2018年广西北海市中考数学二模试卷

合集下载

2018年广西北海市中考数学二模试卷-普通用卷

2018年广西北海市中考数学二模试卷-普通用卷

2018年广西北海市中考数学二模试卷副标题一、选择题(本大题共12小题,共36.0分)1.下列各数中,比小的数是A. 2B. 0C.D.2.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是A. B. C. D.3.一粒米的质量是千克,将用科学记数法表示为A. B. C. D.4.下列图形中既是中心对称图形又是轴对称图形的是A. B. C. D.5.下列各式计算正确的是A. B. C. D.6.如图,内接于,连接OA,OB,若,则的度数是A.B.C.D.7.不等式的正整数解的个数是为A. 1B. 2C. 3D. 48.如图,平行四边形ABCD中,AE平分,,,则CE等于A. 6B. 5C. 4D. 39.某校新生进行军训打靶演练,分小组进行,某小组五名同学的成绩分别是:9、5、8、7、6环,则该组数据的平均数与中位数分别是A. 6,7B. 6,8C. 7,7D. 7,810.如图,图中是抛物线形拱桥,当拱顶离水面2m时水面宽水面下降1m,水面宽度为A.B.C.D.11.如图,半径为4的与含有角的真角三角板ABC的边AC切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与相切时,该直角三角板平移的距离为A. 2B.C. 4D.12.如图,已知直线与与双曲线交于A、B两点,连接OA,若,则k的值为A.B.C.D.二、填空题(本大题共6小题,共18.0分)13.一组数据按从小到大的顺序排列为1,2,3,3,4,5,则这组数据的众数是______.14.如图,已知,,垂足为E,若,则的度数为______.15.分解因式:______.16.如图,在菱形ABCD中,,,则菱形ABCD的周长等于______.17.如图,下列图形均是由完全相同的点按照一定的规律组成的,第1个图形一共有3个点,第2个图形一共有8个点,第3个图形一共有15个点,,按此规律排列下去,第100个图形中点的个数是______.18.如图,正方形ABCD边长为6,E是BC的中点,将沿AE折叠,使点B落在点H处,延长EH交CD于点F,过E作的平分线交CD于点G,则的面积为______.三、计算题(本大题共4小题,共32.0分)19.先化简,再求值:,其中.20.如图,在平面直角坐标系中,,,.清画出将向下平移3个单位得到的;请画出以点O为旋转中心,将逆时针旋转得到的请直接写出、的距离.21.如图,在中,,点C为AB的中点,,以点O为圈心,6为半径的圆经过点C,分别交OA、OB于点E、F.求证:AB为的切线;求图中阴影部分的面积注:结果保留,,,22.荔枝是广西盛产的一种水果,六月份是荔技传统销售旺季去年六月份某水果公司为拓展销售渠道,在实体店的基础上中途增设了网店,公司总销售量吨与销售时间天关系如图所示:请直接写出去年六月份网店每天的销售量,并求出AB的解析式不写取值范围;公司预计,今年六月份实体店的销售量与去年相同,网店的销售量将有所增加,预计今年网店每天的销售量比去年增加,公司六月份的总销售量是去年的倍,求m的值.四、解答题(本大题共4小题,共34.0分)23.计算:.24.某校英语社团举行了“单词听写大赛”,每位参赛选手共听写单词100个现从参加比赛的男女选手中分别随机抽取部分学生进行调查,对答对的情况进行分组如下:组:,B组:,C组:,D组:,E组:并绘制了如下不完整的统计图:请根据以上信息解答下列问题:本次调查共抽取了多少名学生,并将条形统计图补充完整;求出A组所对的扇形圆心角的度数;若从D、E两组中分别抽取一位学生进行采访,请用画树状图或列表法求出恰好抽到两位女学生的概率.25.如图,和都是等腰直角三角形,,,的顶点A在的斜边DE上,AB、CD交于点F,连接BD.求证: ≌ ;求证:;若,AF::3,求线段AB的长.26.如图1,抛物线经过,两点,抛物线与x轴的另一交点为A,连接AC、BC.求抛物线的解析式及点A的坐标;若点D是线段AC的中点,连接BD,在y轴上是否存一点E,使得是以BD为斜边的直角三角形?若存在,求出点E的坐标,若不存在,说明理由;如图2,P为抛物线在第一象限内一动点,过P作于Q,当PQ的长度最大时,在线段BC上找一点M使的值最小,求的最小值.答案和解析【答案】1. D2. A3. B4. C5. D6. B7. B8. D9. C10. A11. D12. B13. 314.15.16. 1617. 1020018.19. 解:原式,当时,原式.20. 解:如图所示,即为所求;如图所示,即为所求;根据题意得:、的距离为.21. 证明:连接OC,如图,,点C为AB的中点,,为的切线;解:,,在中,,,,图中阴影部分的面积扇形22. 解:由题意可得,实体店每天的销售量为:吨,网店每天的销售量为:吨,设AB的函数解析式为,,得,即AB的函数解析式为;由题意可得,实体店每天的销售量为:吨,网店每天的销售量为:吨,去年六月份的总产量为:吨,则,解得,,即m的值是20.23. 解:原式.24. 解:本次调查的学生总人数为人,则B项目中女生人数为,E组男生有人,补全图形如下:组所对的扇形圆心角的度数为;画树状图如下:由树状图知共有12种等可能结果,其中恰好抽到两位女学生的有2种结果,所以恰好抽到两位女学生的概率为.25. 证明:和都是等腰直角三角形,,,在和中,,≌ ;证明: ≌ ,,,,,在等腰直角中,,;,,∽ ,,设,则,,由得,,解得,,则.26. 解:把,代入抛物线中得:,解得:,抛物线的解析式为:,当时,,解得:,,;存在,如图1,,,,设,,,即,,,,或;,,易得BC的解析式为:,如图2,作直线,设直线l的解析式为:,当直线l与抛物线有一个公共点时,这个公共点为P,此时PQ的长最大,则,,,,,解得:,,过P作轴于N,交BC于M,,,,即的最小值是.【解析】1. 解:,,故选:D.根据负数的绝对值越大负数反而小,可得答案.本题考查了有理数大小比较,利用负数的绝对值越大负数反而小是解题关键.2. 解:从正面看易得第一层有2个正方形,第二层有3个正方形.故选:A.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3. 解:,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4. 解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,是轴对称图形,故此选项正确;D、是中心对称图形,不是轴对称图形,故此选项错误;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5. 解:A、和不是同类项,不能合并,故原题计算错误;B、,故原题计算错误;C、,故原题计算错误;D、,故原题计算正确;故选:D.根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变分别进行计算即可.此题主要考查了同底数幂的乘法、合并同类项、积的乘方,关键是掌握各计算法则.6. 解:,,,.故选:B.由圆周角定理得出,然后由,根据等边对等角的性质和三角形内角和定理,可求得的度数.此题考查了圆周角定理与等腰三角形的性质此题难度不大,注意掌握数形结合思想的应用.7. 解:不等式的解集是,故不等式的正整数解为1,2,一共2个.故选:B.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键解不等式应根据不等式的基本性质.8. 解:四边形ABCD是平行四边形,,,,,平分,,,,.故选:D.根据平行四边形的性质得出,,,推出,再根据角平分线性质得出,推出,即可求出CE;本题考查了平行四边形性质,角平分线定义,平行线的性质,等腰三角形的判定等知识点,主要考查学生运用性质进行推理的能力.9. 解:这组数据按照平均数为:,从小到大的顺序排列为:5,6,7,8,9,中位数为7.故选:C.根据平均数和中位数的概念求解.本题考查了中位数和平均数的知识,将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.10. 解:建立如图所示直角坐标系:可设这条抛物线为,把点代入,得,解得:,,当时,.解得:水面下降1m,水面宽度为故选:A.首先建立直角坐标系,设抛物线为,把点代入求出解析式,继而求得时x的值即可得解.本题考查点的坐标的求法及二次函数的实际应用此题为数学建模题,借助二次函数解决实际问题.11. 解:根据题意画出平移后的图形,如图所示:设平移后的与圆O相切于点D,连接OD,OA,AD,过O作,可得E为AD的中点,平移前圆O与AC相切于A点,,即,平移前圆O与AC相切于A点,平移后圆O与相切于D点,即与为圆O的两条切线,,又,为等边三角形,,,,在中,,,,,,则该直角三角板平移的距离为.故选:D.根据题意画出平移后的图形,如图所示,设平移后的与圆O相切于点D,连接OD,OA,AD,过O作,根据垂径定理得到E为AD的中点,由平移前AC与圆O相切,切点为A点,根据切线的性质得到OA与AC垂直,可得为直角,由与为圆O的两条切线,根据切线长定理得到,再根据,根据有一个角为的等腰三角形为等边三角形可得出三角形为等边三角形,平移的距离,且,由求出为,在直角三角形AOE中,由锐角三角函数定义求出AE的长,由可求出AD的长,即为平移的距离.本题考查了切线的性质,切线长定理,等边三角形的判定与性质,锐角三角函数定义,垂径定理,以及平移的性质,根据题意画出相应的图形,并作出适当的辅助线是解题的关键.12. 解:如图,过A作于E,直线解析式为,,,,,中,,,,,,,,中,,,代入双曲线,可得,故选:B.依据直线解析式,运用勾股定理即可得到CD的长,依据面积法即可得到AO的长,再根据勾股定理可得AD的长,利用面积法即可得到AE的长,最后依据勾股定理可得OE 的长,由点A的坐标即可得到k的值.本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是勾股定理以及面积法的运用求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.13. 解:数据3出现了2次最多为众数,故这组数据的众数是3.故答案为:3.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.考查了确定一组数据的中位数和众数的能力求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.14. 解:,且,,,,在中,.故答案为:由平行线的性质,求出的度数,再由ED与AE垂直,得到三角形CED为直角三角形,根据直角三角形的两锐角互余,即可求出的度数.此题考查了平行线的性质,以及垂直的定义平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.15. 解:原式,故答案为:原式提取公因式,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16. 解:连接AC交BD于点O.四边形ABCD为菱形,,,三角形ABO为含的直角三角形,,,,菱形ABCD的周长,故答案为:16.根据菱形的性质可得:,然后根据,可得三角形ABO为含的直角三角形,继而可得出边长以及周长.本题考查了菱形的性质,解答本题的关键是学会添加常用辅助线,构造特殊直角三角形解决问题.17. 解:分析规律如下图图1 3 1个奇数图2 2个奇数图3 3个奇数图100 共100个奇数则故答案为:10200根据每个图增加点数依次是一个奇数,则第100个图增加了201个点本题为图形变化规律探究题,考查了整式运算的相关知识.18. 解:如图作于M,连接AF.四边形ABCD是正方形,,,,,≌ ,,设,在中,,,,,,,,平分,,,,设,在中,则有,,,,如图作于M,连接想办法求出FG即可解决问题;本题考查翻折变换、角平分线的性质定理、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用此时构建方程解决问题,属于中考填空题中的压轴题.19. 先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.20. 画出向下平移3个单位的三角形,如图所示;画出逆时针旋转得到的三角形,如图所示;在网格中,利用勾股定理求出所求即可.此题考查了作图旋转变换,平移变换,熟练掌握旋转与平移规律是解本题的关键.21. 连接OC,如图,利用等腰三角形的性质得到,然后根据切线的判定定理得到结论;利用等腰三角形的性质得,再根据正切定义求出,则,然后根据扇形面积公式,利用图中阴影部分的面积扇形进行计算即可.本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;也考查了等腰三角形的性质和扇形面积公式.22. 根据题意和函数图象中的数据可以求得去年六月份网店每天的销售量,并求出AB的解析式;根据题意和函数图象中的数据可以列出关于m的方程,从而可以求得m的值.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.23. 直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.24. 由C组所占的百分比及C组有6人即可求得总人数,然后求得B组的女生数及E组的男生数,从而补全直方图;用乘A组人数所占比例可得;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所抽的两位学生恰好是两位女生的情况,再利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率以及直方图的知识注意概率所求情况数与总情况数之比.25. 根据等腰直角三角形的性质得到,利用SAS定理证明;根据全等三角形的性质得到,,得到,根据勾股定理计算,即可证明;证明 ∽ ,根据相似三角形的性质、结合的结论计算即可.本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.26. 利用待定系数法求抛物线的解析式,令解方程可得A的坐标;根据,构建辅助圆,与y轴有两个交点为点E,根据勾股定理列方程可得点E的坐标;先作直线;,保证直线l与抛物线有一个公共点,即,可得P的坐标,过P作轴,BC于M,此时的值最小,根据三角函数求确定其最小值是PN的长即可.本题考查了待定系数法求一次函数和二次函数的解析式、用垂线段最短确定线段和的最值问题、解一元二次方程、勾股定理的运用、锐角三角函数的运用,解题的难点在第三问,突破口是确定的值最小时M的位置.。

广西北海市2018届数学中考模拟试卷(6月份)

广西北海市2018届数学中考模拟试卷(6月份)

广西北海市2018届数学中考模拟试卷(6月份)一、单1.在0,﹣2,3,四个数中,最小的数是()A、0B、﹣2C、3D、+2.下列基本几何体中,三视图都是相同图形的是()A、B、C、D、+3.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为()A、14.4×103B、144×102C、1.44×104D、1.44×10﹣4+4.下面调查中,适合采用全面调查的是()A、对南宁市市民进行“南宁地铁1号线线路”B、对你安宁市食品安全合格情况的调查C、对南宁市电视台《新闻在线》收视率的调查D、对你所在的班级同学的身高情况的调查+5.下列运算正确的是()A、=2B、4 ﹣=1C、=9D、=2+6.不等式组的解集在数轴上可表示为()C、A、B、D、+7.一个多边形的内角和是360°,则这个多边形的边数为()A、6B、5C、4D、3+8.一元二次方程x2﹣3x+1=0的根的情况()A、有两个相等的实数根B、有两个不相等的实数根C、没有实数根D、以上答案都不对+9.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A、点P在⊙O内B、点P在⊙O上C、点P在⊙O外D、无法判断+10.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A、B、C、D、+11.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是()A 、+ B 、 C 、 D 、12.如图,在△ABC 中,AB=AC ,AD 和CE 是高,∠ACE=45°,点F 是AC 的中点,AD 与FE ,CE 分别交于点G 、H ,∠BCE=∠CAD ,有下列结论:①图中存在两个等腰 直角三角形;②△AHE ≌△CBE ;③BC?AD= 其中正确的个数有()AE 2;④S △ABC =4S △ADF. A 、1 B 、2 C 、3 D 、4+二、填空题13.分解因式:2x 2﹣2= . +14.如图,平行线AB 、CD 被直线EF 所截,若∠2=130°,则∠1= .+15.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是.+16.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达C点,乙船正好到达甲船正西方向的B点,则乙船的路程(结果保留根号)+17.如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为.+18.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B 2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018 M= .+三、解答题19.计算:2﹣1+20160﹣|3tan30°+|﹣+20.解方程:+21.某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)、共抽取名学生进行问卷调查;(2)、补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)、该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)、甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.+22.已知BD平分∠ABF,且交AE于点D.(1)、求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)、设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形AB CD是菱形.+23.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CB O.(1)、请直接写出⊙M的直径,并求证BD平分∠ABO;(2)、在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.+24.甲、乙两组工人同时加工某种零件,乙组在加工过程中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍,两组各组加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)、求甲组加工零件的数量y与时间x之间的函数关系式;(2)、求乙组加工零件总量a的值;(3)、甲、乙两组加工出的零件合在一起装箱,每次生产达到150件就装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第2箱?+25.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)、如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)、如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.+26.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D,已知A(﹣1,0).(1)、求点B的坐标和抛物线的解析式;(2)、判断△CDB的形状并说明理由;(3)、将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.+。

2018年中考数学二模试卷含答案

2018年中考数学二模试卷含答案

2018年中考数学二模试卷一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a23.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.化简÷(1+)的结果是()A.B.C.D.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m27.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1968.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.0012410.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.711.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= .22.方程=的解为.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.三、解答题(本题共5小题,48分)25.(8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.27.(10分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1),易证BD+AB=CB,过程如下:过点C 作CE ⊥CB 于点C ,与MN 交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE .∵四边形ACDB 内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴BD+AB=CB .∴∠EAC=∠BDC 又∵AC=DC , ∴△ACE ≌△DCB , ∴AE=DB ,CE=CB , ∴△ECB 为等腰直角三角形,∴BE=CB .又∵BE=AE+AB , ∴BE=BD+AB .(1)当MN 绕A 旋转到如图(2)和图(3)两个位置时,BD 、AB 、CB 满足什么样关系式,请写出你的猜想,并对图(3)给予证明. (2)MN 在绕点A 旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .28.(10分)如图1,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E . (1)求证:△ABF ∽△COE ; (2)当O 为AC 的中点,时,如图2,求的值; (3)当O 为AC 边中点,时,请直接写出的值.29.(12分)如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2018年中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣【考点】6F:负整数指数幂;17:倒数.【分析】先计算负整数指数幂,再依据倒数的定义可得.【解答】解:∵(﹣)﹣1=﹣,∴(﹣)﹣1的倒数为﹣,故选:C.【点评】本题主要考查负整数指数幂和倒数的定义,熟练掌握负整数指数幂是解题的关键.2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a2+4a2=13a2,不符合题意;B、原式=3a2﹣4a2=﹣a2,符合题意;C、原式=12a3,不符合题意;D、原式=9a4÷4a2=a2,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握公式及法则是解本题的关键.3.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】R6:关于原点对称的点的坐标;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先确定出点M在第三象限,然后根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解得到m的取值范围,从而得解.【解答】解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M(1﹣2m,m﹣1)在第三象限,∴,解不等式①得,m>,解不等式②得,m<1,所以,m的取值范围是<m<1,在数轴上表示如下:.故选C.【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法,以及关于原点对称的两点坐标之间的关系以及一元一次不等式组的解法.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.化简÷(1+)的结果是()A.B.C.D.【考点】6C:分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m2【考点】U3:由三视图判断几何体.【分析】左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.∴左视图面积=1×3=3(m2).故选D.【点评】主视图确定物体的长与高;俯视图确定物体的长与宽.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】AC:由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两家抽到东营港的情况,再利用概率公式求解即可求得答案.【解答】解:用A、B、C表示:东营港、黄河入海口、龙悦湖;画树状图得:∵共有9种等可能的结果,则两家都抽到东营港的有3种情况,∴则两家都抽到东营港的概率是=;故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选:C.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).11.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.【考点】R2:旋转的性质.【分析】先求出∠ACD=30°,再根据旋转角求出∠ACD1=45°,然后判断出△ACO是等腰直角三角形,再根据等腰直角三角形的性质求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式计算即可得解.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB⊥CO是解题的关键,也是本题的难点.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.【考点】GB:反比例函数综合题.【分析】先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x 轴,BE⊥x轴,CF⊥BE于点F,再设A(3x, x),由于OA=3BC,故可得出B(x, x+4),再根据反比例函数中k=xy为定值求出x【解答】解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x, x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x, x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.【点评】本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm【考点】M4:圆心角、弧、弦的关系;KD:全等三角形的判定与性质;KQ:勾股定理.【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径AE,连接BE.得直角三角形ABE.根据圆周角定理可证∠CBD=∠MAO,运用三角函数定义求解.【解答】解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的长.故选:A.【点评】考查了圆周角定理和三角函数定义.此题首先要观察题目涉及的线段,然后根据已知条件结合定理进行角的转换.15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】H2:二次函数的图象;F4:正比例函数的图象.【分析】由y=mx(m≠0),y随x的增大而减小,推出m<0,可知二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,由此即可判断.【解答】解:∵y=mx(m≠0),y随x的增大而减小,∴m<0,∴二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,故选A.【点评】本题参考二次函数的性质、正比例函数的性质等知识,解题的关键是熟练掌握正比例函数以及二次函数的性质,属于中考常考题型.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】L9:菱形的判定;KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故选:C.【点评】本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据tan∠EFC=,设BF=3x、AB=4x,利用勾股定理列式求出AF=5x,再求出CF,根据tan∠EFC=表示出CE并求出DE,最后在Rt△ADE中,利用勾股定理列式求出x,即可得解.【解答】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°﹣90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵tan∠EFC=,∴设BF=3x、AB=4x,在Rt△ABF中,AF===5x,∴AD=BC=5x,∴CF=BC﹣BF=5x﹣3x=2x,∵tan∠EFC=,∴CE=CF•tan∠EFC=2x•=x,∴DE=CD﹣CE=4x﹣x=x,在Rt△ADE中,AD2+DE2=AE2,即(5x)2+(x)2=(10)2,整理得,x2=16,解得x=4,∴AB=4×4=16cm,AD=5×4=20cm,矩形的周长=2(16+20)=72cm.故选A.【点评】本题考查了矩形的对边相等,四个角都是直角的性质,锐角三角函数,勾股定理的应用,根据正切值设出未知数并表示出图形中的各线段是解题的关键,也是本题的难点.18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x 与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】H4:二次函数图象与系数的关系.【分析】(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.【点评】本题考查二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= 2(x2+1)(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式即可分解.【解答】解:原式=2(x4﹣1)=2(x2+1)(x2﹣1)=2(x2+1)(x+1)(x﹣1).故答案是:2(x2+1)(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.方程=的解为x=2 .【考点】B3:解分式方程.【分析】方程两边都乘以最简公分母(x﹣1)(2x+1)把分式方程化为整式方程,求解后进行检验.【解答】解:方程两边都乘以(x﹣1)(2x+1)得,2x+1=5(x﹣1),解得x=2,检验:当x=2时,(x﹣1)(2x+1)=(2﹣1)×(2×2+1)=5≠0,所以,原方程的解是x=2.故答案为:x=2.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为﹣1 .【考点】MO:扇形面积的计算.【分析】首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值.【解答】解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1,在Rt△CDG中,由勾股定理得:DG==,设∠DCG=θ,则由题意可得:S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,∴S=﹣.当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.当r=时,DG=1,∵CG=1,故θ=45°,∴S=﹣=﹣1,故答案为:﹣1.【点评】本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是(﹣×42016,42017).【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标;L5:平行四边形的性质.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n),即可求得C2017的坐标.【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x,∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n),∴C2017的坐标是(﹣×42016,42017).故答案为(﹣×42016,42017).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三、解答题(本题共5小题,48分)25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.26.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】G8:反比例函数与一次函数的交点问题;G6:反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;。

广西北海市数学中考模拟试卷

广西北海市数学中考模拟试卷

广西北海市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·黄冈) 下列运算结果正确的是()A . 3a3·2a2=6a6B . (-2a)2= -4a2C . tan45°=D . cos30°=2. (2分)下列各组图形中,右边的图形与左边的图形成中心对称的是()A .B .C .D .3. (2分)“十二五”期间,我国将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求,把36000000用科学记数法表示应是()A . 3.6×107B . 3.6×106C . 36×106D . 0.36×1084. (2分)(2018·哈尔滨) 已知反比例函数的图象经过点(1,1),则k的值为().A . -1B . 0C . 1D . 25. (2分)(2013·丽水) 用3个相同的立方块搭成的几何体如图所示,则它的主视图是()A .B .C .D .6. (2分)如图,△ABC内接于⊙O,∠A = 40°,则∠BOC的度数为()A . 20°B . 40°C . 60°D . 80°7. (2分)(2017·洛阳模拟) 下列各数中,最小的数是()A . 0B .C . ﹣D . ﹣38. (2分) (2017八下·邵阳期末) 如图,有一张一个角为30° ,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()A . 8或B . 10或4+C . 10或D . 或4+9. (2分)(2020·武汉模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则∠BED的度数为()A . 100°B . 120°C . 135°D . 150°10. (2分)已知反比例函数,有下列四个结论:① 图象必经过点(-1,2);② 图像经过(x1,y1),(x2,y2)两点,若x1<x2 ,则y1<y2;③ 图象分布在第二、四象限内;④ 若x>1,则y>-2.其中正确的有()A . 1个B . 2个C . 3个D . 4个11. (2分) (2016九上·嵊州期中) 当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m 的值为()A . ﹣B . 或﹣C . 2或﹣D . 2或或﹣12. (2分)如图,在Rt△ABC中,OA=2,AB=1,把Rt△ABO绕着原点逆时针旋转90°,得△A'B'O,那么点A'的坐标为()A . (, 1)B . (1,)C . (-1,)D . (, -1)二、填空题 (共6题;共6分)13. (1分)若x+y=2,x2﹣y2=6,则x﹣y=________.14. (1分)函数的图象如图所示,则结论:①两函数图象的交点的坐标为;②当时,;③当时,;④当逐渐增大时,随着的增大而增大,随着的增大而减小.其中正确结论的序号是________.15. (1分)从-2,-1,1,2,3这五个数中随机抽取一数,作为函数y=mx2+2mx+2中的m的值,若能使函数与x轴有两个不同的交点A、B,与y轴的交点为C,且△ABC的面积大于的概率为:________16. (1分)如图,在大小为的正方形网格中,是相似三角形的是________(请填上编号).17. (1分)(2017·海曙模拟) 已知,抛物线y=ax2+bx+3满足2a+b=0,写出该抛物线上可以确定的点的坐标________.18. (1分) (2019八下·海淀期中) 如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC= ,OC= ,则另一直角边BC的长为________.三、解答题 (共7题;共53分)19. (10分)用适当的方法解下列方程:(1)(2x+1)2=(x﹣1)2(2).20. (9分)(2018·恩施) 为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1) a=________,b=________,c=________;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为________度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.21. (2分) (2017九上·湖州月考) 如图,的图像交x轴于O点和A点,将此抛物线绕原点旋转180°得图像y2 , y2与x轴交于O点和B点.(1)若y1=2x2-3x,则y2=________ .(2)设 y 1 的顶点为C,则当△ABC为直角三角形时,请你任写一个符合此条件的 y 1 的表达式________ .22. (5分)(2017·长乐模拟) 如图,电信部门计划修建一条连接B、C两地电缆,测量人员在山脚A处测得B、C两处的仰角分别是37°和45°,在B处测得C处的仰角为67°.已知C地比A地髙330米(图中各点均在同一平面内),求电缆BC长至少多少米?(精确到米,参考数据:sin37°≈ ,tan37°≈ ,sin67°≈ ,tan67°≈ )23. (15分) (2017九上·吴兴期中) 为鼓励大学生毕业后自主创业,市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给应届毕业生自主销售,成本价与出厂价之间的差价由政府承担.赵某按照相关政策投资销售本市生产的一种新型“儿童玩具枪”.已知这种“儿童玩具枪”的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)赵某在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设赵某获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种“儿童玩具枪”的销售单价不得高于28元.如果赵某想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?24. (5分)(2016·张家界) 已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.25. (7分) (2016九上·岑溪期中) 如图,在平面直角坐标系中,已知抛物线y=x2﹣bx+c经过A(0,3),B (1,0)两点,顶点为M.(1)则b=________,c=________;(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共53分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、23-3、24-1、25-1、25-2、。

广西北海市中考数学模拟试卷

广西北海市中考数学模拟试卷

广西北海市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·赤峰) 2018的相反数是()A . ﹣2018B .C . 2018D .2. (2分)(2018·泰州) 下列运算正确的是()A .B .C .D .3. (2分) (2017八下·萧山期中) 下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)若A(a1 , b1),B(a2 , b2)是反比例函数y=-图象上的两个点,且a1<a2 ,则b1与b2的大小关系是()A . b1<b2B . b1=b2C . b1>b2D . 大小不确定5. (2分)(2013·崇左) 如图所示的是三通管的立体图,则这个几何体的俯视图是()A .B .C .D .6. (2分)(2017·长安模拟) 不等式组的解集是()A . x<3B . 3<x<4C . x<4D . 无解7. (2分) (2017八下·吉安期末) 等腰三角形的底角是70°,则顶角为()A . 40°B . 70°C . 55°D . 45°8. (2分) 2016年9月28日﹣12月31日,山东临沂灯展中千万盏彩灯点亮300亩天然花海.某日,从晚上17时开始每小时进入灯展的人数约为900人(之前该灯展有游客 400人),同时每小时走出灯展的人数约为600人,已知该灯展的饱和人数约为1600人,则该灯展人数饱和时的时间约为()A . 21时B . 22时C . 23时D . 24时9. (2分)如图,已知∠1=∠2=∠3=55º,则∠4=()A . 135ºB . 125ºC . 110ºD . 无法确定10. (2分)某地修一条公路,若甲工程队单独承包要80天完成,乙工程队单独承包要120天完成.现在由甲、乙工程队合作承包,完成任务需要()A . 48天B . 60天C . 80天D . 100天二、填空题 (共10题;共10分)11. (1分)(2017·鹤岗模拟) 2016年7月11日是第二十二个世界人口日,本次世界人口日的主题是“面对74亿人的世界”,74亿人用科学记数法表示为________人.12. (1分) (2018九上·青浦期末) 函数的定义域是________.13. (1分)计算:5 ﹣2 =________.14. (1分)(2017·深圳模拟) 分解因式:ax2﹣9a=________.15. (1分) (2018九上·泰州月考) 如图,在半径为的中,劣弧的长为,则________度.16. (1分)(2018·柘城模拟) 如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为________.17. (1分) (2017八上·鄞州月考) 如图,四边形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为________.18. (1分)(2017·安阳模拟) 一个不透明的袋子中装有3个红球和2个白球共5个球,这些球除颜色不同外,其余均相同,从中任意摸出一个球,这个球是白球的概率为________.19. (1分) (2017九上·拱墅期中) 如图,内接于⊙ ,于点,,,,则⊙ 的直径是________.20. (1分) (2017八下·海安期中) 如图,在矩形ABCD中,AD= AB,∠BAD的平分线交BC于点E,DH⊥AE 于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②AB=HF,③BH=HF;④BC ﹣CF=2HE;⑤OE=OD;其中正确结论的序号是________三、解答题 (共7题;共70分)21. (5分) (2019九上·尚志期末) 先化简,再求代数式()÷ 的值,其中a=2sin45°+tan45°.22. (5分) (2020九上·郑州期末) 如图,已知∠ABC,求作:①∠ABC的平分线BD(写出作法,并保留作图痕迹);②在BD上任取一点P,作直线PQ,使PQ⊥AB(不写作法,保留作图痕迹).23. (12分)(2017·宜兴模拟) 学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为________度;(2)本次一共调查了________名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.24. (8分) (2019九上·无锡月考) 如图l,在中,点,分别在边和上,点,在对角线上,且, .(1)求证:四边形是平行四边形:(2)若,, .①当四边形是菱形时,的长为________;②当四边形是正方形时,的长为________;③当四边形是矩形且时,的长为________.25. (10分)(2017·南充) 学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?26. (15分) (2019九上·许昌期末) 如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交与点C.(1)求抛物线的函数表达式;(2)若点D是y轴上的点,且以B、C、D为顶点的三角形与△ABC相似,求点D的坐标;(3)如图2,CE//x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC、CE分别相交于点F,G,试探求当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积.27. (15分)(2017·淄博) 如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共70分)21-1、22-1、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、。

广西北海市中考数学二模试卷

广西北海市中考数学二模试卷

广西北海市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,O是原点,A、B、C三点所表示的数分别为a、b、c。

根据图中各点的位置,下列各数的絶对值的比较何者正确?A . |b|<|c|B . |b|>|c|C . |a|<|b|D . |a|>|c|【考点】2. (2分)若下列选项中的图形均为正多边形,恰有4条对称轴的是()A .B .C .D .【考点】3. (2分) (2019七下·北区期末) 芯片是手机、电脑等高科技产品最核心的部件,更小的芯片意味着更高的性能.目前我国芯片的量产工艺已达到14纳米,已知14纳米为0.000000014米,则0.000000014科学记数法表示为()A . 1.4×10﹣8B . 1.4×10﹣9C . 1.4×10﹣10D . 14×10﹣9【考点】4. (2分) (2020九上·玉屏月考) 如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A . (3,2)B . (4,1)C . (3,1)D . (4,2)【考点】5. (2分) (2019七下·包河期末) 下列式子中,计算结果是a8的是()A . a2+a6B . a10-a2C . a2•a6D . (a2)3【考点】6. (2分) (2016八下·番禺期末) 某校有甲、乙两个合唱队,两队队员的平均身高都为160cm,标准差分别是S甲、S乙,且S甲>S乙,则两个队的队员的身高较整齐的是()A . 甲队B . 两队一样整齐C . 乙队D . 不能确定【考点】7. (2分)下面三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,则能组成分式的概率是()A .B .C .D .【考点】8. (2分) (2020九上·广东月考) 如图,已知一次函数y=-x+b与反比例函数y=的图象相交于点P ,则关于x的方程-x+b=的解是()A . x=1B . x=2C . x1=1,x2=2D . x1=1,x2=3【考点】9. (2分)(2020·上城模拟) △ABC中,∠C=90°,M是BC的三等分点,且MC=2MB,若sin∠ ,则sin∠MAC=()A .B .C .D .【考点】10. (2分)(2019·杭州模拟) 如图,是⊙O 的直径,是⊙O 的切线,为切点,,则等于()A . 25°B . 50°C . 30°D . 40°【考点】二、填空题 (共5题;共5分)11. (1分) (2017九上·西湖期中) 我们规定:一个正边形(为整数)的最短对角线与最长对角线长度的比值叫做这个正边形的“特征值”,记为,那么 ________.【考点】12. (1分)(2020·杭州模拟) 因式分解:2(x-y)²-4y(y-x)=________。

2018年北海市初中毕业升学考试数学试卷 精品

2018年北海市初中毕业升学考试数学试卷 精品

A B C D a b1 2A B C D2018年北海市初中毕业升学考试试卷数 学(考试时间:120分钟,满分120分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每题3分,满分30分;在每个小题给出的四个选项中,有且只有一个是正确的,每小题选对得3分,选错、或不选得0分) 1. 5的相反数是A.5B.15C. -5D. 15-2. 如图,直线a ∥b ,∠1 = 50°,则∠2 的度数是A. 130°B. 50°C. 40°D. 30°3. 当x x 的取值范围是A. 0x ≥B. 0x >C. 0x ≤D. 0x < 4. 如图,正方体的俯视图是5. 在数轴上表示不等式x – 2 ≥0的解集,正确的是6. 如图,四边形ABCD 内接于⊙O ,若∠C = 36°,则∠A 的度数为A. 36°B. 56°C. 72°D. 144°7. 下列算式正确的是A. a 2 +a 3 = a 5B. (2a )3 = 6a 3C. a 6÷a 2 = a 3D. a 2·a 3 = a 58. 在一个不透明的袋子里装有2个白球和2个黑球,它们除颜色外都相同,从中随机摸出1个球记下颜色放回袋中,充分摇均后,再随机摸出1个球,两次都摸到白球的概率是A.12B.13C.14D.169. 正n 边形的一个外角为40°,则边数n 为A. 9B. 8C. 7D. 62题图6题图15题图3●● 16题图10. 如图,A 、B 是双曲线ky x=上的点,分别过A 、B 两点作x 轴、y 轴的垂线段. S 1,S 2,S 3分别表示图中三个矩形的面积,若 S 3 = 1,且124S S +=,则k 值为 A. 1B. 2C. 3D. 4第Ⅱ卷(非选择题,共90分)6小题,每题3分,满分18分)11. 计算: 2 +(– 5)= ;12. 解方程(x + 2)(x – 3) = 0 ,则x = ;13. 随着“家电下乡” 活动的推进,我市今年一季度家电销售总额高达2950万元,用科学记数法表示为 万元; 14. 如图,在Rt △ABC 中,∠ C = 90°,作AB 的垂直平分线,交AB 于D ,交AC 于E ,连接BE. 已知∠CBE = 40°, 则∠A= 度;15. 如图,已知平行四边形ABCD ,E 是BD 上的点,BE :ED = 1:2,F 、G 分别是BC 、CD 上的点,EF ∥CD ,EG ∥BC ,若1ABCD S =,则EFCG S = .16. 如图,在直角坐标系xoy 中,∠OA 0A 1 = 90°, OA 0 = A 0A 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作 等腰Rt △OA 2A 3,……,以此类推, 则 A 21点的坐标为 ( , ) .三、(本题共2小题,每小题5分,满分10分)17. (本题满分5分)解方程组251x y x y +=⎧⎨-=⎩18. (本题满分5分)先化简再求值:211x x -⎛⎫- ⎪⎝⎭÷2321x x x -+,其中x = 2 .A B C D ●O四、(本题共2小题,每小题6分,满分12分)19. (本题满分6分)规定: 2!= 2×1;3!= 3×2×1;4!= 4×3×2×1,……,!(1)(2)21n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯,即称!n 为n 的阶乘. (1)计算:100!98!= ; (2)当x = 7是一元二次方程28!06!x kx +-=的一个根,求k 的值. 20. (本题满分6分)在矩形ABCD 中,对角线AC 、BD 交于点O ,AE ⊥BD ,且AE 平分∠BAO.求∠AOB 度数五、(本题共2小题,每小题6分,满分12分) 21. (本题满分6分)已知,如图在小正方形组成的网格中,矩形ABCD 的顶点和点O 都在格点上,将矩形ABCD 绕点O 顺时针方向旋转90 º,得到矩形''''A B C D .(1)在网格中,画出矩形''''A B C D ,并画出旋转过程点A 和B 分别划过的痕迹(不用写作法); (2)网格每个小正方形的边长为1,请求出线段AB 旋转时扫过的图形的面积. (结果保留π)扇形统计图)22. (本题满分6分)某商场计划为学校挑选一批运动鞋供学生选购,对全校学生所穿运动鞋鞋码进行调查,现随机抽取一部分学生,对他们所穿运动鞋鞋码作为数据样本进行分析,绘出部分条形图和部分扇形统计图,如下图所示:(1)结合统计图完成下列填空,并把条形图和扇形图补充完整. 这个样本的穿26码运动鞋的人数是 ,中位数是 ,众数是 ; (2)请你为该商场提出一条挑选这批运动鞋的合理建议. 六、(本题共2小题,每小题8分,共16分)23. (本题满分8分)某水库在60天中,一段时间蓄水量随时间的增加直线上升,由于灌溉的需要,一段时间蓄水量随时间的增加直线下降, 水库的蓄水量V (万立方米)与时间t (天)的关系如图所示.(1)分别求出水库蓄水量上升期及下降期V 与t 的函数关系式; (2)求水库的蓄水量为900万立方米以上(包含 900万立方米)的时间t 的取值范围.24. (本题满分8分)已知一台挖掘机的工作效率是一名工人工作效率的160倍. 挖掘800米道路,一台挖掘机比80名工人少用10天. 问一名工人和一台挖掘机每天各挖多少米?市道路建设工程指挥部,对城市1600米道路进行改建. 原计划只用一台挖掘机完成,在挖掘2天后,为了加快进度,加入80名工人一起工作,则完成这项工作比原计划能提前几天?图2图1七、(本题满分10分)三点,∠BAC = 30°,D是OB 延长线上的点,∠BDC = 30°,⊙O(1)求证:DC 是⊙O 的切线;(2)如果AC ∥BD ,证明四边形ACDB (3)在图1中,如果AO ⊥BO ,BO 与AC 交于E ,如图2,求ABC AEB S S ∆∆:的值.八、(本题满分12分),∠OAB = 90°,点B 坐标为(10,0). 过原点O 的抛物线,又过点A 和G ,点G 坐标为(7,0).(1)求抛物线的解析式;(2)边OB 上一动点T (t ,0),(T 不与点O 、B 过点T 作OA 、AB 的垂线,垂足分别为C 、D. 设△的面积为S ,求S 的表达式(用t 表示),并求S (3)已知M (2,0),过点M 作MK ⊥OA ,垂足为作MN ⊥OB ,交点OA 于N . 在线段OA 一点Q ,使得Rt △KMN 绕点Q 旋转180°后,点M 恰好落在(1)所求抛物线上,若存在请求出点Q 物线上与M 、K2018年北海市初中毕业升学考试数学试题参考答案及评分标准11. -3 ; 12. x = - 2 或3 ;13. 2. 95×103 ;14. 25° ;15.29;16. A 211010(2,2)-- 。

2018年中考二模数学试卷及答案

2018年中考二模数学试卷及答案

EDCB A2018年初中毕业生学业模拟考试数 学 试 卷说明:本试卷共 4页,25小题,满分 120 分.考试用时100 分钟. 注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分) 1.﹣4的绝对值是( )A .4B .﹣4C .41 D .41 2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( ) A .44×108 B .4.4×109 C .4.4×108D .4.4×10103.一组数据从小到大排列为2,3,4,x ,6,9.这组数据的中位数是5,那么这组数据的众数为( ) A .4B .5C .5.5D .64.下列四边形中,是中心对称而不是轴对称图形的是( ) A .平行四边形 B .矩形 C .菱形 D .正方形 5.如图,能判定EB ∥AC 的条件是( ) A .∠A=∠ABE B .∠A=∠EBDC .∠C=∠ABCD .∠C=∠ABE 6.下列计算正确的是( )A .a 2+a 2=a 4B .(﹣a )2﹣a 2=0C .a 8÷a 2=a 4D .a 2•a 3=a 6 7.一元二次方程x 2﹣2x+p=0总有实数根,则p 应满足的条件是( ) A .p >1 B . p =1 C .p <1 D .p ≤18.如图,沿AC 方向修隧道,为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=145°,BD=500米,∠D=55°,使A 、C 、E 在一条直线上,那么开挖点E 与D 的距离是( ) A .500sin55°米 B .500cos35°米 C .500cos55°米 D .500tan55°9.如图,在Rt △ABC 中,∠C=90°,∠ABC=60°,AB 的垂直平分线分别交AB 与AC 于点D 和点E ,若CE=2,则AB 的长是( ) A .4B .43C .8D .83P OFEDCBACC10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AC=6,BD=8.动点E 从点B 出发,沿着 B ﹣A ﹣D 在菱形ABCD 的边上运动,运动到点D 停止.点F 是点E 关于BD 的对称点,EF 交 BD 于点P ,若BP=x ,△OEF 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .二.填空题(本大题6小题,每小题4分,共24分) 11.比较大小:(填“>”或“<”)12.一个多边形的每个外角都是60°,则这个多边形边数为 . 13.若|x +2|+5-y =0,则xy 的值为 .14.分式方程aa 134=-的根是 . 15.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是 . 16.把边长为1的正方形ABCD 绕点A 逆时针旋转45°得到正方形AB′C′D′, 边B′C′与DC 交于点O ,则四边形AB′OD 的周长为 . 三.解答题(一)(本大题3小题,每题6分,共18分) 17.(本题满分6分)计算:()332160tan 3101++-︒-⎪⎭⎫⎝⎛-.18.(本题满分6分)先化简,再求值: ⎪⎭⎫ ⎝⎛--÷+-+x x x x x x 1121222,其中x=3.19.(本题满分6分)在平行四边形ABCD 中,AB=2AD . (1)作AE 平分∠BAD 交DC 于E (2)在(1)的条件下,连接BE ,判定△ABE 的形状 (不要求证明).20.(本题满分7分)中秋佳节我国有赏月和吃月饼的传统,英才学校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为度;条形统计图中,“很喜欢”月饼中喜欢“豆沙”月饼的学生有人;(2)若该校共有学生1200人,请根据上述调查结果,估计该校学生中“很喜欢”月饼的有人.(3)李民同学最爱吃莲蓉月饼,陈丽同学最爱吃豆沙月饼,现有重量、包装完全一样的豆沙、莲蓉、蛋黄三种月饼各一个,让李民、陈丽每人各选一个,则李民、陈丽两人都选中自己最爱吃的月饼的概率为.21.(本题满分7分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.22.(本题满分7分)飞马汽车销售公司3月份销售新上市一种新型低能耗汽车8辆,由于该型汽车的优越的经济适用性,销量快速上升,5月份该公司销售该型汽车达18辆.(1)求该公司销售该型汽车4月份和5月份的平均增长率;(2)该型汽车每辆的进价为9万元,该公司的该型车售价为9.8万元/辆.且销售m辆汽车,汽车厂返利销售公司0.04m万元/辆.若使6月份每辆车盈利不低于1.7万元,那么该公司6月份至少需要销售该型汽车多少辆?(盈利=销售利润+返利)E23.(本题满分9分)如图,在平面直角坐标系中,一次函数的图象y 1=kx +b 与反比例函数xny =2的图象交于点A (1,5)和点B (m ,1). (1)求m 的值和反比例函数的解析式; (2)当x >0时,根据图象直接写出不等式xn≥kx +b 的解集; (3)若经过点B 的抛物线的顶点为A ,求该抛物线的解析式.24.(本题满分9分)如图,四边形ABCD 内接于⊙O ,AB=AD ,对角线BD 为⊙O 的直径,AC 与BD 交于点E .点F 为CD 延长线上,且DF=BC . (1)证明:AC=AF ;(2)若AD=2,AF=13+,求AE 的长;(3)若EG ∥CF 交AF 于点G ,连接DG.证明:DG 为⊙O25.(本题满分9分)如图,在矩形ABCD 中,AB=5,AD=4,E 为AD 边上一动点(不与点A 重合), AF ⊥BE ,垂足为F ,GF ⊥CF ,交AB 于点G ,连接EG .设AE=x ,S △BE G =y . (1)证明:△AFG ∽△BFC ;(2)求y 与x 的函数关系式,并求出y 的最大值; (3)若△BFC 为等腰三角形,请直接写出x 的值.2018年初中毕业生学业模拟考试数学参考答案一.选择题(本大题10小题,每题3分,共30分)1.A 2.B 3.D 4.A 5.A 6.B 7.D 8.C 9.B 10.D 二.填空题(本大题6小题,每小题4分,共24分)11.<. 12.6. 13.-10. 14.1-=a . 15.2. 16.. 三.解答题(一)(本大题3小题,每题6分,共18分) 17.解:原式=3-3-1+3 4分 =2. 6分 18.解:原式=()()()11112+-⨯-+x x x x x x 4分=12-x x . 5分当x=3时,原式=291332=-. 19.解:(1)如图,AE 为所求; 3分 (2)△ABE 为直角三角形. 6分四.解答题(二)(本大题3小题,每小题7分,共21分) 20.解:(1)126°, 1分4; 2分 (2)420; 4分 (3)61. 7分 21.(1)证明:∵四边形ABCD 是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′, 1分 ∵∠DAF +∠EAF=90°,∠B′AE +∠EAF=90°,∴∠DAF=∠B′AE , 2分 在△ADF 和△AB′E 中,∴△ADF ≌△AB′E . 3分(2)解:由折叠性质得FA=FC ,设FA=FC=x ,则DF=DC -FC=18-x , 4分在Rt △ADF 中,AD 2+DF 2=AF 2, 5分∴()2221812x x =-+.解得13=x . 6分∵△ADF ≌△AB′E ,(已证) ∴AE=AF=13. ∴S △AEF =AD AE ⋅⋅21=131221⨯⨯=78. 7分 22.解:(1)设该公司销售该型汽车4月份和5月份的平均增长率为x , 1分 根据题意列方程:8(1+x )2=18, 3分 解得x 1=﹣250%(不合题意,舍去),x 2=50%.答:该公司销售该型汽车4月份和5月份的平均增长率为50%. 4分 (2)由题意得:0.04m +(9.8﹣9)≥1.7, 5分 解得:m ≥22.5, 6分 ∵m 为整数,∴该公司6月份至少需要销售该型汽车23辆, 7分 答:该公司6月份至少需要销售该型汽车23辆.五.解答题(三)(本大题3小题,每小题9分,共27分) 23.解:(1)∵反比例函数xny =2的图象交于点A (1,5), ∴5=n ,即n=5,∴, 1分∵点B (m ,1)在双曲线上.∴1=, ∴m=5, ∴B (5,1); 2分(2)不等式xn≥kx +b 的解集为0<x ≤1或x ≥5; 6分 (3)∵抛物线的顶点为A (1,5),∴设抛物线的解析式为()512+-=x a y , 8分∵抛物线经过B (5,1),∴()51512+-=a ,解得41-=a . ∴()51412+--=x y . 9分F24.(1)证明:∵四边形ABCD 内接于⊙O ,∴∠ABC+∠ADC=180°. ∵∠ADF+∠ADC=180°,∴∠ABC=∠ADF . 1分在△ABC 与△ADF 中,⎪⎩⎪⎨⎧=∠=∠=DF BC ADF ABC ADAB , 2分∴△ABC ≌△ADF .∴AC=AF ; 3分 (2)解:由(1)得,AC=AF=13+. 4分 ∵AB=AD , ∴⌒⌒AD AB =.∴∠ADE=∠ACD . ∵∠DAE=∠CAD ,∴△ADE ∽△ACD . 5分 ∴ADAEAC AD =. ∴()232213413222-=-=+==AC AD AE . 6分(3)证明:∵EG ∥CF ,∴1==ACAFAE AG . ∴AG=AE . 由(2)得AD AE AC AD =,∴ADAGAF AD =. ∵∠DAG=∠FAD ,∴△ADG ∽△AFD . 7分 ∴∠ADG=∠F .∵AC=AF ,∴∠ACD=∠F . 又∵∠ACD=∠ABD ,∴∠ADG=∠ABD . 8分 ∵BD 为⊙O 的直径, ∴∠BAD=90°.∴∠ABD+∠BDA=90°.∴∠ADG+∠BDA=90°. ∴GD ⊥BD .∴DG 为⊙O 的切线. 9分E 25.(1)证明:在矩形ABCD 中,∠ABC=90°. ∴∠ABF+∠FBC=90°. ∵AF ⊥BE , ∴∠AFB=90°. ∴∠ABF+∠GAF=90°.∴∠GAF=∠FBC . 1分 ∵FG ⊥FC , ∴∠GFC=90°. ∴∠ABF=∠GFC .∴∠ABF-∠GFB =∠GFC-∠GFB . 即∠AFG=∠CFB . 2分 ∴△AFG ∽△BFC ; 3分 (2)解:由(1)得△AFG ∽△BFC , ∴BFAFBC AG =. 在Rt △ABF 中,tan ∠ADF=BF AF, 在Rt △EAB 中,tan ∠EBA=ABEA,∴AB EA BF AF =. ∴ABEA BC AG =. ∵BC=AD=4,AB=5,∴54xAB BC EA AG =⋅=. 4分 ∴BG=AB-AG=5-x 54.∴32125825522552545212122+⎪⎭⎫ ⎝⎛--=+-=⎪⎭⎫ ⎝⎛-=⋅=x x x x x AE BG y . 5分 ∴y 的最大值为32125; 6分 (3)x 的值为25,825或415. 9分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时,在线段 BC 上找一点 M 使 PM+ BM 的值最小,求 PM+ BM 的最小值.
第6页(共7页)
2018 年广西北海市中考数学二模试卷
参考答案
一、选择题(共 12 小题,每小题 3 分,满分 36 分) 1.D; 2.A; 3.B; 4.C; 5.D; 6.B; 7.B; 8.D; 9.C; 10.A; 11.D;
8、7、6 环,则该组数据的平均数与中位数分别是( )
A.6,7
B.6,8
C.7,7
D.7,8
10.(3 分)如图,图中是抛物线形拱桥,当拱顶离水面 2m 时水面宽 4m.水面下降 1m,水
面宽度为( )
A.2 m
B.2 m
C. m
D. m
11.(3 分)如图,半径为 4 的⊙O 与含有 30°角的真角三角板 ABC 的边 AC 切于点 A,将
A.60°
B.55°
C.50°
D.45°
7.(3 分)不等式 2x<5 的正整数解的个数是为( )
A.1
B.2
C.3
D.4
8.(3 分)如图,平行四边形 ABCD 中,AE 平分∠DAB,AB=7,BC=4,则 CE 等于( )
第1页(共7页)
A.6
B.5
C.4
D.3
9.(3 分)某校新生进行军训打靶演练,分小组进行,某小组五名同学的成绩分别是:9、5、
21.(8 分)如图,在平面直角坐标系中,A(1,1),B(4,2),C(2,3). (1)清画出将△ABC 向下平移 3 个单位得到的△A1B1C1; (2)请画出以点 O 为旋转中心,将△ABC 逆时针旋转 90°得到的△A1B2C2 (3)请直接写出 A1、A2 的距离.
22.(8 分)某校英语社团举行了“单词听写大赛”,每位参赛选手共听写单词 100 个.现从 参加比赛的男女选手中分别随机抽取部分学生进行调查,对答对的情况进行分组如下: 组:x<60,B 组:60≤x<70,C 组:70≤x<80,D 组:80≤x<90,E 组:90≤x≤10.并 绘制了如下不完整的统计图:
落在点 H 处,延长 EH 交 CD 于点 F,过 E 作∠CEF 的平分线交 CD 于点 G,则△EFG
的面积为

第3页(共7页)
三、解答题(共 8 小题,满分 66 分) 19.(6 分)计算:|﹣ |+(﹣ )0+
﹣2sin60°.
20.(6 分)先化简,再求值:( +
)÷ ,其中 x= ﹣1.
二、填空题(共 6 小题,每小题 3 分,满分 18 分)
13.(3 分)一组数据按从小到大的顺序排列为 1,2,3,3,4,5,则这组数据的众数是

14. (3 分)如图,已知 AB∥CD,DE⊥AF,垂足为 E,若∠CAB=50°,则∠D 的度数为

15.(3 分)分解因式:a3b﹣4ab=

16.(3 分)如图,在菱形 ABCD 中,BD=4 ,∠ABC=60°,则菱形 ABCD 的周长等
12.B; 二、填空题(共 6 小题,每小题 3 分,满分 18 分) 13.3; 14.40°; 15.ab(a+2)(a﹣2); 16.16; 17.10200; 18. ;
三、解答题(共 8 小题,满分 66 分)
19.
; 20.
; 21.
; 22.
; 23.
; 24.
; 25.

26.

声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
直角三角板沿 CA 边所在的直线向左平移,当平移到 AB 与⊙O 相切时,该直角三角板平
移的距离为( )
A.2
B.2
12.(3 分)如图,已知直线 y=﹣ x+
C.4
D.4
与与双曲线 y= (x>0)交于 A、B 两点,连
接 OA,若 OA⊥AB,则 k 的值为( )
第2页(共7页)
A.
B.
C.
D.
2018 年广西北海市中考数学二模试卷
一、选择题(共 12 小题,每小题 3 分,满分 36 分)
1.(3 分)下列各数中,比﹣2 小的数是( )
A.2
B.0
C.﹣1
D.﹣3
2.(3 分)如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是( )
A.
B.
C.
D.
3.(3 分)一粒米的质量是 0.000025 千克,将 0.000025 用科学记数法表示为( )
(1)求证:AB 为⊙O 的切线; (2)求图中阴影部分的面积.(注:结果保留 π,sin37°=0.6,cos37°=0.8,tan37°=
0.75)
24.(10 分)荔枝是广西盛产的一种水果,六月份是荔技传统销售旺季.去年六月份某水果 公司为拓展销售渠道,在实体店的基础上中途增设了网店,公司总销售量 y(吨)与销售 时间 x(天)关系如图所示:


17.(3 分)如图,下列图形均是由完全相同的点按照一定的规律组成的,第 1 个图形一共
有 3 个点,第 2 个图形一共有 8 个点,第 3 个图形一共有 15 个点,…,按此规律排列下
去,第 100 个图形中点的个数是

18.(3 分)如图,正方形 ABCD 边长为 6,E 是 BC 的中点,将△ABE 沿 AE 折叠,使点 B
(1)求证:△ECA≌△DCB; (2)求证:AE2+AD2=2AC2; (3)若 AE=2,AF:CF= :3,求线段 AB 的长.
第5页(共7页)
26.(10 分)如图 1,抛物线 y=﹣ x2+bx+c 经过 B(3,0),C(0,4)两点,抛物线与 x 轴的另一交点为 A,连接 AC、BC.
日期:2019/1/22 8:30:19; 用户:qgjyus er104 29;邮箱:qg jyus er10429.2195 7750;学号: 21985436
第7页(共7页)
(1)求抛物线的解析式及点 A 的坐标; (2)若点 D 是线段 AC 的中点,连接 BD,在 y 轴上是否存一点 E,使得△BDE 是以 BD 为
斜边的直角三角形?若存在,求出点 E 的坐标,若不存在,说明理由; (3)如图 2,P 为抛物线在第一象限内一动点,过 P 作 PQ⊥BC 于 Q,当 PQ 的长度最大
请根据以上信息解答下列问题:
(1)本次调查共抽取了多少名学生,并将条形统计图补充完整;
(2)求出 A 组所对的扇形圆心角的度数;
(3)若从 D、E 两组中分别抽取一位学生进行采访,请用画树状图或列表法求出恰好抽到
两位女学生的概率.
第4页(共7页)
23.(8 分)如图,在△AOB 中,OA=OB,点 C 为 AB 的中点,AB=16,以点 O 为圈心,6 为半径的圆经过点 C,分别交 OA、OB 于点 E、F.
(1)请直接写出去年六月份网店每天的销售量,并求出 AB 的解析式(不写取值范围); (2)公司预计,今年六月份实体店的销售量与去年相同,网店的销售量将有所增加,预计
今年网店每天的销售量比去年增加 m%,公司六月份的总销售量是去年的 1.4 倍,求 m 的值.
25.(10 分)如图,△ABC 和△ECD 都是等腰直角三角形,CA=CB,CE=CD,△ACB 的 顶点 A 在△ECD 的斜边 DE 上,AB、CD 交于点 F,连接 BD.
A.0.25×10﹣4
B.2.5×10﹣5
C.2.5×10﹣4
D.25×形又是轴对称图形的是( )
A.
B.
C.
D.
5.(3 分)下列各式计算正确的是( )
A.a2+2a3=3a5
B.(2a2)5=6a5
C.a6÷a2=a3
D.2a•3a5=6a6
6.(3 分)如图,△ABC 内接于⊙O,连接 OA,OB,若∠C=35°,则∠OBA 的度数是( )
相关文档
最新文档