的,全部选对得5分,部分选对得2分,错 选得0分)
9.(2022·湖北华中师大一附中检测)给出以下说法,其中正确的是
( ACD ) A.“x>1”是“x>2”的必要不充分条件 B.“a>b”是“a2>b2”的充分不必要条件 C.命题“存在n∈N*,n2<2n”的否定为假命题 D.满足命题“∃x∈[0,1],x+a≤0”是假命题的a的取值范围为
[解析] 对 A,y=12-x2+1=2x2-1,故当 x=0 时,x2-1 取得最小值 -1,y=12-x2+1=2x2-1 取得最小值12,故 A 错误;对 B,若定义在 R 上的 奇函数 f(x)在(-∞,0)内有 100 个零点,则函数 f(x)在(0,+∞)内有 100 个零点,又 f(0)=0,故 f(x)有 201 个零点,故 B 正确;对 C,因为函数 y =2x 与 y=log2x 互为反函数,故图象关于直线 y=x 对称,故 C 正确;对 D,函数 y=loga(2-ax)(a>0 且 a≠1)在(0,1)上是减函数,则因为 y=2 -ax 为减函数,故 a>1.又由定义域,y=2-ax 在(0,1)上恒为正,故 2 -a≥0,解得 a≤2,故数 a 的取值范围是(1,2],故 D 错误.故选 BC.

一元二次函数、方程和不等式检测试卷及答案

一元二次函数、方程和不等式检测试卷及答案

一元二次函数、方程和不等式检测试卷及答案1.不等式x^2+x-6>0的解集为(B){x|x2}。

2.若a>b>0,则不等式c^2/(a-b)>0一定成立,因为分母为正数。

3.已知不等式ax^2+bx+2>0的解集是(-1,2),则a+b的值为(D)-2.4.若不等式组{x-1>a/2.x-43.5.已知关于x的不等式kx^2-6kx+k+8≥0对任意x∈XXX成立,则k的取值范围是(A)[0,1]。

6.已知不等式(x+y)/(1+xy)≥9对任意实数x、XXX成立,则实数a的最小值为(D)2.7.已知a1>a2>a3>0,则使得(1-a1x)<1、(1-a2x)<1和(1-a3x)<1都成立的x取值范围是(B)0<x<(a2/a3)。

8.某汽车运输公司刚买了一批豪华大客车投入营运,每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N)为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运(C)5年。

9.已知-π/2≤α<β≤π/2,则(α-β)^2的范围是(A)(-π^2/4,0]。

10.已知正实数a,b,c,d满足a>b,c>d,则不等式ac>bd不正确,因为b和c可能很小,导致右边小于左边。

11.对任意实数x,不等式(a-2)x+2(a-2)x-4<XXX成立,则a的取值范围是(C)a<-2或a≥2.该选项成立;对于选项C,a b0,a b,所以a c b c,该选项成立;对于选项D,a b,c20,但无法确定ac和bc的大小关系,所以该选项不一定成立。

故答案为B。

3.若函数f x x2ax b的图象过点1,0,且有两个不同的实数x1,x2满足f x1f x21,则a,b的值应该是()A.a2,b 1B.a2,b 1C.a1,b 2D.a1,b 2答:C由题意可得:f1b0,f x1f x2x1x2a,x1x2b0,又因为x1,x2不相等,所以x10,x2a,代入x1x20可得a0或b0,但因为f x1f x21,所以a0,故b0,代入x1x2a可得a1,故a,b的值应该是a1,b0,即选项C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合不等式函数测试试卷
(: 120 分分:120分)
班姓名分
一.(本大共10 小;每小 4 分,共 40 分. 在每小出的四个中,只有
一是符合目要求的)
1.集合 {1,2, 3}的真子集共有()
A、 5 个
B、 6 个
C、 7 个
D、 8 个
2.中的阴影表示的集合是()
A .A C u
B B.B
C u A A B
C.C u( A B) D.C u( A B)
U
3. 以下五个写法中:①{0}∈{ 0,1,2};②{1,2};③{ 0,1,2 }={ 2,0,1 };④0 ;
⑤ A A ,正确的个数有()
A .1 个B. 2 个C.3 个D. 4 个
4.已知y f x 是定义在 R 上的奇函数,则下列函数中为奇函数的是( )
① y f x ② y f x ③ y xf x ④ y f x x
A.①③B.②③C.①④D.②④
5.函数y
x 4
)| x |
的定域(
5
A.{ x | x 5} B.{ x | x 4} C.{ x | 4 x 5} D. x x 4且x 5
6.若函数f (x) x 1, ( x 0)
, f ( 3) 的()f ( x 2), ( x 0)
A .5 B.- 1 C.- 7 D .2
7.已知函数y f x , x a,b ,那么集合 x, y y f x , x a,b x, y x 2 中元素的个数⋯()
A . 1B. 0C. 1 或 0D. 1 或 2
8.已知函数 f (x) 的定域 [ a, b] ,函数 y f (x) 的象如甲所示,函数y f ( x )
的象是乙中的()


9.设集合 A { x |1 x 2} , B { x | x a} ,若 A ∩ B≠,则a 的取值范围是()
A.a 1 B.a 2 C.a 1 D . 1 a 2
10.若偶函数 f ( x) 在区间(-∞,-1]上是增函数,则()
3 3
A .f(- 2)<f(- 1)<f(2)
B .f(- 1)<f(- 2)<f(2)
C.
3
f(2)< f(-1)< f(- 2)
3
D .f(2)< f(-2)<f(- 1)
二.填空题(本大题共 5 个小题,每小题4分,共20 分)
11 .已知集合 A ( x, y) | y 2x 1 , B {( x, y) | y x 3} 则 AI B =
12 .若函数 f ( x 1) x 2 1,则 f ( 2) =
13 .若函数 f ( x) 的定义域为[-1,2],则函数 f (3 2x) 的定义域是
14 .函数 f ( x) x2 2( a 1)x 2 在区间 ( , 4] 上递减,则实数 a 的取值范围是
15 .对于函数 y f ( x) ,定义域为 D [ 2,2] ,以下命题正确的是(填序号)
①若 f ( 1) f (1),f ( 2) f (2) ,则 y f ( x) 是D 上的偶函数;
②若对于 x [ 2,2] ,都有 f ( x) f (x) 0 ,则y f (x) 是 D 上的奇函数;
③若函数 y f ( x) 在 D 上具有单调性且f (0) f (1) 则 y f ( x) 是 D 上的递减函数;
④若 f ( 1) f (0) f (1) f (2),则y f ( x) 是D上的递增函数.
三.解答题(本大题共 6 小题,每小题10 分,共60 分,解答应写出文字说明,证明过程或演算步骤)
1 6.设全集 U=R,若集合A x |3 x 10 , B x |
2 x 7 .
(1 )求A I B,A U B , (C U A) I (C U B);
(2 )若集合 C= { x | x a} ,且A C,求 a 的取值范围(结果用区间或集合表示)
17 .已知函数f ( x) x
1
的定义域为集合 A ,集合 B x Z 2 x 10 ,3
7 x
C x R x a或x a 1 .
(1)求A,(C R A) B ;
(2)若A C R,求实数a的取值范围 .
18 .如图,用长为 1 的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,此框架围成的面积为y ,求 y 关于 x 的函数,并写出它的定义域.
19.已知函数 f ( x) 是定义域在R 上的偶函数,且在区间(, 0) 上单调递减,求满足
f ( x22x 3) f ( x24x5) 的 x 的集合.
20 .已知f (x)的定义域为(0, ) ,且满足 f ( 2) 1 , f (xy) f ( x) f ( y) ,又当x2 x1 0 时, f (x2 ) f ( x1 ) .
(1) 求 f (1) 、 f (4) 、 f (8) 的值;
(2) 若有 f ( x) f ( x 2) 3 成立,求x的取值范围.
x 2 (x 1)
21 .已知函数f ( x) x2 ( 1 x 2) .(1)在坐标系中作出函数的图象;(2 )若
2x ( x 2)
f ( a)
1
,求 a 的取值集合.2
x
22.(附加题)设函数f ( x)是定义在闭区间[2,4] 上的函数(成绩不计入总分).
x 1
(1)证明f (x)是减函数;( 2)求f (x)的值域.
高一上学期第一次月考数学参考答案
一.选择题 (本大题共 10 小题,每小题 4 分,共 40 分. 在每小题给出的四个选项中,只有一项是符合题目要求的)
题号
1 2 3
4
5
6 7 8
9 10
答案
C
B
B D
D
D C
B
C
D
二.填空题 (本大题共 5 个 小题,每小题4分,共
20 分)
题号 11 12 13 14 15
答案
(4,7)
[ 1
,2] a
3 ②③
2
三.解答题 (本大题共 6 小题,每小题 10 分,共 60 分,解答应写出文字说明,证明过程 或演算步骤)
16 . 解:( 1) A I B
3,7 ; A U B 2,10 ; (C U A) (C U B)
(
,2] [10, ) ;
( 2) a 的取值范围为 { a | a 3}
17 . 解:( 1) A x 3 x
7 , (C R A) B = 7,8,9 ;
(2)实数 a 的取值范围为
3 a
6
18 .解:( 1)∵半圆的半径为 x ,∴ S 半圆
x 2 ,
2
又 DA 1 x 2x 1 (
2 2)x ,
2
∴ S 矩形
2x
1 (
2)x (
2) x 2
x ,
2
故此框架的面积 y
x 2 ( 2)x 2
x ( 2) x 2 x ;
2
2
(2 )依题意,有
x 0
x
1

1 (
2)x 0
2
∴函数的定义域为 (0,
1 ) .
2
19 .解: Q f (x) 在 R 上为偶函数,且在
( ,0) 上单调递减,
∴ f ( x) 在 (0,
) 上为增函数,且 f ( x 2 4x 5)
f ( x 2 4x 5) ,
Q x 2 2x 3 (x 1)2 2 0 , x 2
4x 5 (x
2)2 1 0 ,
由 f ( x2 2x 3) f ( x2 4x 5) 得 x2 2x 3 x2 4x 5
解得 x 1 ∴解集为x x 1 .
20 .解:( 1)∵f (2) f (1 2) f (1) f (2) ,∴ f (1) 0 ,
同理, f (4) f ( 2 2) f (2) f (2) 2 ,∴ f (8) f (4 2) f (4) f (2) 3 ,(2)原不等式可化为 f ( x) f ( x 2) 3
∵ f (8) 3 ,∴ f ( x) f ( x 2) f (8) f (8x 16)
又∵ f (x) 是 (0, ) 上的增函数,∴8x 16 0
x
16 x 8x
2
7
16
即 x 的取值范围为(2, 16
) .7
21.解:( 1)图略;
(2 )当a 1时, f ( a) a 2 1
,可得 a
3 2

2
当 1 a 2 时,f (a) a 2 1 ,可得 a 2 ,
2 2
当 a 2 时, f ( a) 2a 1 1
2 矛盾,故无解,,可得 a ,与 a
2 4
综上所述, a 的取值构成的集合为 3 , 2 , 2 .
2 2 2
22. 解:( 1)证明:在[ 2,4 ]上任取x1, x2 且 x1
x1
, f ( x2 )
x2 x2,则 f ( x1 )
x2 1
x1 1
∴ f ( x1 )
x1 x2 x2 x1
f (x2 )
1 x
2 1 ( x1 1)(x2 1)
x1
Q 2 x1 x2 4, x2 x1 0, x1 1 0, x2 1 0
f ( x1 ) f ( x2 ) 0, f (x1) f (x2 ) f ( x) 是在[2,4]上的减函数;
(2)由( 1)知
4 , ( ) (2) 2 ,故函数的值域为 4
.
f ( x)min f (4)
3
f x max f [ , 2]
3。

相关文档
最新文档